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Abstract

The study of provable adversarial robustness has mostly been limited to classi-
fication tasks and models with one-dimensional real-valued outputs. We extend
the scope of certifiable robustness to problems with more general and structured
outputs like sets, images, language, etc. We model the output space as a metric
space under a distance/similarity function, such as intersection-over-union, per-
ceptual similarity, total variation distance, etc. Such models are used in many
machine learning problems like image segmentation, object detection, generative
models, image/audio-to-text systems, etc. Based on a robustness technique called
randomized smoothing, our center smoothing procedure can produce models with
the guarantee that the change in the output, as measured by the distance metric,
remains small for any norm-bounded adversarial perturbation of the input. We
apply our method to create certifiably robust models with disparate output spaces
– from sets to images – and show that it yields meaningful certificates without
significantly degrading the performance of the base model.

1 Introduction

The study of adversarial robustness in machine learning (ML) has gained a lot of attention ever since
deep neural networks (DNNs) have been demonstrated to be vulnerable to adversarial attacks. These
attacks are generated by making tiny perturbations of the input that can completely alter a model’s
predictions [56, 46, 23, 35]. They can significantly degrade the performance of a model, like an
image classifier, and make it output almost any class of the attacker’s choice. However, these attacks
are not limited just to classification problems. They have also been shown to exist for DNNs with
structured outputs like text, images, probability distributions, sets, etc. For instance, automatic speech
recognition systems can be attacked with 100% success rate to output any phrase of the attackers
choice [10]. Similar attacks can cause neural image captioning systems to produce specific target
captions with high success-rate [11]. Quality of image segmentation models have been shown to
degrade severely under adversarial attacks [2, 27, 30]. Facial recognition systems can be deceived
to evade detection, impersonate authorized individuals and even render them completely ineffective
[59, 55, 20]. Image reconstruction models have been targeted to introduce unwanted artefacts or
miss important details, such as tumors in MRI scans, through adversarial inputs [1, 50, 8, 12].
Super-resolution systems can be made to generate distorted images that can in turn deteriorate the
performance of subsequent tasks that rely on the high-resolution outputs [14, 63]. Deep neural
network based policies in reinforcement learning problems also have been shown to succumb to
imperceptible perturbations in the state observations [21, 29, 4, 48]. Such widespread presence of
adversarial attacks is concerning as it threatens the use of deep neural networks in critical systems,
such as facial recognition, self-driving vehicles, medical diagnosis, etc., where safety, security and
reliability are of utmost importance.
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Adversarial defenses have mostly focused on classification tasks [34, 6, 26, 17, 44, 25, 22]. Certified
defenses based on convex-relaxation [61, 49, 53, 13, 54], interval-bound propagation [24, 28, 18, 47]
and randomized smoothing [15, 36, 42, 51] that guarantee that the predicted class will remain the
same in a certified region around the input point have also been studied. Compared to empirical
robustness methods that are often shown to be broken by stronger attacks [9, 3, 58], procedures with
provable robustness guarantees are of special importance to the study of robustness in ML as their
guarantees hold regardless of improvements in attack strategies. Among these approaches, certified
defenses based on randomized smoothing have been show to scale up to high-dimensional inputs,
such as images, and does not need to make assumptions about the underlying model. The robustness
certificates produced by these defenses are probabilistic, meaning that they hold with high probability
and not absolute certainty.

Unlike classification problems, where certificates guarantee that the predicted class remains un-
changed under bounded-size perturbations, it is not immediately obvious what the goal of robustness
should be for problems with structured outputs like images, text, sets, etc. While accuracy is the
standard quality measure for classification, more complex tasks may require other quality met-
rics like total variation for images, intersection over union for object localization, earth-mover
distance for distributions, etc. In general, neural networks can be cast as functions of the type
f : Rk → (M,d) which map a k dimensional real-valued space into a metric space M with distance
function d : M ×M → R≥0. In this work, we design a randomized smoothing based technique to
obtain provable robustness for functions of this type with minimal assumptions on the distance metric
d. We generate a robust version f̄ such that the change in its output, as measured by d, is small for a
small change in its input. More formally, given an input x and an `2-perturbation size ε1, we produce
a value ε2 with the guarantee that, with high probability,

∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̄(x), f̄(x′)) ≤ ε2.

