Supplementary Material for "Refined Learning Bounds for Kernel and Approximate k-Means"

Yong Liu ${ }^{1,2}$
${ }^{1}$ Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
${ }^{2}$ Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China liuyonggsai@ruc.edu.cn

Appendix: Upper Bound for the Clustering Rademacher Complexity

Let \mathcal{F}_{C} be a family of k-valued functions with

$$
\begin{equation*}
\mathcal{F}_{\mathbf{C}}:=\left\{f_{\mathbf{C}}=\left(f_{\mathbf{c}_{1}}, \ldots, f_{\mathbf{c}_{k}}\right): \mathbf{C} \in \mathcal{H}^{k}\right\} . \tag{1}
\end{equation*}
$$

Let $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a minimum function:

$$
\begin{equation*}
\forall \boldsymbol{\alpha} \in \mathbb{R}^{k}, \varphi(\boldsymbol{\alpha})=\min _{i=1, \ldots, k} \alpha_{i} \tag{2}
\end{equation*}
$$

and $\mathcal{G}_{\mathbf{C}}$ be a "minimum" family of the functions $\mathcal{F}_{\mathbf{C}}$,

$$
\begin{equation*}
\mathcal{G}_{\mathbf{C}}:=\left\{g_{\mathbf{C}}=\varphi \circ f_{\mathbf{C}} \mid f_{\mathbf{C}} \in \mathcal{F}_{\mathbf{C}}, g_{\mathbf{C}}(\mathbf{x})=\varphi\left(f_{\mathbf{C}}(\mathbf{x})\right)\right\} . \tag{3}
\end{equation*}
$$

Definition 1 (Clustering Rademacher Complexity). Let $\mathcal{G}_{\mathbf{C}}$ be a family of functions defined in (3), $\mathcal{S}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ be a fixed sample of size n with elements in \mathcal{X}, and $\mathcal{D}=\left\{\Phi_{i}=\psi\left(\mathbf{x}_{i}\right)\right\}_{i=1}^{n}$. Then, the clustering empirical Rademacher complexity of $\mathcal{G}_{\mathbf{C}}$ with respect to \mathcal{D} is defined by

$$
\mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right)=\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{g_{\mathbf{C}} \in \mathcal{G}_{\mathbf{C}}}\left|\sum_{i=1}^{n} \sigma_{i} g_{\mathbf{C}}\left(\mathbf{x}_{i}\right)\right|\right],
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ are independent random variables with equal probability of taking values +1 or -1 . Its expectation is $\mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right)=\mathbb{E}\left[\mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right)\right]$.

Based on the recently improvement of the upper bound of Rademacher complexity of L-Lipschitz with respect to the L_{∞} norm [5], we provide a refined bound of clustering Rademacher complexity: Lemma 1. If $\forall \mathbf{x} \in \mathcal{X},\left\|\Phi_{\mathbf{x}}\right\| \leq 1$, then, for any $\mathcal{S}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \in \mathcal{X}^{n}$, there exists a constant $c>0$ such that

$$
\mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right) \leq c \sqrt{k} \max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right) \log ^{2}(\sqrt{n})
$$

where $\mathcal{G}_{\mathbf{C}}$ is a family of clustering functions defined in (3), $\mathcal{F}_{\mathbf{C}}$ is a family of k-valued functions associate with the clustering center $\mathbf{C}=\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right]$ defined in (1), $\mathcal{F}_{\mathbf{C}_{i}}$ is a family of the output coordinate i of $\mathcal{F}_{\mathbf{C}}$, and $\tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)=\sup _{\mathcal{S} \in \mathcal{X}^{n}} \mathcal{R}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)$.

The above result shows that the upper bound of the clustering Rademacher complexity is linearly dependent on \sqrt{k}, which substantially improves the existing bounds linearly dependent on k.
Remark. The upper bound of the clustering Rademacher complexity involves a constant c and a logarithmic term $\log (n)$. Thus, if one requires its absolute value to be smaller than the existing bounds defined, there may exist some cases which acquire a large k. However, from a statistical perspective, our bound with linear dependence on \sqrt{k} substantially improves the existing ones with linear dependence on k.
In the following, we will show that Lemma 1 cannot be improved from a statistical view when ignoring the logarithmic terms.

Lemma 2. There exists a set $\mathbf{C} \in \mathcal{H}^{k}$ and data sequence $\mathcal{D}=\left\{\Phi_{1}, \ldots, \Phi_{n}\right\}$ such that

$$
\mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right) \geq \frac{\sqrt{k}}{3 \sqrt{2}} \cdot \max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)
$$

Lemma 2 shows that the lower bound of $\mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right)$ is $\Omega\left(\sqrt{k} \max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)\right)$, which implies that the upper bound of order $\tilde{\mathcal{O}}\left(\sqrt{k} \max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)\right)$ in Lemma 1 is (nearly) optimal when ignoring the logarithmic terms
Remark. A lower bound linearly dependent on k for a k-valued function class $\mathcal{F} \subseteq\left\{f: \mathcal{X} \rightarrow \mathbb{R}^{k}\right\}$ has been given in [5],

$$
\mathcal{R}_{n}(\phi \circ \mathcal{F}) \geq \frac{k}{2 \sqrt{2}} \cdot \max _{i} \tilde{\mathcal{R}}_{n}\left(\phi \circ \mathcal{F}_{i}\right)
$$

which does not match the upper bound of \sqrt{k}. However our bound in Lemma 2 does match.

