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Appendix: Upper Bound for the Clustering Rademacher Complexity

Let FC be a family of k-valued functions with

FC :=
{
fC = (fc1

, . . . , fck
) : C ∈ Hk

}
. (1)

Let ϕ : Rk → R be a minimum function:
∀α ∈ Rk, ϕ(α) = min

i=1,...,k
αi (2)

and GC be a “minimum" family of the functions FC,

GC : =
{
gC = ϕ ◦ fC

∣∣∣ fC ∈ FC, gC(x) = ϕ(fC(x))
}
. (3)

Definition 1 (Clustering Rademacher Complexity). Let GC be a family of functions defined in (3),
S = (x1, . . . ,xn) be a fixed sample of size n with elements in X , and D = {Φi = ψ(xi)}ni=1. Then,
the clustering empirical Rademacher complexity of GC with respect to D is defined by

Rn(GC) = Eσ

[
sup

gC∈GC

∣∣∣∣∣
n∑
i=1

σigC(xi)

∣∣∣∣∣
]
,

where σ1, . . . , σn are independent random variables with equal probability of taking values +1 or
−1. Its expectation isR(GC) = E [Rn(GC)] .

Based on the recently improvement of the upper bound of Rademacher complexity of L-Lipschitz
with respect to the L∞ norm [5], we provide a refined bound of clustering Rademacher complexity:
Lemma 1. If ∀x ∈ X , ‖Φx‖ ≤ 1, then, for any S = {x1, . . . ,xn} ∈ Xn, there exists a constant
c > 0 such that

Rn(GC) ≤ c
√
kmax

i
R̃n(FCi

) log2(
√
n),

where GC is a family of clustering functions defined in (3), FC is a family of k-valued functions
associate with the clustering center C = [c1, . . . , ck] defined in (1), FCi

is a family of the output
coordinate i of FC, and R̃n(FCi

) = supS∈Xn Rn(FCi
).

The above result shows that the upper bound of the clustering Rademacher complexity is linearly
dependent on

√
k, which substantially improves the existing bounds linearly dependent on k.

Remark. The upper bound of the clustering Rademacher complexity involves a constant c and a
logarithmic term log(n). Thus, if one requires its absolute value to be smaller than the existing
bounds defined, there may exist some cases which acquire a large k. However, from a statistical
perspective, our bound with linear dependence on

√
k substantially improves the existing ones with

linear dependence on k.

In the following, we will show that Lemma 1 cannot be improved from a statistical view when
ignoring the logarithmic terms.
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Lemma 2. There exists a set C ∈ Hk and data sequence D = {Φ1, . . . ,Φn} such that

Rn(GC) ≥
√
k

3
√

2
·max

i
R̃n(FCi

).

Lemma 2 shows that the lower bound ofRn(GC) is Ω
(√
kmaxi R̃n(FCi)

)
, which implies that the

upper bound of order Õ
(√
kmaxi R̃n(FCi

)
)

in Lemma 1 is (nearly) optimal when ignoring the
logarithmic terms

Remark. A lower bound linearly dependent on k for a k-valued function class F ⊆ {f : X → Rk}
has been given in [5],

Rn(φ ◦ F) ≥ k

2
√

2
·max

i
R̃n(φ ◦ Fi),

which does not match the upper bound of
√
k. However our bound in Lemma 2 does match.

Appendix: Proof of Lemma 1

To prove Lemma 1, we first give the following two lemmas:
Lemma 3 (L∞ Contraction Inequality, Theorem 1 in [5]). Let F ⊆ {f : X → Rk}, and let
φ : Rk → R be L-Lipschitz with respect to the L∞ norm, that is ‖φ(v)−φ(v′)‖∞ ≤ L · ‖v−v′‖∞,
∀v,v′ ∈ Rk. For any a > 0, there exists a constantC > 0 such that if max{|φ(f(x))|, ‖f(x)‖∞} ≤
ρ, then

Rn(φ ◦ F) ≤ C · L
√
kmax

i
R̃n(Fi) log

3
2+a

(
ρn

maxi R̃n(Fi)

)
,

whereRn(φ ◦ F) = Eσ

[
supf∈F |

∑n
i=1 σiφ(f(xi))|

]
, R̃n(Fi) = supS∈Xn Rn(Fi).

