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Abstract

The Transformer and its variants have been proven to be efficient sequence learners
in many different domains. Despite their staggering success, a critical issue has
been the enormous number of parameters that must be trained (ranging from 107

to 1011) along with the quadratic complexity of dot-product attention. In this work,
we investigate the problem of approximating the two central components of the
Transformer — multi-head self-attention and point-wise feed-forward transforma-
tion, with reduced parameter space and computational complexity. We build upon
recent developments in analyzing deep neural networks as numerical solvers of
ordinary differential equations. Taking advantage of an analogy between Trans-
former stages and the evolution of a dynamical system of multiple interacting
particles, we formulate a temporal evolution scheme, TransEvolve, to bypass
costly dot-product attention over multiple stacked layers. We perform exhaus-
tive experiments with TransEvolve on well-known encoder-decoder as well as
encoder-only tasks. We observe that the degree of approximation (or inversely,
the degree of parameter reduction) has different effects on the performance, de-
pending on the task. While in the encoder-decoder regime, TransEvolve delivers
performances comparable to the original Transformer, in encoder-only tasks it con-
sistently outperforms Transformer along with several subsequent variants. Code is
available in: https://github.com/LCS2-IIITD/TransEvolve.

1 Introduction
Neural networks have evolved from early feed-forward and convolutional networks, to recurrent
networks, to very deep and wide ‘Transformer’ networks based on attention [Vaswani et al., 2017].
Transformers and their enhancements, such as BERT [Devlin et al., 2019], T5 [Raffel et al., 2020]
and GPT [Brown et al., 2020] are, by now, the default choice in many language applications. Both
their training data and model sizes are massive. BERT-base has 110 million parameters. BERT-large,
which often leads to better task performance, has 345 million parameters. GPT-3 has 175 billion
trained parameters. Larger BERT models already approach the limits of smaller GPUs. GPT-3 is
outside the resource capabilities of most research groups. Training these gargantuan models is even
more challenging, with significant energy requirements and carbon emissions [Strubell et al., 2020].

In response, a growing community of researchers is focusing on post-facto reduction of model sizes,
which can help with the deployment of pre-trained models in low-resource environments. However,
training complexity is also critically important. A promising recent approach to faster training uses a
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way of viewing layers of attention as solving ordinary differential equations (ODEs) defined over a
dynamical system of interacting particles [Lu et al., 2019, Vuckovic et al., 2020]. We pursue that line
of work.

Simulating particle interactions over time has a correspondence to ‘executing’ successive layers of the
Transformer network. In the forward pass at successive layers, the self-attention and position-wise
feed-forward operations of Transformer correspond to computing the new particle states from the
previous ones. However, the numeric function learned by the i-th attention layer has zero knowledge
regarding the one learned by the (i − 1)-th layer. This is counter-intuitive due to the fact that the
whole evolution is temporal in nature, and this independence leads to growing numbers of trainable
parameters and computing steps. We seek to develop time-evolution functionals from the initial
condition alone. Such maps can then approximate the underlying ODE from parametric functions of
time (the analog of network depth) and do not require computing self-attention over and over.

We propose such a scheme, leading to a network/method we call TransEvolve. It can be used for
both encoder-decoder and encoder-only applications. We experiment on several tasks: neural machine
translation, whole-sequence classification, and long sequence analysis with different degrees of time-
evolution. TransEvolve outperforms Transformer base model on WMT 2014 English-to-French
translation by 1.4 BLEU score while using 10% fewer trainable parameters. On all the encoder-only
tasks, TransEvolve outperforms Transformer, as well as several strong baselines, with 50% fewer
trainable parameters and more than 3× training speedup.

2 Related Work

Our work focuses on two primary areas of machine learning — understanding neural networks as
dynamical systems and bringing down the overhead of Transformer-based models in terms of training
computation and parameters.