Appendix: Proof of Lemma 1

To prove Lemma 1 , we first give the following two lemmas:
Lemma 3 (L_{∞} Contraction Inequality, Theorem 1 in [5]). Let $\mathcal{F} \subseteq\left\{f: \mathcal{X} \rightarrow \mathbb{R}^{k}\right\}$, and let $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be L-Lipschitz with respect to the L_{∞} norm, that is $\left\|\phi(\mathbf{v})-\phi\left(\mathbf{v}^{\prime}\right)\right\|_{\infty} \leq L \cdot\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty}$, $\forall \mathbf{v}, \mathbf{v}^{\prime} \in \mathbb{R}^{k}$. For any $a>0$, there exists a constant $C>0$ such that if $\max \left\{|\phi(f(\mathbf{x}))|,\|f(\mathbf{x})\|_{\infty}\right\} \leq$ ρ, then

$$
\mathcal{R}_{n}(\phi \circ \mathcal{F}) \leq C \cdot L \sqrt{k} \max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{i}\right) \log ^{\frac{3}{2}+a}\left(\frac{\rho n}{\max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{i}\right)}\right)
$$

where $\mathcal{R}_{n}(\phi \circ \mathcal{F})=\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n} \sigma_{i} \phi\left(f\left(\mathbf{x}_{i}\right)\right)\right|\right], \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{i}\right)=\sup _{\mathcal{S} \in \mathcal{X}^{n}} \mathcal{R}_{n}\left(\mathcal{F}_{i}\right)$.
Lemma 4 (Lemma 24(a) in [7] with $p=2$). Let $\eta_{1}, \ldots, \eta_{n} \in \mathcal{H}$, where \mathcal{H} is a Hilbert space with $\|\cdot\|$ being the associated norm. Let $\sigma_{1}, \ldots, \sigma_{n}$ be a sequence of independent Rademacher variables. Then, we have

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{\sigma}}\left\|\sum_{i=1}^{n} \sigma_{i} \eta_{i}\right\|^{2} \leq \sum_{i=1}^{n}\left\|\eta_{i}\right\|^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=1}^{n} \sigma_{i} \eta_{i}\right\| \geq \frac{\sqrt{2}}{2} \sqrt{\sum_{i=1}^{n}\left\|\eta_{i}\right\|^{2}} \tag{5}
\end{equation*}
$$

Proof of Lemma 1 . We first show that the minimum function

$$
\varphi(\boldsymbol{\nu})=\min \left(\nu_{1}, \ldots, \nu_{k}\right)
$$

defined in (2) is 1-Lipschitz continuous with respect to the L_{∞}-norm, that is

$$
\begin{equation*}
\forall \boldsymbol{\nu}, \boldsymbol{\nu}^{\prime} \in \mathbb{R}^{k},\left|\varphi(\boldsymbol{\nu})-\varphi\left(\boldsymbol{\nu}^{\prime}\right)\right| \leq\left\|\boldsymbol{\nu}-\boldsymbol{\nu}^{\prime}\right\|_{\infty} \tag{6}
\end{equation*}
$$

Without loss of generality, we assume that $\varphi(\boldsymbol{\nu}) \geq \varphi\left(\boldsymbol{\nu}^{\prime}\right)$. Let

$$
j=\underset{i=1, \ldots, k}{\arg \min } \nu_{i}^{\prime}
$$

then from the definition of φ, we know that $\varphi\left(\boldsymbol{\nu}^{\prime}\right)=\nu_{j}^{\prime}$. Thus, we can obtain that

$$
\begin{aligned}
\left|\varphi(\boldsymbol{\nu})-\varphi\left(\boldsymbol{\nu}^{\prime}\right)\right| & =\varphi(\boldsymbol{\nu})-\nu_{j}^{\prime} \\
& \leq \nu_{j}-\nu_{j}^{\prime} \quad \quad\left(\text { by the fact that } \varphi(\boldsymbol{\nu}) \leq \nu_{j}\right) \\
& \leq\left\|\boldsymbol{\nu}-\boldsymbol{\nu}^{\prime}\right\|_{\infty} .
\end{aligned}
$$

We then show that $\max \left\{\left|\varphi\left(f_{\mathbf{C}}(\mathbf{x})\right)\right|,\left\|f_{\mathbf{C}}(\mathbf{x})\right\|_{\infty}\right\}$ is bounded by a constant. From the definition of $f_{\mathbf{C}}$ (see Eq. (11)), we know that

$$
f_{\mathbf{C}}(\mathbf{x})=\left(f_{\mathbf{c}_{1}}(\mathbf{x}) \ldots, f_{\mathbf{c}_{k}}(\mathbf{x})\right) \text { and } f_{\mathbf{c}_{j}}(\mathbf{x})=\left\|\Phi_{\mathbf{x}}-\mathbf{c}_{j}\right\|^{2}
$$