Lemma 4 (Lemma 24(a) in [7] with p = 2). Let η1, . . . , ηn ∈ H, whereH is a Hilbert space with
‖ · ‖ being the associated norm. Let σ1, . . . , σn be a sequence of independent Rademacher variables.
Then, we have

Eσ

∥∥∥∥∥
n∑
i=1

σiηi

∥∥∥∥∥
2

≤
n∑
i=1

‖ηi‖2 (4)

and

E

∥∥∥∥∥
n∑
i=1

σiηi

∥∥∥∥∥ ≥
√

2

2

√√√√ n∑
i=1

‖ηi‖2. (5)

Proof of Lemma 1. We first show that the minimum function

ϕ(ν) = min(ν1, . . . , νk)

defined in (2) is 1-Lipschitz continuous with respect to the L∞-norm, that is

∀ν,ν′ ∈ Rk, |ϕ(ν)− ϕ(ν′)| ≤ ‖ν − ν′‖∞. (6)

Without loss of generality, we assume that ϕ(ν) ≥ ϕ(ν′). Let

j = arg min
i=1,...,k

ν′i,

then from the definition of ϕ, we know that ϕ(ν′) = ν′j . Thus, we can obtain that

|ϕ(ν)− ϕ(ν′)| = ϕ(ν)− ν′j
≤ νj − ν′j (by the fact that ϕ(ν) ≤ νj)
≤ ‖ν − ν′‖∞.
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We then show that max{|ϕ(fC(x))|, ‖fC(x)‖∞} is bounded by a constant. From the definition of
fC (see Eq.(1)), we know that

fC(x) = (fc1
(x) . . . , fck

(x)) and fcj
(x) = ‖Φx − cj‖2.

Note that ‖Φx‖ ≤ 1 and cj ∈ H, so we have

‖cj‖ ≤ 1 and fcj (x) ≤ 2‖Φx‖+ 2‖cj‖ ≤ 4,∀x ∈ X . (7)

Thus, one can see that

‖fC(x)‖∞ = max
j
|fcj (x)| ≤ 4 and |ϕ(fC(x))| = | min

j=1,...,k
fcj (x)| ≤ 4.

From the above analysis, we know that ϕ(ν) is 1-continuous with respect to the L∞-norm, and
max{|ϕ(fC(x))|, ‖fC(x)‖∞} ≤ 4. Thus, using Lemma 3 with L = 1, ρ = 4 and a = 1/2, we have

Rn(GC) ≤ C
√
kmax

i
R̃n(FCi

) log2

(
4n

maxi R̃n(FCi
)

)
. (8)

Let

ci := sup
x∈X

sup
fc∈FCi

|fc(x)| and c = max{ci, i = 1, . . . , k}. (9)

From (7), we know that c is a constant and c ≤ 4. By definition of R̃n(FCi
), we can obtain that

∀j, R̃n(FCj
) = sup

S∈Xn

Eσ

[
sup

fc∈FCj

∣∣∣∣∣
n∑
i=1

σifc(xi)

∣∣∣∣∣
]

≥ sup
x∈X

Eσ

[
sup

fc∈FCj

∣∣∣∣∣
n∑
i=1

σifc(x)

∣∣∣∣∣
]

≥ sup
x∈X ,fc∈FCj

Eσ

∣∣∣∣∣
n∑
i=1

σifc(x)

∣∣∣∣∣ (by Jensen’s inequality)

≥
√

2n

2
sup

x∈X ,fc∈FCj

√
|fc(x)| (by Eq.(5) of Lemma 4)

=

√
2ncj

2
(by Eq.(9)).

(10)

Thus, one can see that maxi R̃n(FCi
) ≥

√
2cn
2 , where c = max{ci, i = 1, . . . , k}. So, we have

n
maxi R̃n(FCi

)
≤
√

2n
c . Plugging this into (8) proves the result.