Figure 1: Center smoothing.

Our contributions: We develop center smoothing,
a procedure to make functions like f provably ro-
bust against adversarial attacks. For a given input
x, center smoothing samples a collection of points
in the neighborhood of x using a Gaussian smooth-
ing distribution, computes the function f on each of
these points and returns the center of the smallest ball
enclosing at least half the points in the output space
(see figure 1). Computing the minimum enclosing
ball in the output space is equivalent to solving the
1-center problem with outliers (hence the name of our
procedure), which is an NP-complete problem for a
general metric [52]. We approximate it by comput-
ing the point that has the smallest median distance to
all the other points in the sample. We show that the
output of the smoothed function is robust to input per-
turbations of bounded `2-size. We restrict the input
perturbations to be inside an `2-ball as the main focus
of this work is on the output space of f . However, our method does not critically rely on the `2 threat
model or Gaussian smoothing noise, and can be adapted to other perturbations types and smoothing
distributions. Although we define the output space as a metric, our proofs only require the symmetry
property and triangle inequality to hold. Thus, center smoothing can also be applied to pseudometric
distances that need not satisfy the identity of indiscernibles. Many distances defined for images,
such as total variation, cosine distance, perceptual distances, etc., fall under this category. Center
smoothing steps outside the world of `p metrics, and certifies robustness in metrics like IoU/Jaccard
distance for object localization, and total-variation, which is a good measure of perceptual similarity
for images. In our experiments, we show that this method can produce meaningful certificates for a
wide variety of output metrics without significantly compromising the quality of the base model.

Related Work: Randomized smoothing has been extensively used for provable adversarial robustness
in the classification setting to defend against different `p [15, 36, 51, 57, 43, 41, 37, 40] and non-`p
[38, 39] threat models. Beyond classification, it has also been used for certifying the median output
of regression models [62] and the expected softmax scores of neural networks [33]. Smoothing a
bounded vector-valued function by taking the mean of the output vectors has been shown to have a
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bounded Lipschitz constant when both input and output spaces are `2-metrics [60]. Center smoothing
does not require the base function to be bounded because the minimum enclosing ball is resistant
to outliers. Moving an outlier point away from this ball does not affect the output of the smoothed
function. On the other hand, smoothing techniques that compute the mean of the output samples are
more susceptible to outliers as changing any of the samples can alter the mean. Recently, a provable
defense for segmentation tasks was developed by certifying each individual pixel of the output using
randomized smoothing [19]. Due to the accumulating uncertainty over individual certifications, it is
difficult to produce guarantees for large images, often leading to certified outputs with ambiguous
pixels. Center smoothing bypasses this challenge by directly certifying the similarity between a clean
segmentation output and an adversarial one under a metric such as intersection over union.

2 Preliminaries and Notations

Given a function f : Rk → (M,d) and a distribution D over the input space Rk, let f(D) denote
the probability distribution of the output of f in M when the input is drawn from D. For a point
x ∈ Rk, let x + P denote the probability distribution of the points x + δ where δ is a smoothing
noise drawn from a distribution P over Rk and let X be the random variable for x+P . For elements
in M , define B(z, r) = {z′ | d(z, z′) ≤ r} as a ball of radius r centered at z. Define a smoothed
version of f under P as the center of the ball with the smallest radius in M that encloses at least half
of the probability mass of f(x+ P), i.e.,

f̄P(x) = argmin
z

r s.t. P[f(X) ∈ B(z, r)] ≥ 1

2
.

If there are multiple balls with the smallest radius satisfying the above condition, return one of the
centers arbitrarily. Let r∗P(x) be the value of the minimum radius. Hereafter, we ignore the subscripts
and superscripts in the above definitions whenever they are obvious from context. In this work, we
sample the noise vector δ from an i.i.d Gaussian distribution of variance σ2 in each dimension, i.e.,
δ ∼ N (0, σ2I).