Note that $\left\|\Phi_{\mathbf{x}}\right\| \leq 1$ and $\mathbf{c}_{j} \in \mathcal{H}$, so we have

$$
\begin{equation*}
\left\|\mathbf{c}_{j}\right\| \leq 1 \text { and } f_{\mathbf{c}_{j}}(\mathbf{x}) \leq 2\left\|\Phi_{\mathbf{x}}\right\|+2\left\|\mathbf{c}_{j}\right\| \leq 4, \forall \mathbf{x} \in \mathcal{X} \tag{7}
\end{equation*}
$$

Thus, one can see that

$$
\left\|f_{\mathbf{C}}(\mathbf{x})\right\|_{\infty}=\max _{j}\left|f_{\mathbf{c}_{j}}(\mathbf{x})\right| \leq 4 \text { and }\left|\varphi\left(f_{\mathbf{C}}(\mathbf{x})\right)\right|=\left|\min _{j=1, \ldots, k} f_{\mathbf{c}_{j}}(\mathbf{x})\right| \leq 4
$$

From the above analysis, we know that $\varphi(\boldsymbol{\nu})$ is 1 -continuous with respect to the L_{∞}-norm, and $\max \left\{\left|\varphi\left(f_{\mathbf{C}}(\mathbf{x})\right)\right|,\left\|f_{\mathbf{C}}(\mathbf{x})\right\|_{\infty}\right\} \leq 4$. Thus, using Lemma 3 with $L=1, \rho=4$ and $a=1 / 2$, we have

$$
\begin{equation*}
\mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right) \leq C \sqrt{k} \max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right) \log ^{2}\left(\frac{4 n}{\max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)}\right) \tag{8}
\end{equation*}
$$

Let

$$
\begin{equation*}
c_{i}:=\sup _{\mathbf{x} \in \mathcal{X}} \sup _{f_{\mathbf{c}} \in \mathcal{F}_{\mathbf{C}_{i}}}\left|f_{\mathbf{c}}(\mathbf{x})\right| \text { and } c=\max \left\{c_{i}, i=1, \ldots, k\right\} . \tag{9}
\end{equation*}
$$

From (7), we know that c is a constant and $c \leq 4$. By definition of $\tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)$, we can obtain that

$$
\begin{align*}
\forall j, \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{j}}\right) & =\sup _{\mathcal{S} \in \mathcal{X}^{n}} \mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{f_{\mathbf{c}} \in \mathcal{F}_{\mathbf{C}_{j}}}\left|\sum_{i=1}^{n} \sigma_{i} f_{\mathbf{c}}\left(\mathbf{x}_{i}\right)\right|\right] \\
& \geq \sup _{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{f_{\mathbf{c}} \in \mathcal{F}_{\mathbf{C}_{j}}}\left|\sum_{i=1}^{n} \sigma_{i} f_{\mathbf{c}}(\mathbf{x})\right|\right] \\
& \geq \sup _{\mathbf{x} \in \mathcal{X}, f_{\mathbf{c}} \in \mathcal{F}_{\mathbf{C}_{j}}} \mathbb{E}_{\boldsymbol{\sigma}}\left|\sum_{i=1}^{n} \sigma_{i} f_{\mathbf{c}}(\mathbf{x})\right| \text { (by Jensen's inequality) } \tag{10}\\
& \geq \frac{\sqrt{2 n}}{2} \sup _{\mathbf{x} \in \mathcal{X}, f_{\mathbf{c}} \in \mathcal{F}_{\mathbf{C}_{j}}} \sqrt{\left|f_{\mathbf{c}}(\mathbf{x})\right|} \text { (by Eq.(5) of Lemma 4) } \\
& =\frac{\sqrt{2 n c_{j}}}{2} \text { (by Eq.(9)). }
\end{align*}
$$

Thus, one can see that $\max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right) \geq \frac{\sqrt{2 c n}}{2}$, where $c=\max \left\{c_{i}, i=1, \ldots, k\right\}$. So, we have $\frac{n}{\max _{i} \hat{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)} \leq \sqrt{\frac{2 n}{c}}$. Plugging this into (8) proves the result.

Appendix: Proof of Theorem 1

To prove Theorem 1, we first give the following two lemmas:
Lemma 5. If $\forall \mathbf{x} \in \mathcal{X},\left\|\Phi_{\mathbf{x}}\right\| \leq 1$, then for all $\mathcal{S} \in \mathcal{X}^{n}$ and $\mathbf{C} \in \mathcal{H}^{k}$, we have

$$
\max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right) \leq 3 \sqrt{n}
$$