Appendix: Proof of Theorem 1

To prove Theorem 1, we first give the following two lemmas:

Lemma 5. If ∀x ∈ X , ‖Φx‖ ≤ 1, then for all S ∈ Xn and C ∈ Hk, we have

max
i
R̃n(FCi) ≤ 3

√
n.
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Proof. ∀S ∈ Xn, C ∈ Hk and i ∈ {1, . . . , k}, we have

Rn(FCi
) =Eσ sup

fc∈FCi

∣∣∣∣∣∣
n∑
j=1

σjfc(xj)

∣∣∣∣∣∣
=Eσ sup

c∈H

∣∣∣∣∣∣
n∑
j=1

σj‖Φj − c‖2
∣∣∣∣∣∣

=Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj
[
−2〈Φj , c〉+ ‖c‖2 + ‖Φj‖2

]∣∣∣∣∣∣
=Eσ sup

c∈H

∣∣∣∣∣∣
n∑
j=1

σj
[
−2〈Φj , c〉+ ‖c‖2

]∣∣∣∣∣∣
≤2Eσ sup

c∈H

∣∣∣∣∣∣
n∑
j=1

σj〈Φj , c〉

∣∣∣∣∣∣+ Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj‖c‖2
∣∣∣∣∣∣ .

(11)

One can see that

Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj‖c‖2
∣∣∣∣∣∣ ≤ Eσ

∣∣∣∣∣∣
n∑
j=1

σj

∣∣∣∣∣∣ (since ‖c‖ ≤ 1)

≤

√√√√√Eσ

∣∣∣∣∣∣
n∑
j=1

σj

∣∣∣∣∣∣
2

≤
√
n (by Eq.(4) of Lemma 4),

(12)

and

Eσ sup
c∈H

∣∣∣∣∣∣
n∑
j=1

σj〈Φj , c〉

∣∣∣∣∣∣ =Eσ sup
c∈H

∣∣∣∣∣∣
〈

n∑
j=1

σjΦj , c

〉∣∣∣∣∣∣
≤Eσ

∥∥∥∥∥∥
n∑
j=1

σjΦj

∥∥∥∥∥∥ (by ‖c‖ ≤ 1)

≤

√√√√√Eσ

∥∥∥∥∥∥
n∑
j=1

σjΦj

∥∥∥∥∥∥
2

≤

√√√√ n∑
i=1

‖Φi‖2 (by Eq.(4) of Lemma 4)

≤
√
n (since ‖Φi‖ ≤ 1).

(13)

Substituting (12) and (13) into (11), we can prove the result.

To prove Theorem 1, we first propose the following lemma:

Lemma 6. For any δ ∈ (0, 1), with probability 1− δ, there exists a constant c > 0, such that

R(GC) ≤ c
√
kn log2

(√
n
)

+

√
2n log

(
1

δ

)
.

Proof. From [8] or [1], with probability 1− δ, we have

R(GC) ≤ Rn(GC) +

√
2n log

(
1

δ

)
. (14)
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Thus, we have

R(GC)

≤Rn(GC) +

√
2n log

(
1

δ

)

≤c
√
kmax

i
R̃n(FCi

) log2
(√
n
)

+

√
2n log

(
1

δ

)
(by Lemma 1)

≤3c
√
kn log2

(√
n
)

+

√
2n log

(
1

δ

)
. (by Lemma 5)

Proof of Theorem 1. The starting point of our analysis is the following elementary inequality (see
Ch.8 in [4] or page 2 in [3]):

E[W(Cn,P)]−W∗(P)

=E [W(Cn,P)−W(Cn,Pn)] + E [W(Cn,Pn)]−W∗(P)

≤E [W(Cn,P)−W(Cn,Pn)] + E [W(C∗,Pn)]−W∗(P)

(W(Cn,Pn) ≤ W(C∗,Pn) as Cn is optimal w.r.t. W(·,Pn))

≤E sup
C∈Hk

(
W(C,P)−W(C,Pn)

)
+ sup

C∈Hk

E [W(C,Pn)−W(C,P)]

≤2E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣.