2.1 Gaussian Smoothing

Cohen et al. in 2019 showed that a classifier h : Rk → Y smoothed with a Gaussian noise N (0, σ2I)
as,

h̄(x) = argmax
c∈Y

P [h(x+ δ) = c] ,

where Y is a set of classes, is certifiably robust to small perturbations in the input. Their certificate
relied on the fact that, if the probability of sampling from the top class at x under the smoothing
distribution is p, then for an `2 perturbation of size at most ε, the probability of the top class is
guaranteed to be at least

pε = Φ(Φ−1(p)− ε/σ), (1)

where Φ is the CDF of the standard normal distribution N (0, 1). This bound applies to any
{0, 1}-function over the input space Rk, i.e., if P[h(x) = 1] = p, then for any ε-size perturba-
tion x′,P[h(x′) = 1] ≥ pε.
We use this bound to generate robustness certificates for center smoothing. We identify a ball
B(f̄(x), R) of radius R enclosing a very high probability mass of the output distribution. One can
define a function that outputs one if f maps a point to inside B(f̄(x), R) and zero otherwise. The
bound in (1) gives us a region in the input space such that for any point inside it, at least half of the
mass of the output distribution is enclosed in B(f̄(x), R). We show in section 3 that the output of the
smoothed function for a perturbed input is guaranteed to be within a constant factor of R from the
output of the original input.

3 Center Smoothing

As defined in section 2, the output of f̄ is the center of the smallest ball in the output space that
encloses at least half the probability mass of the f(x+ P). Thus, in order to significantly change the
output, an adversary has to find a perturbation such that a majority of the neighboring points map
far away from f̄(x). However, for a function that is roughly accurate on most points around x, a
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small perturbation in the input cannot change the output of the smoothed function by much, thereby
making it robust.

For an `2 perturbation size of ε1 of an input point x, let R be the radius of a ball around f̄(x) that
encloses more than half the probability mass of f(x′ + P) for all x′ satisfying ‖x− x′‖2 ≤ ε1, i.e.,

∀x′ s.t. ‖x− x′‖2 ≤ ε1, P[f(X ′) ∈ B(f̄(x), R)] >
1

2
, (2)

where X ′ ∼ x′ + P . Basically, R is the radius of a ball around f̄(x) that contains at least half the
probability mass of f(x′ + P) for any ε1-size perturbation x′ of x. Then, we have the following
robustness guarantee on f̄ :

Theorem 1. For all x′ such that ‖x− x′‖2 ≤ ε1,

d(f̄(x), f̄(x′)) ≤ 2R.

Proof. Consider the balls B(f̄(x′), r∗(x′)) and B(f̄(x), R) (see figure 2). From the definition of
r∗(x′) and R, we know that the sum of the probability masses of f(x′+P) enclosed by the two balls
must be strictly greater than one. Thus, they must have an element y in common. Since d satisfies the
triangle inequality, we have:

d(f̄(x), f̄(x′)) ≤ d(f̄(x), y) + d(y, f̄(x′))

≤ R+ r∗(x′).

Since, the ball B(f̄(x), R) encloses more than half of the probability mass of f(x+P), the minimum
ball with at least half the probability mass cannot have a radius greater than R, i.e., r∗(x′) ≤ R.
Therefore, d(f̄(x), f̄(x′)) ≤ 2R.

Figure 2: Robustness guarantee.

The above result, in theory, gives us a smoothed ver-
sion of f with a provable guarantee of robustness.
However, in practice, it may not be feasible to obtain
f̄ just from samples of f(x + P). Instead, we will
use some procedure that approximates the smoothed
output with high probability. For some ∆ ∈ [0, 1/2],
let r̂(x,∆) be the radius of the smallest ball that en-
closes at least 1/2 + ∆ probability mass of f(x+P),
i.e.,

r̂(x,∆) = min
z′

r s.t. P[f(X) ∈ B(z′, r)] ≥ 1

2
+ ∆.