Neural networks and dynamical systems. Weinan [2017] first proposed that machine learning
systems can be viewed as modeling ordinary differential equations describing dynamical systems.
Chang et al. [2018] explored this perspective to analyze deep residual networks. Ruthotto and Haber
[2019] later extended this idea with partial differential equations. Lu et al. [2018] showed that any
parametric ODE solver can be conceptualized as a deep learning framework with infinite depth. Chen
et al. [2018] achieved ResNet-comparable results with a drastically lower number of parameters
and memory complexity by parameterizing hidden layer derivatives and using ODE solvers. Many
previous approaches applied sophisticated numerical methods for ODE approximation to build better
neural networks [Haber and Ruthotto, 2017, Zhu and Fu, 2018]. Vuckovic et al. [2020] developed a
mathematical formulation of self-attention as multiple interacting particles using a measure-theoretic
perspective. The very first attempt to draw analogies between Transformers and dynamical systems
was made by Lu et al. [2019]. They conceptualized Transformer as a numerical approximation of
dynamical systems of interacting particles. However, they focused on a better approximation of
the ODE with a more robust splitting scheme (with the same model size as Transformer and the
dot-product attention kept intact). We seek to parameterize the temporal dynamics to bypass attention
up to a certain degree.

Efficient variations of Transformer. Multiple approaches have been put forward to overcome the
quadratic complexity of Transformers [Wang et al., 2020a, Choromanski et al., 2020, Peng et al.,
2021, Xiong et al., 2021, Liu et al., 2018]. Kitaev et al. [2020] sought to use locality-sensitive
hashing and reversible residual connections to deal with long range inputs. Some studies explored
the sparsified attention operations to decrease computation cost [Liu et al., 2018, Ho et al., 2019, Roy
et al., 2021]. These sparsification tricks can be done based on the data relevant to the task [Roy et al.,
2021, Sukhbaatar et al., 2019] or in a generic manner [Liu et al., 2018, Ho et al., 2019]. Wang et al.
[2020a] observed self-attention to be low-rank, and approximated an SVD decomposition of attention
to linearize it. Peng et al. [2021] used random feature kernels to approximate the softmax operation
on the attention matrix. Choromanski et al. [2020] sought to linearize Transformers without any prior
assumption of low-rank or sparse distribution, using positive orthogonal random features. Lee-Thorp
et al. [2021] achieved remarkable speedup over Transformers by substituting the attention operation
with an unparameterized Fourier transform. A bulk of these works are suitable for encoder-only tasks
and often incurs slower training (e.g, Peng et al. [2021] observed 15% slower training compared to
Transformer). Our method overcomes both of these drawbacks.
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Table 1: List of important notations and their denotations used.
Notation Denotation
d, d′ Hidden and temporal dimension of the model
Xl Sequence of d-dimensional vectors input to the l-th encoder block
T l d′-dimensional map of depth (time) l
Hl Output of softmax attention at l-th encoder block

Wq,Wk Query and key projection matrices
W̃q, W̃k Temporal query and key projection matrices
Wo Attention output projection matrix
A0 Query-key dot-product from initial values

A1,A2, A3 Time-evolution operators for attention
U l, V l Random rotation matrices at depth l

Transformer pruning and compression. Knowledge distillation has been used to build light-weight
student model from large, trained Transformer models [Behnke and Heafield, 2020, Sanh et al.,
2019, Wang et al., 2020b]. Michel et al. [2019] experimented with pruning different attention heads
of BERT to observe redundancy in computation. However, these methods still require a trained,
parameter-heavy model to start with. Tensorization approach has shown efficient compression of
Transformer-based language models [Ma et al., 2019, Khrulkov et al., 2019].

3 Transformers as Dynamical Systems
A single block of the Transformer encoder [Vaswani et al., 2017] is defined as a multi-head self-
attention layer followed by two feed-forward layers, along with residual connections. The j-th head of
self-attention operation in the l-th encoder block, with j ∈ {1, . . . ,m}, on a given length-n sequence
of d dimensional input vectors Xl := {X l

i |X l
i ∈ Rd}ni=1 can be defined as:

H l
j = Softmaxi((X

lW l
q)(X

lW l
k)>/

√
dk)(XlW l

v) (1)

where W l
q,W

l
k ∈ Rd×dk , and W l

v ∈ Rd×dv are linear projection layers and dk = d/m. Conven-
tionally, dv = dk. Each H l

j is aggregated to produce the output of the multi-head self-attention as
follows:

Hl = Concat({H l
j}mj=1)W l

o + Xl (2)

where Wo ∈ Rd×d is a linear projection. The subsequent feed-forward transformation can be defined
as:

Xl+1 = (σ(HlW l
ff1 +Blff1))W l

ff2 +Blff2 + Hl (3)

where W l
ff1 ∈ Rd×dff , W l

ff2 ∈ Rdff×d, Blff1 ∈ Rdff , Blff2 ∈ Rd, and σ() is a non-linearity
(Relu in [Vaswani et al., 2017] or Gelu in [Devlin et al., 2019]).