(15)

Let x′1, . . . ,x
′
n be a copy of x1, . . . ,xn, independent of the σi’s. Then, by a standard symmetrization

argument [1] (can also be seen in the proof of Lemma 4.3 of [3]), we can write

E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣ ≤E sup

gC∈GC

∣∣∣∣∣ 1n
n∑
i=1

σi [gC(x)− gC(x′)]

∣∣∣∣∣
≤2E sup

gC∈GC

∣∣∣∣∣ 1n
n∑
i=1

σigC(x)

∣∣∣∣∣ =
2

n
R(GC).

(16)

Thus, we can obtain that

E [W(Cn,P)]−W∗(P) ≤ 4

n
R(GC) (by Eq.(15) and Eq.(16))

≤4c

√
k

n
log2

(√
n
)

+ 4

√
2 log 1

δ

n
(by Lemma 6).

This proves the result.

Appendix: Proof of Theorem 2

Proof. Note that

E[W(C̃n,P)]−W∗(P)

=E
[
W(C̃n,P)−W(C̃n,Pn)

]
︸ ︷︷ ︸

A1

+E
[
W(C̃n,Pn)−W(Cn,Pn)

]
︸ ︷︷ ︸

A2

+ E
[
W(Cn,Pn)−W(Cn,P)

]
︸ ︷︷ ︸

A3

+E
[
W(Cn,P)

]
−W∗(P)︸ ︷︷ ︸

A4

.
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Also note that A2 is bounded by ζ , and A4 can be obtained from Theorem 1. From Eq.(16), we know
that A1 and A3 can be bounded by the Rademacher complexity:

A1 ≤ E sup
C∈Hk

|W(C,Pn)−W(C,P)| ≤ 2

n
R(GC),

A3 ≤ E sup
C∈Hk

|W(C,Pn)−W(C,P)| ≤ 2

n
R(GC).

Thus, we can obtain that

E[W(C̃n,P)]−W∗(P) ≤ 4

n
R(GC) + c

√
k

n
log2

(√
n
)

+ c

√
log 1

δ

n
+ ζ. (17)

Substituting Lemma 6 into Eq.(17), we can proves the result.

Appendix: Proof of Theorem 3

Proof. Note that

E
[
EA[W(CAn ,P)]

]
= E

[
EA[W(CAn ,P)]− EA[W(CAn ,Pn)]

]
+ E

[
EA[W(CAn ,Pn)]

]
.

From Lemma 2, we can obtain that

E
[
EA[W(CAn ,Pn)]

]
≤ β · E[W(Cn,Pn)]

= β · E
[
W(Cn,Pn)−W(Cn,P)

]
+ β · E

[
W(Cn,P)

]
.

Thus, we can obtain that

E
[
EA[W(CAn ,P)]

]
≤E

[
EA[W(CAn ,P)]− EA[W(CAn ,Pn)]

]
︸ ︷︷ ︸

A1

+ β · E
[
W(Cn,Pn)−W(Cn,P)

]
︸ ︷︷ ︸

A2

+β · E
[
W(Cn,P)

]
︸ ︷︷ ︸

A3

.
(18)

Note that

A1, A2 ≤E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣

≤ 2

n
R(GC) (by Eq.(16))

≤Õ

(√
k

n

)
. (by Lemma 6)

(19)

By Theorem 1, we can obtain that

E[W(Cn,P)] ≤ W∗(P) + c

√
k

n
log2

(√
n
)

+ c

√
log 1

δ

n
.

Substituting the above inequality and Eq.(19) into Eq.(18), we have

E
[
EA[W(CAn ,Pn)]

]
≤ Õ

(√
k

n
+W∗(P)

)
.

6



Appendix: Proof of Theorem 4

To prove Theorem 4, we first propose the following lemma:

Lemma 7. With probability at least 1− δ, we have

E [W(Cn,m,Pn)−W(Cn,m,P)] ≤ Õ

(√
k

n

)
.

Proof. Note that

E [W(Cn,m,Pn)−W(Cn,m,P)] ≤E sup
C∈Hk

|W(C,Pn)−W(C,P)|

≤ 2

n
R(GC) (by Eq.(16))

=Õ

(√
k

n

)
(by Lemma 6).