Proof. $\forall \mathcal{S} \in \mathcal{X}^{n}, \mathbf{C} \in \mathcal{H}^{k}$ and $i \in\{1, \ldots, k\}$, we have

$$
\begin{align*}
\mathcal{R}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right) & =\mathbb{E}_{\boldsymbol{\sigma}} \sup _{f_{\mathbf{c}} \in \mathcal{F}_{\mathbf{C}_{i}}}\left|\sum_{j=1}^{n} \sigma_{j} f_{\mathbf{c}}\left(\mathbf{x}_{j}\right)\right| \\
& =\mathbb{E}_{\boldsymbol{\sigma}}^{\boldsymbol{\sigma}} \sup _{\mathbf{c} \in \mathcal{H}}\left|\sum_{j=1}^{n} \sigma_{j}\left\|\Phi_{j}-\mathbf{c}\right\|^{2}\right| \\
& =\mathbb{E}_{\boldsymbol{\sigma}}^{\boldsymbol{\sigma}} \sup _{\mathbf{c} \in \mathcal{H}}\left|\sum_{j=1}^{n} \sigma_{j}\left[-2\left\langle\Phi_{j}, \mathbf{c}\right\rangle+\|\mathbf{c}\|^{2}+\left\|\Phi_{j}\right\|^{2}\right]\right| \tag{11}\\
& =\mathbb{E}_{\boldsymbol{\sigma}}^{\boldsymbol{\sigma}} \sup _{\mathbf{c} \in \mathcal{H}}\left|\sum_{j=1}^{n} \sigma_{j}\left[-2\left\langle\Phi_{j}, \mathbf{c}\right\rangle+\|\mathbf{c}\|^{2}\right]\right| \\
& \leq 2 \mathbb{E}_{\boldsymbol{\sigma}} \sup _{\mathbf{c} \in \mathcal{H}}\left|\sum_{j=1}^{n} \sigma_{j}\left\langle\Phi_{j}, \mathbf{c}\right\rangle\right|+\mathbb{E}_{\boldsymbol{\sigma}} \sup _{\mathbf{c} \in \mathcal{H}}\left|\sum_{j=1}^{n} \sigma_{j}\|\mathbf{c}\|^{2}\right| .
\end{align*}
$$

One can see that

$$
\begin{align*}
\mathbb{E}_{\boldsymbol{\sigma}} \sup _{\mathbf{c} \in \mathcal{H}}\left|\sum_{j=1}^{n} \sigma_{j}\|\mathbf{c}\|^{2}\right| & \leq \mathbb{E}_{\boldsymbol{\sigma}}\left|\sum_{j=1}^{n} \sigma_{j}\right| \quad(\text { since }\|\mathbf{c}\| \leq 1) \\
& \leq \sqrt{\mathbb{E}_{\boldsymbol{\sigma}}\left|\sum_{j=1}^{n} \sigma_{j}\right|^{2}} \leq \sqrt{n} \quad \text { (by Eq. (4) of Lemma4] } \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
\mathbb{E}_{\boldsymbol{\sigma}} \sup _{\mathbf{c} \in \mathcal{H}}\left|\sum_{j=1}^{n} \sigma_{j}\left\langle\Phi_{j}, \mathbf{c}\right\rangle\right| & =\mathbb{E}_{\boldsymbol{\sigma}} \sup _{\mathbf{c} \in \mathcal{H}}\left|\left\langle\sum_{j=1}^{n} \sigma_{j} \Phi_{j}, \mathbf{c}\right\rangle\right| \\
& \leq \mathbb{E}_{\boldsymbol{\sigma}}\left\|\sum_{j=1}^{n} \sigma_{j} \Phi_{j}\right\|(\text { by }\|\mathbf{c}\| \leq 1) \tag{13}\\
& \left.\leq \sqrt{\mathbb{E}_{\boldsymbol{\sigma}}\left\|\sum_{j=1}^{n} \sigma_{j} \Phi_{j}\right\|^{2}} \leq \sqrt{\sum_{i=1}^{n}\left\|\Phi_{i}\right\|^{2}} \text { (by Eq.(4) of Lemma } 4\right) \\
& \leq \sqrt{n} \quad\left(\text { since }\left\|\Phi_{i}\right\| \leq 1\right)
\end{align*}
$$

Substituting (12) and (13) into (11), we can prove the result.
To prove Theorem 1, we first propose the following lemma:
Lemma 6. For any $\delta \in(0,1)$, with probability $1-\delta$, there exists a constant $c>0$, such that

$$
\mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right) \leq c \sqrt{k n} \log ^{2}(\sqrt{n})+\sqrt{2 n \log \left(\frac{1}{\delta}\right)}
$$

Proof. From [8] or [1], with probability $1-\delta$, we have

$$
\begin{equation*}
\mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right) \leq \mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right)+\sqrt{2 n \log \left(\frac{1}{\delta}\right)} \tag{14}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
& \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right) \\
\leq & \mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right)+\sqrt{2 n \log \left(\frac{1}{\delta}\right)} \\
\leq & c \sqrt{k} \max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right) \log ^{2}(\sqrt{n})+\sqrt{2 n \log \left(\frac{1}{\delta}\right)} \\
\leq & 3 c \sqrt{k n} \log ^{2}(\sqrt{n})+\sqrt{2 n \log \left(\frac{1}{\delta}\right)}
\end{aligned}
$$

Proof of Theorem 1. The starting point of our analysis is the following elementary inequality (see Ch. 8 in [4] or page 2 in [3]):