Now define a probabilistic approximation f̂(x) of the
smoothed function f̄ to be a point z ∈M , which with
probability at least 1− α1 (for α1 ∈ [0, 1]), encloses
at least 1/2−∆ probability mass of f(x+P) within
a ball of radius r̂(x,∆). Formally, f̂(x) is a point
z ∈M , such that, with at least 1− α1 probability,

P [f(X) ∈ B(z, r̂(x,∆))] ≥ 1

2
−∆.

Defining R̂ to be the radius of a ball centered at f̂(x) that satisfies:

∀x′ s.t. ‖x− x′‖2 ≤ ε1, P[f(X ′) ∈ B(f̂(x), R̂)] >
1

2
+ ∆, (3)

we can write a probabilistic version of theorem 1,

Theorem 2. With probability at least 1− α1,

∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̂(x), f̂(x′)) ≤ 2R̂,

The proof of this theorem is in the appendix, and logically parallels the proof of theorem 1.
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Algorithm 1 Smooth

Input: x ∈ Rk, σ,∆, α1.
Output: z ∈M .
Set Z = {zi}ni=1 s.t. zi ∼ f(x+N (0, σ2I)).
Set ∆1 =

√
ln (2/α1) /2n.

Compute z = β-MEB(Z, 1/2).
Re-sample Z.
Compute p∆1

.
Set ∆2 = 1/2− p∆1 .
If ∆ < max(∆1,∆2), discard z and abstain.

Algorithm 2 Certify

Input: x ∈ Rk, ε1, σ,∆, α1, α2.
Output: ε2 ∈ R.
Compute f̂(x) using algorithm 1.
Set Z = {zi}mi=1 s.t. zi ∼ f(x+N (0, σ2I)).
Compute R̃ = {d(f̂(x), f(zi)) | zi ∈ Z}.
Set p = Φ(Φ−1(1/2 + ∆) + ε1/σ).
Set q = p+

√
ln(1/α2)/2m.

Set R̂ = qth-quantile of R̃.
Set ε2 = (1 + β)R̂.

3.1 Computing f̂

For an input x and a given value of ∆, sample n points independently from a Gaussian distribution
x + N (0, σ2I) around the point x and compute the function f on each of these points. Let Z =
{z1, z2, . . . , zn} be the set of n samples of f(x+N (0, σ2I)) produced in the output space. Compute
the minimum enclosing ball B(z, r) that contains at least half of the points in Z. The following
lemma bounds the radius r of this ball by the radius of the smallest ball enclosing at least 1/2 + ∆1

probability mass of the output distribution (proof in appendix).

Lemma 1. With probability at least 1− e−2n∆2
1 ,

r ≤ r̂(x,∆1).

Now, sample a fresh batch of n random points. Let p∆1
= ρ−∆1, where ρ is the fraction of points

that fall inside B(z, r). Then, by Hoeffding’s inequality, with probability at least 1− e−2n∆2
1 ,

P [f(X) ∈ B(z, r)] ≥ p∆1 .

Let ∆2 = 1/2− p∆1
. If max(∆1,∆2) ≤ ∆, the point z satisfies the conditions in the definition of

f̂ , with at least 1− 2e−2n∆2
1 probability. If max(∆1,∆2) > ∆, discard the computed center z and

abstain. In our experiments, we select ∆1, n and α1 appropriately so that the above process succeeds
easily.

Computing the minimum enclosing ball B(z, r) exactly can be computationally challenging, as for
certain metrics, it is known to be NP-complete [52]. Instead, we approximate it by computing a ball
β-MEB(Z, 1/2) that contains at least half the points in Z, but has a radius that is within a β factor
of the optimal radius r. We modify theorem 1 to account for this approximation (see appendix for
proof).
Theorem 3. With probability at least 1− α1,

∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̂(x), f̂(x′)) ≤ (1 + β)R̂

where α1 = 2e−2n∆2
1 .