This proves the result.

Lemma 8. If constructing I by uniformly sampling

m ≥ C
√
n log(1/δ) min(k,Ξ)/

√
k,

then for all S ∈ Xn, with probability at least 1− δ, we have

W(Cn,m,Pn)−W(Cn,Pn) ≤ C
√
k

n
,

where Ξ = Tr(Kn(Kn + In)−1) is the effective dimension of Kn, and C is a constant.

Proof. This can be directly proved by combining Lemma 1 and Lemma 2 of [2] by setting ε =
1/2.

Proof of Theorem 4. Note that

E[W(Cn,m,P)]−W∗(P)

=E[W(Cn,m,P)−W(Cn,m,Pn)]︸ ︷︷ ︸
A1

+E[W(Cn,m,Pn)−W(Cn,Pn)]︸ ︷︷ ︸
A2

+ E[W(Cn,Pn)−W(Cn,P)]︸ ︷︷ ︸
A3

+E[W(Cn,P)]−W∗(P)︸ ︷︷ ︸
A4

.

Note that

A3 ≤E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣

≤ 2

n
R(GC) (by Eq.(16))

≤Õ

(√
k

n

)
. (by Lemma 6)

(20)

One can see thatA4 can be bounded by Õ(
√
k/n) using Theorem 1. A1 andA2 can both be bounded

as Õ(
√
k/n) using Lemma 7 and Lemma 8, respectively.
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Appendix: Proof of Theorem 5

Proof. From the definition of effective dimension, we have

Ξ =Tr(KT(K + I)−1) =

n∑
i=1

λi
λi + 1

=

b
√
kc∑

i=1

λi
λi + 1

+

n∑
i=b
√
kc+1

λi
λi + 1

≤
b
√
kc∑

i=1

1 +

n∑
i=b
√
kc+1

λi

≤
√
k +

n∑
i=b
√
kc+1

λi ≤
√
k +

n∑
i=b
√
kc+1

ci−α

≤
√
k + c

∫ ∞
√
k

x−αdx =
√
k +

c

α− 1

√
k
1−α

≤
(

1 +
c

α− 1

)√
k.

Thus, we can obtain that
min(k,Ξ)√

k
≤ Ξ√

k
≤ 1 +

c

α− 1
.

Substituting the above inequality into Theorem 4, we can prove this result.

Appendix: Proof of Theorem 6

Proof. Note that

E[W(C̃m,n,P)]−W∗(P)

=E
[
W(C̃m,n,P)−W(C̃m,n,Pn)

]
︸ ︷︷ ︸

A1

+E
[
W(C̃m,n,Pn)−W(Cm,n,Pn)

]
︸ ︷︷ ︸

A2

+ E
[
W(Cm,n,Pn)−W(Cm,n,P)

]
︸ ︷︷ ︸

A3

+E
[
W(Cm,n,P)

]
−W∗(P)︸ ︷︷ ︸

A4

.

Also note that A2 is bounded by ζ, A4 can be obtained from Theorem 5, and A1 and A3 can be
bounded by the Rademacher complexity:

A1, A3 ≤ E sup
C∈Hk

|W(C,Pn)−W(C,P)| ≤ 2

n
R(GC).

Thus, we can obtain that

E[W(C̃n,P)]−W∗(P) = Õ

(
R(GC)

n
+

√
k

n
+ ζ

)
. (21)

Substituting Lemma 6 into Eq. (21), we can proves the result.

Appendix: Proof of Theorem 7

Proof. Note that

E
[
EA[W(CAn,m,P)]

]
= E

[
EA[W(CAn,m,P)]− EA[W(CAn,m,Pn)]

]
+ E

[
EA[W(CAn,m,Pn)]

]
.