As Lu et al. [2019] argued, Equations 1-3 bear a striking resemblance with systems of interacting
particles. Given the positions of a set of interacting particles as x(t) = {xi(t)}ni=1, the temporal
evolution of such a system is denoted by the following ODE:

d

dt
xi(t) = F (xi(t),x(t), t) +G(xi(t), t) (4)

with the initial condition xi(t0) = si ∈ Rd. The functions F and G are often called the diffusion and
convection functions, respectively — the former models the inter-dependencies between the particles
at time t, while the latter models the independent dynamics of each particle. Analytical solution
of such an ODE is often impossible to find, and the most common approach is to use numerical
approximation over discrete time intervals [t0, t0 + δt, . . . , t0 + Lδt]. Following Euler’s method
of first order approximation and the Lie-Trotter splitting scheme, one can approach the numerical
solution of Equation 4 from time t to t+ δt as:

x̃i(t) = xi(t) + δtF (xi(t),x(t), t) = xi(t) + F(xi(t),x(t), t)

xi(t+ δt) = x̃i(t) + δtG(x̃i(t), t) = x̃i(t) + G(x̃i(t), t)
(5)

Equation 5 can be directly mapped to the operations of the Transformer encoder given in Equations
1-3, with Xl ≡ x(t), Hl ≡ {x̃i(t)}ni=1 and Xl+1 ≡ x(t + δt). F(·, ·, t) is instantiated by the
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projections W l
q,W

l
k,W

l
v,W

l
o and Softmax(·) operations in the multi-head self-attention. G(·, t)

corresponds to the projections W l
ff1,W

l
ff2, B

l
ff1, B

l
ff1 and the σ(·) non-linearity in Equation 3.

From the described analogies, it quickly follows that successive multi-head self-attention and the
point-wise feed-forward operations follow a temporal evolution (here time is equivalent to the depth
of the encoder). However, Transformer and its subsequent variants parameterize these two functions
in each layer separately. This leads to a large number of parameters to be trained (ranging from
7 × 107 in neural machine translation tasks to 175 × 109 in language models like GPT-3). We
proceed to investigate how one can leverage the temporal evolution of the diffusion and convection
components to bypass this computational bottleneck.

4 Time-evolving Attention
As Equation 5 computes x(t) iteratively from a given initial condition x(t0) = s = {si}ni=1, one can
reformulate the diffusion map F(·,x(t), t) as F̃(·, f(s, t)), i.e., as a functional of the initial condition
and time only. When translated to the case of Transformers, this means one can avoid computing
pairwise dot-product between n input vectors at each layer by computing a functional form at the
beginning and evolving it in a temporal (depth-wise) manner. We derive this by applying dot-product
self-attention on hypothetical input vectors with augmented depth information, as follows.

Let X′ = {X ′i|X ′i ∈ Rd+d′} be a set of vectors such that X ′i = Concat(X0
i , T

l), where X0
i =

{xi1, . . . , xid} and T l = {τ1(l), . . . , τd′(l)}. W ′q,W ′k ∈ R(d+d′)×(d+d′) are the augmented query and

key projections, respectively, such that W ′q = [ωij ]
d+d′,d+d′

i,j=1,1 , W ′k = [θij ]
d+d′,d+d′

i,j=1,1 . The pre-softmax
query-key dot product between X ′i and X ′j is given by a′ij = (X ′iW

′
q)(X

′
jW
′
k)>. We can decompose

W ′q as concatenation of two matrices Wq, W̃q such that Wq = [ωij ]
d,d+d′

i,j=1,1 and W̃q = [ωij ]
d+d′,d+d′

i,j=d+1,1 .
Similarly, we decompose W ′k into Wk and W̃k. Then a′ij can be re-written as:

a′ij = (X0
iWq)(X

0
jWk)> + (X0

iWq)(T
lW̃k)> + (T lW̃q)(X

0
jWk)> + (T lW̃q)(T

lW̃k)>

= a0ij +A1iT
l> + T lA2j +A3(T l � T l)

(6)

where A1i = X0
iWqW̃

>
k , A2j = W̃qW

>
k X

0>
j , A3 = W̃qW̃

>
k and � signify hadamard product.