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P}) \\
&= \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)\right]+\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)\right]-\mathcal{W}^{*}(\mathbb{P}) \\
& \leq \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)\right]+\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}^{*}, \mathbb{P}_{n}\right)\right]-\mathcal{W}^{*}(\mathbb{P}) \\
&\left(\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right) \leq \mathcal{W}\left(\mathbf{C}^{*}, \mathbb{P}_{n}\right) \text { as } \mathbf{C}_{n} \text { is optimal w.r.t. } \mathcal{W}\left(\cdot, \mathbb{P}_{n}\right)\right) \tag{15}\\
& \leq \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left(\mathcal{W}(\mathbf{C}, \mathbb{P})-\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)\right)+\sup _{\mathbf{C} \in \mathcal{H}^{k}} \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right] \\
& \leq 2 \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right|
\end{align*}
$$

Let $\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{n}^{\prime}$ be a copy of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, independent of the σ_{i} 's. Then, by a standard symmetrization argument [1] (can also be seen in the proof of Lemma 4.3 of [3]), we can write

$$
\begin{align*}
\mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right| & \leq \mathbb{E} \sup _{g_{\mathbf{C}} \in \mathcal{G}_{\mathbf{C}}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left[g_{\mathbf{C}}(\mathbf{x})-g_{\mathbf{C}}\left(\mathbf{x}^{\prime}\right)\right]\right| \tag{16}\\
& \leq 2 \mathbb{E} \sup _{g_{\mathbf{C}} \in \mathcal{G}_{\mathbf{C}}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g_{\mathbf{C}}(\mathbf{x})\right|=\frac{2}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right)
\end{align*}
$$

Thus, we can obtain that

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P}) & \leq \frac{4}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right)(\text { by Eq. } 15) \text { and Eq.(16) } \\
& \leq 4 c \sqrt{\frac{k}{n}} \log ^{2}(\sqrt{n})+4 \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \quad \text { (by Lemma } 6 .
\end{aligned}
$$

This proves the result.

Appendix: Proof of Theorem 2

Proof. Note that

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{W}\left(\tilde{\mathbf{C}}_{n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P}) \\
= & \underbrace{\mathbb{E}\left[\mathcal{W}\left(\tilde{\mathbf{C}}_{n}, \mathbb{P}\right)-\mathcal{W}\left(\tilde{\mathbf{C}}_{n}, \mathbb{P}_{n}\right)\right]}_{A_{1}}+\underbrace{\mathbb{E}\left[\mathcal{W}\left(\tilde{\mathbf{C}}_{n}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)\right]}_{A_{2}} \\
& +\underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]}_{A_{4}}+\underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P})}_{A_{3}} .
\end{aligned}
$$

Also note that A_{2} is bounded by ζ, and A_{4} can be obtained from Theorem 1. From Eq. 16), we know that A_{1} and A_{3} can be bounded by the Rademacher complexity:

$$
\begin{aligned}
& A_{1} \leq \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right| \leq \frac{2}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right) \\
& A_{3} \leq \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right| \leq \frac{2}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right)
\end{aligned}
$$

Thus, we can obtain that

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{W}\left(\tilde{\mathbf{C}}_{n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P}) \leq \frac{4}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right)+c \sqrt{\frac{k}{n}} \log ^{2}(\sqrt{n})+c \sqrt{\frac{\log \frac{1}{\delta}}{n}}+\zeta \tag{17}
\end{equation*}
$$

Substituting Lemma 6 into Eq. (17), we can proves the result.

Appendix: Proof of Theorem 3

Proof. Note that

$$
\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}\right)\right]\right]=\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}\right)\right]-\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}_{n}\right)\right]\right]+\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}_{n}\right)\right]\right]
$$

From Lemma 2, we can obtain that

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}_{n}\right)\right]\right] & \leq \beta \cdot \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)\right] \\
& =\beta \cdot \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]+\beta \cdot \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]
\end{aligned}
$$

Thus, we can obtain that

$$
\begin{align*}
\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}\right)\right]\right] \leq & \underbrace{\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}\right)\right]-\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}_{n}\right)\right]\right]}_{A_{1}} \tag{18}\\
& +\beta \cdot \underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]}_{A_{2}}+\beta \cdot \underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]}_{A_{3}}
\end{align*}
$$

Note that

$$
\begin{array}{rlr}
A_{1}, A_{2} & \leq \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right| \\
& \leq \frac{2}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right) \tag{19}\\
& \leq \tilde{\mathcal{O}}\left(\sqrt{\frac{k}{n}}\right) .
\end{array}
$$

By Theorem 1, we can obtain that

$$
\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right] \leq \mathcal{W}^{*}(\mathbb{P})+c \sqrt{\frac{k}{n}} \log ^{2}(\sqrt{n})+c \sqrt{\frac{\log \frac{1}{\delta}}{n}}
$$

Substituting the above inequality and Eq. (19) into Eq. (18), we have

$$
\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n}^{\mathcal{A}}, \mathbb{P}_{n}\right)\right]\right] \leq \tilde{\mathcal{O}}\left(\sqrt{\frac{k}{n}}+\mathcal{W}^{*}(\mathbb{P})\right)
$$

Appendix: Proof of Theorem 4

To prove Theorem 4, we first propose the following lemma:
Lemma 7. With probability at least $1-\delta$, we have

$$
\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)\right] \leq \tilde{\mathcal{O}}\left(\sqrt{\frac{k}{n}}\right)
$$

Proof. Note that

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)\right] & \leq \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right| \\
& \leq \frac{2}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right) \\
& =\tilde{\mathcal{O}}\left(\sqrt{\frac{k}{n}}\right) \quad \text { (by Eq.(16)) }
\end{aligned}
$$

This proves the result.