By Lemma 2, we can obtain that

E
[
EA[W(CAn,m,Pn)]

]
≤ β · E [W(Cn,m,Pn)]

=β · E [W(Cn,m,Pn)−W(Cn,m,P)] + β · E [W(Cn,m,P)] .
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Thus, we can obtain that

E
[
EA[W(CAn,m,P)]

]
≤E

[
EA[W(CAn,m,P)]− EA[W(CAn,m,Pn,m)]

]
︸ ︷︷ ︸

A1

+ β · E
[
W(Cn,m,Pn,m)−W(Cn,m,P)

]
︸ ︷︷ ︸

A2

+β · E
[
W(Cn,m,P)

]
︸ ︷︷ ︸

A3

.

Note that

A1, A2 ≤ E sup
C∈Hk

∣∣W(C,Pn)−W(C,P)
∣∣

≤ 2

n
R(GC) (by Eq. (16))

=Õ

(√
k

n

)
(by Lemma 6).

By Corollary 5, A3 can be bounded:

A3 = E[W(Cn,m,P)] ≤ W∗(P) + c

√
k

n
log2

(√
n
)
.

This proves the result.

Appendix: Proof of Lemma 2

We first prove that the maximum Rademacher complexity can be bounded by 3
√
n. Then, following

the same idea as [5] and using the Khintchine inequality [6], we show that there exists a hypothesis

function FC such thatRn(GC) ≥
√

kn
2 .

Lemma 9 (Khintchine inequality with p = 1 in [6]). Let σ1, . . . , σn be Rademacher variables with
equal probability of taking values +1 or −1. Then, we have Eσ |

∑n
i=1 σi| ≥

√
n
2 .

Proof of Lemma 2. Let ε1, . . . , εk be independent random variables with equal probability of taking
values +1 or −1. Let C = (ε1ν1, . . . , εkνk), where νi is the ith standard basis function inH, that is
〈νi,νj〉 = 1 if i = j, otherwise 0. We choose the hypothesis space

FC =
{
fC = (fε1ν1

, . . . , fεkνk
)
∣∣∣fεiνi

(x) = ‖Φx − εiνi‖2, ε ∈ {±1}k
}
. (22)

Assume that n is divisible by k. We set Φ1, . . . ,Φn/k = ν1,Φ(n+1)/k, . . . ,Φ2n/k = ν2, . . . , and so
on, and let it be the index such that Φt = νit . Let σ′ ∈ {±1}n be Rademacher variables. From the

9



definition of clustering Rademacher complexity, we can obtain that

Rn(GC) = Rn(ϕ ◦ FC)

=Eσ′∈{±1}n sup
ε∈{±1}k

∣∣∣∣∣
n∑
t=1

σ′t min
1≤i≤k

‖Φt − εiνi‖2
∣∣∣∣∣

=Eσ′∈{±1}n sup
ε∈{±1}k

∣∣∣∣∣
n∑
t=1

σ′t min
1≤i≤k

(2− 2〈Φt, εiνi〉)

∣∣∣∣∣
(since Φt = νit and νi is the ith standard basis function inH)

=2Eσ′∈{±1}n sup
ε∈{±1}k

∣∣∣∣∣
n∑
t=1

σ′t max
1≤i≤k

〈Φt, εiνi〉

∣∣∣∣∣
=2Eσ′∈{±1}n sup

ε∈{±1}k

∣∣∣∣∣
n∑
t=1

σ′t max{εit , 0}

∣∣∣∣∣
≥2Eσ′∈{±1}n sup

ε∈{±1}k

n∑
t=1

σ′t max{εit , 0}

=2k · Eσ′∈{±1}n/k sup
ε∈{±1}

n/k∑
t=1

σ′t max{ε, 0}

=2k · 1

2
Eσ′∈{±1}n/k

∣∣∣∣∣∣
n/k∑
t=1

σ′t

∣∣∣∣∣∣ ≥ k
√

n

2k
(by Lemma 9)

=

√
nk

2
.

(23)

From Lemma 5, we know that

max
i
R̃n(FCi

) ≤ 3
√
n.

Thus, by the above upper bounds the lower bound (Eq.(23)), we can prove that there exists a
hypothesis space FC defined in (22), such that

Rn(GC) ≥
√
k

3
√

2
·max

i
R̃n(FCi

).

This proves the result.
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