We use a simple approximation that works for all metrics and achieves an approximation factor of
two, producing a certified radius of 3R̂. It computes a point from the set Z, instead of a general point
in M , that has the minimum median distance from all the points in the set (including itself). This can
be achieved using O(n2) pair-wise distance computations. To see how the factor 2-approximation is
achieved, consider the optimal ball with radius r. By triangle inequality of d, each pair of points is at
most 2r distance from each other. Thus, a ball with radius 2r, centered at any one of these points
will cover every other point in the optimal ball. Better approximations can be obtained for specific
norms, e.g., there exists a (1 + ε)-approximation algorithm for the `2 norm [7]. For graph distances
or when the support of the output distribution is a small discrete set of points, the optimal radius can
be computed exactly using the above algorithm. The smoothing procedure is outlined in algorithm 1.

3.2 Certifying f̂

Given an input x, compute f̂(x) as described above. Now, we need to compute a radius R̂ that
satisfies condition 3. As per bound 1, in order to maintain a probability mass of at least 1/2 + ∆ for

5



any ε1-size perturbation of x, the ball B(f̂(x), R̂) must enclose at least

p = Φ

(
Φ−1

(
1

2
+ ∆

)
+
ε1
σ

)
(4)

probability mass of f(x+ P). Again, just as in the case of estimating f̄ , we may only compute R̂
from a finite number of samples m of the distribution f(x+ P). For each sample zi ∼ x+ P , we
compute the distance d(f̂(x), f(zi)) and set R̂ to be the qth-quantile R̃q of these distances for a q
that is slightly greater than p (see equation 5 below). The qth-quantile R̃q is a value larger than at
least q fraction of the samples. We set q as,

q = p+

√
ln (1/α2)

2m
, (5)

for some small α2 ∈ [0, 1]. This guarantees that, with high probability, the ball B(f̂(x), R̃q)
encloses at least p fraction of the probability mass of f(x + P). We prove the following lemma
by bounding the cumulative distribution function of the distances of f(zi)s from f̂(x) using the
Dvoretzky–Kiefer–Wolfowitz inequality.
Lemma 2. With probability 1− α2,

P
[
f(X) ∈ B(f̂(x), R̃q)

]
> p.

Combining with theorem 3, we have the final certificate:

∀x′ s.t. ‖x− x′‖2 ≤ ε1, d(f̂(x), f̂(x′)) ≤ (1 + β)R̂,

with probability at least 1 − α, for α = α1 + α2. In our experiments, we set α1 = α2 = 0.005 to
achieve an overall success probability of 1 − α = 0.99, and calculate the required ∆1,∆2 and q
values accordingly. We set ∆ to be as small as possible without violating max(∆1,∆2) ≤ ∆ too
often. We use a β = 2-approximation for computing the minimum enclosing ball in the smoothing
step. Algorithm 2 provides the pseudocode for the certification procedure.

4 Relaxing Metric Requirements

Although we defined our procedure for metric outputs, our analysis does not critically use all the
properties of a metric. For instance, we do not require d(z1, z2) to be strictly greater than zero for
z1 6= z2. An example of such a distance measure is the total variation distance that returns zero for
two vectors that differ by a constant amount on each coordinate. Our proofs do implicitly use the
symmetry property, but asymmetric distances can be converted to symmetric ones by taking the sum
or the max of the distances in either directions. Perhaps the most important property of metrics that
we use is the triangle inequality as it is critical for the robustness guarantee of the smoothed function.
However, even this constraint may be partially relaxed. It is sufficient for the distance function d to
satisfy the triangle inequality approximately, i.e., d(a, c) ≤ γ(d(a, b) + d(b, c)), for some constant
γ. The theorems and lemmas can be adjusted to account for this approximation, e.g., the bound
in theorem 1 will become 2γR. A commonly used distance measure for comparing images and
documents is the cosine distance defined as the inner-product of two vectors after normalization. This
distance can be show to be proportional to the squared Euclidean distance between the normalized
vectors which satisfies the relaxed version of triangle inequality for γ = 2.