Lemma 8. If constructing \mathcal{I} by uniformly sampling

$$
m \geq C \sqrt{n} \log (1 / \delta) \min (k, \Xi) / \sqrt{k}
$$

then for all $\mathcal{S} \in \mathcal{X}^{n}$, with probability at least $1-\delta$, we have

$$
\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right) \leq C \sqrt{\frac{k}{n}}
$$

where $\Xi=\operatorname{Tr}\left(\mathbf{K}_{n}\left(\mathbf{K}_{n}+\mathbf{I}_{n}\right)^{-1}\right)$ is the effective dimension of \mathbf{K}_{n}, and C is a constant.

Proof. This can be directly proved by combining Lemma 1 and Lemma 2 of [2] by setting $\varepsilon=$ $1 / 2$.

Proof of Theorem 4. Note that

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P}) \\
= & \underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)-\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}_{n}\right)\right]}_{A_{1}}+\underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)\right]}_{A_{2}} \\
& +\underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]}_{A_{3}}+\underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P})}_{A_{4}} .
\end{aligned}
$$

Note that

$$
\begin{array}{rlr}
A_{3} & \leq \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right| \\
& \leq \frac{2}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right) \tag{20}\\
& \leq \tilde{\mathcal{O}}\left(\sqrt{\frac{k}{n}}\right)
\end{array}
$$

One can see that A_{4} can be bounded by $\tilde{\mathcal{O}}(\sqrt{k / n})$ using Theorem 1. A_{1} and A_{2} can both be bounded as $\tilde{\mathcal{O}}(\sqrt{k / n})$ using Lemma 7 and Lemma 8 respectively.

Appendix: Proof of Theorem 5

Proof. From the definition of effective dimension, we have

$$
\begin{aligned}
\Xi & =\operatorname{Tr}\left(\mathbf{K}^{\mathrm{T}}(\mathbf{K}+\mathbf{I})^{-1}\right)=\sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}+1} \\
& =\sum_{i=1}^{\lfloor\sqrt{k}\rfloor} \frac{\lambda_{i}}{\lambda_{i}+1}+\sum_{i=\lfloor\sqrt{k}\rfloor+1}^{n} \frac{\lambda_{i}}{\lambda_{i}+1} \leq \sum_{i=1}^{\lfloor\sqrt{k}\rfloor} 1+\sum_{i=\lfloor\sqrt{k}\rfloor+1}^{n} \lambda_{i} \\
& \leq \sqrt{k}+\sum_{i=\lfloor\sqrt{k}\rfloor+1}^{n} \lambda_{i} \leq \sqrt{k}+\sum_{i=\lfloor\sqrt{k}\rfloor+1}^{n} c i^{-\alpha} \\
& \leq \sqrt{k}+c \int_{\sqrt{k}}^{\infty} x^{-\alpha} d x=\sqrt{k}+\frac{c}{\alpha-1} \sqrt{k}^{1-\alpha} \\
& \leq\left(1+\frac{c}{\alpha-1}\right) \sqrt{k} .
\end{aligned}
$$

Thus, we can obtain that

$$
\frac{\min (k, \Xi)}{\sqrt{k}} \leq \frac{\Xi}{\sqrt{k}} \leq 1+\frac{c}{\alpha-1}
$$

Substituting the above inequality into Theorem 4 , we can prove this result.

Appendix: Proof of Theorem 6

Proof. Note that

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{W}\left(\tilde{\mathbf{C}}_{m, n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P}) \\
= & \underbrace{\mathbb{E}\left[\mathcal{W}\left(\tilde{\mathbf{C}}_{m, n}, \mathbb{P}\right)-\mathcal{W}\left(\tilde{\mathbf{C}}_{m, n}, \mathbb{P}_{n}\right)\right]}_{A_{1}}+\underbrace{\mathbb{E}\left[\mathcal{W}\left(\tilde{\mathbf{C}}_{m, n}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{m, n}, \mathbb{P}_{n}\right)\right]}_{A_{2}} \\
& +\underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{m, n}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{m, n}, \mathbb{P}\right)\right]}_{A_{4}}+\underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{m, n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P})}_{A_{3}} .
\end{aligned}
$$

Also note that A_{2} is bounded by ζ, A_{4} can be obtained from Theorem 5, and A_{1} and A_{3} can be bounded by the Rademacher complexity:

$$
A_{1}, A_{3} \leq \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right| \leq \frac{2}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right)
$$

Thus, we can obtain that

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{W}\left(\tilde{\mathbf{C}}_{n}, \mathbb{P}\right)\right]-\mathcal{W}^{*}(\mathbb{P})=\tilde{\mathcal{O}}\left(\frac{\mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right)}{n}+\sqrt{\frac{k}{n}}+\zeta\right) \tag{21}
\end{equation*}
$$

Substituting Lemma 6 into Eq. 21, we can proves the result.