Detailed derivation is provided in Appendix A.

It is evident that a0ij is the usual dot-product pre-softmax attention between vector elements X0
i , X

0
j .

For the complete sequence of vector elements X, we write A0 = [aij ]ij , A1 = {A1i}i and
A2 = {A2j}j . By definition, T l is a vector function of the depth l. To construct T l as a vector
function of l, we formulate

T l =

[
wl1 sin(

l

P
), . . . , wld′

2

sin(
d′l

2P
), wld′

2 +1
cos(

l

P
), . . . , wld′ cos(

d′l

2P
)

]
(7)

where W l
t = {wli}d

′

i=1 are learnable parameters at depth l, and P = d′L
2π . Such a choice of T l

is intuitive in the following sense: let C = AT l + B for some arbitrary A = [aij ] ∈ Rp×d,
B = {bi} ∈ Rp, and C = {ci} ∈ Rp. Then we get

ci = bi +

d′
2∑
j=1

aijw
l
j sin(

jl

P
) +

d′
2∑
j=1

aijw
l
j+ d′

2

cos(
jl

P
) (8)

In other words, any feed-forward transformation on T l gives us a vector in which each component
is a Fourier series (thereby, approximating arbitrary periodic functions of l with period P ). This
enables us to encode the nonlinear transformations that X undergoes in successive blocks. With
this, A1,A2, A3 constitute the time-evolution operators to map depth information to the attention,
computed only from the initial conditions X0

i , X
0
j .

Figures 1(a) and 1(b) summarize the procedure. Given two input sequences X and Y (in case of self-
attention, they are the same), we first compute A0,A1,A2, A3 using the linear projection matrices
Wq,Wk, W̃q, W̃k, as described above. Additionally, we normalize A0 by a factor 1√

d/m
, where m is

the number of heads, similar to Transformer. Then, at any subsequent layer l ∈ {1, . . . , L}, instead
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Figure 1: Dissecting the primary functional components of TransEvolve. (a) An L-depth encoder
block starts with computing (b) the initial condition matrix A0 and the evolution operator matrices
A1,A2, A3 from the input sequence. These four are then used in (c) each encoder at depth l along
with a vector function of depth, T l to apply the attention operation on the output from the previous
step. This product of attention is then passed to the feed-forward transformation actuated by the depth-
dependent, random rotation matrices U l1, U

l
2, V

l
1 , V

l
2 (TransEvolve-randomFF, see Section 6). In

another variation, we use learnable feed-forward layers (TransEvolve-fullFF).

of computing the query, key and value projections from the input Xl, we use the previously computed
A0,A1,A2, A3 along with T l. Then the time-evolved attention operation becomes

Hl = Softmax(A0 + A1T
l> + T lA2 +A3(T l � T l))XlW l

o + Xl (9)

For the sake of brevity, we have not shown the concatenation of multi-headed splits as shown in
Equation 2. Therefore, one should identify W l

o in Equation 9 with Equation 2 and not as value
projection as in Equation 1. We do not use value projection in our method. Also, in the multi-headed
case, all the matrix-vector dot products shown in Equation 9 are computed on head-splitted dimension
of size d/m.