These relaxations extend the scope of center smoothing to many commonly used distance measures
that need not necessarily satisfy all the metric properties. For instance, perceptual distance metrics
measure the distance between two images in some feature space rather than image space. Such
distances align well with human judgements when the features are extracted from a deep neural
network [65] and are considered more natural measures for image similarity. For two images I1
and I2, let φ(I1) and φ(I2) be their feature representations. Then, for a distance function d in
the feature space that satisfies the relaxed triangle inequality, we can define a distance function
dφ(I1, I2) = d(φ(I1), φ(I2)) in the image space, which also satisfies the relaxed triangle inequality.
For any image I3,

dφ(I1, I2) = d(φ(I1), φ(I2))

≤ γ (d(φ(I1), φ(I3)) + d(φ(I3), φ(I2)))

= γ (dφ(I1, I3) + dφ(I3, I2)) .
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5 Experiments

We apply center smoothing to certify a wide range of output metrics: Jaccard distance based on
intersection over union (IoU) of sets, total variation distances for images, and perceptual distance. We
certify the bounding box generated by a face detector – a key component of most facial recognition
systems – by guaranteeing the minimum overlap (measured using IoU) it must have with the output
under an adversarial perturbation of the input. For instance, if ε1 = 0.2, the Jaccard distance (1-IoU)
is guaranteed to be bounded by 0.2, which implies that the bounding box of a perturbed image
must have at least 80% overlap with that of the clean image. We use a pre-trained face detection
model for this experiment. We certify the perceptual distance of the output of a generative model
(trained on ImageNet) that produces 128× 128 RGB images using a high-dimensional version of
the smoothing procedure Smooth-HD described in the appendix. For total variation distance, we
use simple, easy-to-train convolutional neural network based dimensionality reduction (autoencoder)
and image reconstruction models. Our goal is to demonstrate the effectiveness of our method for
a wide range of applications and so, we place less emphasis on the performance of the underlying
models being smoothed. In each case, we show that our method is capable of generating certified
guarantees without significantly degrading the performance of the underlying model. We provide
additional experiments for other metrics and parameter settings in the appendix.

As is common in the randomized smoothing literature, we train our base models (except for the
pre-trained ones) on noisy data with different noise levels σtrain = 0.1, 0.2, . . . , 0.5 to make them
more robust to input perturbations. We keep the smoothing noise σ of the robust model same as the
training noise σtrain of the base model. We use n = 104 samples to estimate the smoothed function
and m = 106 samples to generate certificates, unless stated otherwise. We set ∆ = 0.05, α1 = 0.005
and α2 = 0.005 as discussed in previous sections. We grow the smoothing noise σ linearly with the
input perturbation ε1. Specifically, we maintain ε1 = hσ for different values of h = 2, 1 and 1.5
in our experiments. We plot the median certified output radius ε2 and the median smoothing error,
defined as the distance between the outputs of the base model and the smoothed model d(f(x), f̂(x)),
of fifty random test examples for different values of ε1. In all our experiments, we observe that
both these quantities increase as the input radius ε1 increases, but the smoothing error remains
significantly below the certified output radius. Also, increasing the value of h improves the quality of
the certificates (lower ε2). This could be due to the fact that for a higher h, the smoothing noise σ is
lower (keeping ε1 constant), which means that the radius of the minimum enclosing ball in the output
space is smaller leading to a tighter certificate. However, setting h too high can cause the value of
q in equation 5 to exceed one (q depends on p, which in turn depends on h in eq. 4), leading the
certification procedure (algorithm 2) to fail. We ran all our experiments on a single NVIDIA GeForce
RTX 2080 Ti GPU in an internal cluster. Each of the fifty examples we certify took somewhere
between 1-3 minutes depending on the underlying model.

5.1 Jaccard distance

It is known that facial recognition systems can be deceived to evade detection, impersonate authorized
individuals and even render completely ineffective [59, 55, 20]. Most facial recognition systems first
detect a region that contains a persons face, e.g. a bounding box, and then uses facial features to
identify the individual in the image. To evade detection, an attacker may seek to degrade the quality of
the bounding boxes produced by the detector and can even cause it to detect no box at all. Bounding
boxes are often interpreted as sets and the their quality is measured as the amount of overlap with the
desired output. When no box is output, we say the overlap is zero. The overlap between two sets is
defined as the ratio of the size of the intersection between them to the size of their union (IoU). Thus,
to certify the robustness of the output of a face detector, it makes sense to bound the worst-case IoU
of the output of an adversarial input to that of a clean input. The corresponding distance function,
known as Jaccard distance, is defined as 1− IoU which defines a metric over the universe of sets.