Appendix: Proof of Theorem 7

Proof. Note that

$$
\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n, m}^{\mathcal{A}}, \mathbb{P}\right)\right]\right]=\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n, m}^{\mathcal{A}}, \mathbb{P}\right)\right]-\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n, m}^{\mathcal{A}}, \mathbb{P}_{n}\right)\right]\right]+\mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n, m}^{\mathcal{A}}, \mathbb{P}_{n}\right)\right]\right]
$$

By Lemma 2, we can obtain that

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n, m}^{\mathcal{A}}, \mathbb{P}_{n}\right)\right]\right] \leq \beta \cdot \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}_{n}\right)\right] \\
= & \beta \cdot \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}_{n}\right)-\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)\right]+\beta \cdot \mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)\right]
\end{aligned}
$$

Thus, we can obtain that

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n, m}^{\mathcal{A}}, \mathbb{P}\right)\right]\right] \\
\leq & \underbrace{}_{A_{1}}\left[\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n, m}^{\mathcal{A}}, \mathbb{P}\right)\right]-\mathbb{E}_{\mathcal{A}}\left[\mathcal{W}\left(\mathbf{C}_{n, m}^{\mathcal{A}}, \mathbb{P}_{n, m}\right)\right]\right] \\
& +\beta \cdot \underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}_{n, m}\right)-\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)\right]}_{A_{2}}+\beta \cdot \underbrace{\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)\right]}_{A_{3}} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
A_{1}, A_{2} & \leq \mathbb{E} \sup _{\mathbf{C} \in \mathcal{H}^{k}}\left|\mathcal{W}\left(\mathbf{C}, \mathbb{P}_{n}\right)-\mathcal{W}(\mathbf{C}, \mathbb{P})\right| \\
& \leq \frac{2}{n} \mathcal{R}\left(\mathcal{G}_{\mathbf{C}}\right) \\
& =\tilde{\mathcal{O}}\left(\sqrt{\frac{k}{n}}\right) \quad \text { (by Eq. 16) }
\end{aligned}
$$

By Corollary 5, A_{3} can be bounded:

$$
A_{3}=\mathbb{E}\left[\mathcal{W}\left(\mathbf{C}_{n, m}, \mathbb{P}\right)\right] \leq \mathcal{W}^{*}(\mathbb{P})+c \sqrt{\frac{k}{n}} \log ^{2}(\sqrt{n})
$$

This proves the result.

Appendix: Proof of Lemma 2

We first prove that the maximum Rademacher complexity can be bounded by $3 \sqrt{n}$. Then, following the same idea as [5] and using the Khintchine inequality [6], we show that there exists a hypothesis function $\mathcal{F}_{\mathbf{C}}$ such that $\mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right) \geq \sqrt{\frac{k n}{2}}$.

Lemma 9 (Khintchine inequality with $p=1$ in [6]). Let $\sigma_{1}, \ldots, \sigma_{n}$ be Rademacher variables with equal probability of taking values +1 or -1 . Then, we have $\mathbb{E}_{\boldsymbol{\sigma}}\left|\sum_{i=1}^{n} \sigma_{i}\right| \geq \sqrt{\frac{n}{2}}$.

Proof of Lemma 2 Let $\epsilon_{1}, \ldots, \epsilon_{k}$ be independent random variables with equal probability of taking values +1 or -1 . Let $\mathbf{C}=\left(\epsilon_{1} \boldsymbol{\nu}_{1}, \ldots, \epsilon_{k} \boldsymbol{\nu}_{k}\right)$, where $\boldsymbol{\nu}_{i}$ is the i th standard basis function in \mathcal{H}, that is $\left\langle\boldsymbol{\nu}_{i}, \boldsymbol{\nu}_{j}\right\rangle=1$ if $i=j$, otherwise 0 . We choose the hypothesis space

$$
\begin{equation*}
\mathcal{F}_{\mathbf{C}}=\left\{f_{\mathbf{C}}=\left(f_{\epsilon_{1} \boldsymbol{\nu}_{1}}, \ldots, f_{\epsilon_{k} \boldsymbol{\nu}_{k}}\right) \mid f_{\epsilon_{i} \boldsymbol{\nu}_{i}}(\mathbf{x})=\left\|\Phi_{\mathbf{x}}-\epsilon_{i} \boldsymbol{\nu}_{i}\right\|^{2}, \boldsymbol{\epsilon} \in\{ \pm 1\}^{k}\right\} \tag{22}
\end{equation*}
$$