IoU(A,B) =
|A ∩B|
|A ∪B|

, dJ(A,B) = 1− IoU(A,B) = 1− |A ∩B|
|A ∪B|

.

In this experiment, we certify the output of a pre-trained face detection model MTCNN [64] on
the CelebA face dataset [45]. We set n = 5000 and m = 10000, and use default values for other
parameters discussed above. Figure 3a plots the certified output radius ε2 and the smoothing error for
h = ε1/σ = 1 and 2 for ε1 = 0.1, 0.2, . . . , 0.5. Certifying the Jaccard distance allows us to certify
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(a) Certifying Jaccard Distance (1 - IoU). (b) Smoothed Output.

Figure 3: Face Detection on CelebA using MTCNN detector: Part (a) plots the certified output radius
ε2 and the smoothing error for h = 1 and 2. Part (b) compares the smoothed output (blue box) to
the output of the base model (green box, mostly hidden behind the blue box) showing a significant
overlap.

IoU as well, e.g., for h = 2, ε2 is consistently below 0.2 which means that even the worst bounding
box under adversarial perturbation of the input has an overlap of at least 80% with the box for the
clean input. The low smoothing error shows that the performance of the base model does not drop
significantly as the actual output of the smoothed model has a large overlap with that of the base
model. Figure 3b compares the outputs of the smoothed model (blue box) and the base model (green
box). For most of the images, the blue box overlaps with the green one almost perfectly.

5.2 Perceptual Distance

Deep generative models like GANs and VAEs have been shown to be vulnerable to adversarial
attacks [31]. One attack model is to produce an adversarial example that is close to the original input
in the latent space, measured using `2-norm. The goal is to make the model generate a different
looking image using a latent representation that is close to that of the original image. We apply
center smoothing to a generative adversarial network BigGAN pre-trained on ImageNet images [5].
We use the version of the GAN that generates 128 × 128 resolution ImageNet images from a set
of 128 latent variables. Since we are interested in producing similar looking images for similar
latent representations, a good output metric would be the perceptual distance between two images
measured by LPIPS metric [65]. This distance function takes in two images, passes them through a
deep neural network, such as VGG, and computes a weighted sum of the square of the differences of
the activations (after some normalization) produced by the two images. The process can be thought
of as generating two feature vectors φ1 and φ2 for the two input images I1 and I2 respectively, then
computing a weighted sum of the element-wise square of the differences between the two feature
vectors, i.e.,

d(I1, I2) =
∑
i

wi(φ1i − φ2i)
2

The square of differences metric can be shown to follow the relaxed triangle inequality for γ = 2.
Therefore, the the final bound on the certified output radius will be γ(1 + 2γ)R̂ = 10R̂. Figure 4a
plots the median smoothing error and certified output radius ε2 for fifty randomly picked latent vectors
for ε1 = 0.01, 0.02, . . . , 0.05 and h = 1, 1.5. For these experiments, we set n = 2000,m = 104 and
∆ = 0.8. We use the modified smoothing procedure Smooth-HD (see appendix) for high-dimensional
outputs with a small batch size of 150 to accommodate the samples in memory. It takes about three
minutes to smooth and certify each input on a single NVIDIA GeForce RTX 2080 Ti GPU in an
internal cluster. Due to the higher factor of ten in the certified output radius in this case compared
to our other experiments where the factor is three, the certified output radius increases faster with
the input radius ε1, but the smoothing error remains low showing that, in practice, the method does
not significantly degrade the performance of the base model. Figure 4b shows that, visually, the
smoothed output is not very different from the output of the base model. The input radii we certify for
are lower in this case than our other experiments due to the low dimensionality (only 128 dimensions)
of the input (latent) space as compared to the input (image) spaces in our other experiments.
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(a) Certifying perceptual distance.
(b) Model Output vs Smoothed
Output.