Assume that n is divisible by k. We set $\Phi_{1}, \ldots, \Phi_{n / k}=\boldsymbol{\nu}_{1}, \Phi_{(n+1) / k}, \ldots, \Phi_{2 n / k}=\boldsymbol{\nu}_{2}, \ldots$, and so on, and let i_{t} be the index such that $\Phi_{t}=\boldsymbol{\nu}_{i_{t}}$. Let $\boldsymbol{\sigma}^{\prime} \in\{ \pm 1\}^{n}$ be Rademacher variables. From the
definition of clustering Rademacher complexity, we can obtain that

$$
\begin{aligned}
& \mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right)= \\
= & \mathbb{R}_{n}\left(\varphi \circ \mathcal{F}_{\mathbf{C}}\right) \\
= & \mathbb{E}_{\boldsymbol{\sigma}^{\prime} \in\{ \pm 1\}^{n}} \sup _{\boldsymbol{\epsilon} \in\{ \pm 1\}^{k}}\left|\sum_{t=1}^{n} \sigma_{t}^{\prime} \min _{1 \leq i \leq k}\left\|\Phi_{t}-\epsilon_{i} \boldsymbol{\nu}_{i}\right\|^{2}\right| \\
& \left|\sum_{t=1}^{n} \sigma_{t}^{\prime} \min _{1 \leq i \leq k}\left(2-2\left\langle\Phi_{t}, \epsilon_{i} \boldsymbol{\nu}_{i}\right\rangle\right)\right|
\end{aligned}
$$

(since $\Phi_{t}=\boldsymbol{\nu}_{i_{t}}$ and $\boldsymbol{\nu}_{i}$ is the i th standard basis function in \mathcal{H})

$$
=2 \mathbb{E}_{\boldsymbol{\sigma}^{\prime} \in\{ \pm 1\}^{n}} \sup _{\epsilon \in\{ \pm 1\}^{k}}\left|\sum_{t=1}^{n} \sigma_{t}^{\prime} \max _{1 \leq i \leq k}\left\langle\Phi_{t}, \epsilon_{i} \boldsymbol{\nu}_{i}\right\rangle\right|
$$

$$
\begin{equation*}
=2 \mathbb{E}_{\boldsymbol{\sigma}^{\prime} \in\{ \pm 1\}^{n}} \sup _{\boldsymbol{\epsilon} \in\{ \pm 1\}^{k}}\left|\sum_{t=1}^{n} \sigma_{t}^{\prime} \max \left\{\epsilon_{i_{t}}, 0\right\}\right| \tag{23}
\end{equation*}
$$

$$
\geq 2 \mathbb{E}_{\boldsymbol{\sigma}^{\prime} \in\{ \pm 1\}^{n}} \sup _{\epsilon \in\{ \pm 1\}^{k}} \sum_{t=1}^{n} \sigma_{t}^{\prime} \max \left\{\epsilon_{i_{t}}, 0\right\}
$$

$$
=2 k \cdot \mathbb{E}_{\boldsymbol{\sigma}^{\prime} \in\{ \pm 1\}^{n / k}} \sup _{\epsilon \in\{ \pm 1\}} \sum_{t=1}^{n / k} \sigma_{t}^{\prime} \max \{\epsilon, 0\}
$$

$$
=2 k \cdot \frac{1}{2} \mathbb{E}_{\boldsymbol{\sigma}^{\prime} \in\{ \pm 1\}^{n / k}}\left|\sum_{t=1}^{n / k} \sigma_{t}^{\prime}\right| \geq k \sqrt{\frac{n}{2 k}} \text { (by Lemma } 9 \text {) }
$$

$$
=\sqrt{\frac{n k}{2}}
$$

From Lemma 5, we know that

$$
\max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right) \leq 3 \sqrt{n}
$$

Thus, by the above upper bounds the lower bound (Eq. 23), we can prove that there exists a hypothesis space $\mathcal{F}_{\mathbf{C}}$ defined in (22), such that

$$
\mathcal{R}_{n}\left(\mathcal{G}_{\mathbf{C}}\right) \geq \frac{\sqrt{k}}{3 \sqrt{2}} \cdot \max _{i} \tilde{\mathcal{R}}_{n}\left(\mathcal{F}_{\mathbf{C}_{i}}\right)
$$

This proves the result.

References

[1] P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2002.
[2] D. Calandriello and L. Rosasco. Statistical and computational trade-offs in kernel k-means. In Advances in Neural Information Processing Systems (NeurIPS), pages 9357-9367, 2018.
[3] G. B. L. Devroye and G. Lugosi. On the performance of clustering in hilbert spaces. IEEE Transactions on Information Theory, 54(2):781-790, 2008.
[4] L. Devroye, L. Györfi, and G.Lugosi. A Probabilistic Theory of Pattern Recognition. New York: Springer-Verlag, 1996.
[5] D. Foster and A. Rakhlin. ℓ_{∞} vector contraction for Rademacher complexity. arXiv preprint arXiv:1911.06468, 2019.
[6] U. Haagerup. The best constants in the khintchine inequality. Studia Mathematica, 70(3):231-283, 1981.
[7] Y. Lei, Ürün Dogan, D.-X. Zhou, and M. Kloft. Data-dependent generalization bounds for multi-class classification. IEEE Transactions on Information Theory, 65(5):2995-3021, 2019.
[8] L. Oneto, A. Ghio, S. Ridella, and D. Anguita. Local Rademacher complexity: Sharper risk bounds with and without unlabeled samples. Neural Networks, 65:115-125, 2015.