Figure 4: Generative model for ImageNet: Part (a) plots the certified output radius ε2 and the
smoothing error for h = 1 and 1.5. Part (b) compares the output of the base model to that of the
smoothed model.

5.3 Total Variation Distance

The total variation norm of a vector x is defined as the sum of the magnitude of the difference between
pairs of coordinates defined by a neighborhood set N . For a 1-dimensional array x with k elements,
one can define the neighborhood as the set of consecutive elements.

TV (x) =
∑

(i,j)∈N

|xi − xj |, TV1D(x) =

k−1∑
i=1

|xi − xi+1|.

Similarly, for a grayscale image represented by a h×w 2-dimensional array x, the neighborhood can
be defined as the next element (pixel) in the row/column. In case of an RGB image, the difference
between the neighboring pixels is a vector, whose magnitude can be computed using an `p-norm. For,
our experiments we use the `1-norm.

TVRGB(x) =

h−1∑
i=1

w−1∑
j=1

‖xi,j − xi+1,j‖1 + ‖xi,j − xi,j+1‖1

The total variation distance between two images I1 and I2 can be defined as the total variation
norm of the difference I1 − I2, i.e., TV D(I1, I2) = TV (I1 − I2). The above distance defines a
pseudometric over the space of images as it satisfies the symmetry property and the triangle inequality,
but may violate the identity of indiscernibles as an image obtained by adding the same value to all
the pixel intensities has a distance of zero from the original image. However, as noted in section 4,
our certificates hold even for this setting.

We certify total variation distance for the problems of dimensionality reduction and image recon-
struction on MNIST [16] and CIFAR-10 [32]. The base-model for dimensionality reduction is an
autoencoder that uses convolutional layers in its encoder module to map an image down to a small
number of latent variables. The decoder applies a set of de-convolutional operations to reconstruct
the same image. We insert batch-norm layers in between these operations to improve performance.
For image reconstruction, the goal is to recover an image from small number of measurements of the
original image. We apply a transformation defined by Gaussian matrix A on each image to obtain the
measurements. The base model tries to reconstruct the original image from the measurements. The
attacker, in this case, is assumed to add a perturbation in the measurement space instead of the image
space (as in dimensionality reduction). The model first reverts the measurement vector to a vector
in the image space by simply applying the pseudo-inverse of A and then passes it through a similar
autoencoder model as for dimensionality reduction. We present results for ε1 = 0.2, 0.4, . . . , 1.0
and h = 2, 1.5 and use 256 latent dimensions and measurements for these experiments in figure 5.
To put these plots in perspective, the maximum TVD between two CIFAR-10 images could be
6×31×31 = 5766 and between MNIST images could be 2×27×27 = 1458 (pixel values between
0 and 1).
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(a) Dimensionality Reduction on MNIST (b) Dimensionality Reduction on CIFAR-10

(c) Image Reconstruction on MNIST (d) Image Reconstruction on CIFAR-10

Figure 5: Certifying Total Variation Distance

6 Conclusion

Provable adversarial robustness can be extended beyond classification tasks to problems with struc-
tured outputs. We design a smoothing-based procedure that can make a model of this kind provably
robust against norm bounded adversarial perturbations of the input. In our experiments, we demon-
strate that this method can generate meaningful certificates under a wide variety of distance metrics
in the output space without significantly compromising the quality of the base model. We also note
that the metric requirements on the distance measure can be partially relaxed in exchange for weaker
certificates.

We focus on `2-norm bounded adversaries and the Gaussian smoothing distribution. An important
direction for future investigation could be whether this method can be generalised beyond `p-
adversaries to more natural threat models, e.g., adversaries bounded by total variation distance,
perceptual distance, cosine distance, etc. Center smoothing does not critically rely on the shape of the
smoothing distribution or the threat model. Thus, improvements in these directions could potentially
be coupled with our method to further broaden the scope of provable robustness in machine learning.
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Checklist

1. For all authors...
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