Complexity and parameter reduction. Given a d-dimensional input sequence of length n, com-
puting the pre-softmax attention weight matrix in a single Transformer encoder requires O(n2d)
multiplications. In our proposed method, the complexity of calculating dot-product attention (corre-
sponding to a0ij in Equation 6) invokes computations of similar order – O(n2(d + d′)). However,
this is needed only once at the beginning. The subsequent attention matrices are calculated using
the components with T in Equation 6. Both A1T and TA2 require O(nd′) computation, and A3T
requires only O(d′). Therefore, if one tends to use L successive attention operations, our proposed
method is computationally equivalent to a single original dot-product self-attention followed by
multiple cheaper stages. In addition to this, attention weight computation using Equation 6 eliminates
the need for query, key, and value projections at each self-attention block. Thereby, it ensures a
parameter reduction of O(Ld2) for a total stacking depth of L.
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5 Time-evolving Feed-forward
The Transformer counterpart of the convection function G(·, t) is the point-wise feed-forward trans-
formation in Equation 3. The complete operation constitutes two projection operations: first, the
input vectors are mapped to a higher dimensional space (Rd −→ Rdff ) along with a non-linear
transformation, followed by projecting them back to their original dimensionality (Rdff −→ Rd).
At the l-th Transformer encoder, these dimensionality transformations are achieved by the matrices
W l
ff1 and W l

ff2, respectively (see Equation 3). To construct their temporal evolution, we attempt to
decompose them into time-evolving components.

Recall that any real m × n matrix M can be decomposed as M = UΣV > where U ∈ Rm×m,
V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is a rectangular diagonal matrix. However, computing
exact orthogonal matrices with large dimensionality is computationally infeasible. Instead, we
construct approximate rotation matrices U ∈ Rd×d as:

U l =
1√
d


sin(wl11

l
P ) . . . sin(wl

1 d
2

dl
2P ) cos(wl11

l
P ) . . . cos(wl

1 d
2

dl
2P )

...
...

sin(wld1
l
P ) . . . sin(wl

d d
2

dl
2P ) cos(wld1

l
P ) . . . cos(wl

d d
2

dl
2P )

 (10)

where P = dL
2π and wlij ∈ N (0, d2). We discuss the properties of such a matrix U l in the Appendix B.

We construct four matrices U l1 ∈ Rd×d, V l1 ∈ Rdff×dff , U l2 ∈ Rdff×dff , and V l2 ∈ Rd×d as
described in Equation 10. Also, we construct two rectangular diagonal matrices Σ1 ∈ Rd×dff and
Σ2 ∈ Rdff×d with learnable diagonal entries. With these matrices defined, one can reformulate the
point-wise feed-forward operation (Equation 3) as:

Xl+1 = U l2Σ2V
l
2σ(U l1Σ1V

l
1H

l +B1) +B2 + Hl (11)

This reformulation reduces the number of trainable parameters from O(ddff ) to O(d).

6 Proposed Model: TransEvolve
Equipped with the particle evolution based definitions of attention and point-wise feed-forward
operations, we proceed to define the combined architecture of TransEvolve. The primary building
blocks of our model are the initial attention computations following Equation 6, shown in Figure 1(b)
and attention operation at depth l followed by feed-forward transformations (shown together as
the encoder at depth l in Figure 1(c)). An L-depth encoder block of TransEvolve, as shown in
Figure 1(a), consists of L number of attention and feed-forward operations stacked successively,
preceded by an initial attention computation.

Variations in temporal evolution of feed-forward operation. While the re-parameterization of
the point-wise feed-forward operations described in Section 5 seems to provide an astonishing
reduction in the parameter size, it is natural to allow different degrees of trainable parameters for
these operations. This allows us to explore the effects of time-evolving approximations of attention
and point-wise feed-forward separately. We design two variations of TransEvolve. In the original
setting, the point-wise feed-forward operation is applied using random rotation matrices, following
Equation 11. We call this TransEvolve-randomFF. In the other variation, the time evolution
process is applied for the attention operations only while the feed-forward operations are kept to be
the same as Transformer (Equation 3). This variation is denoted as TransEvolve-fullFF, henceforth.

Different degrees of temporal evolution. Recall from Section 3 that Equation 5 is a numerical ap-
proximation of Equation 4 so as to evaluate x(t+δt) iteratively from x(t). When we attempt to approx-
imate F (xi(t),x(t), t) as F̃ (xi(t), f(x(t0), t)), the error |F (xi(t),x(t), t)− F̃ (xi(t), f(x(t0), t))|
is expected to grow as |t− t0| grows. However, it is not feasible to compute the exact approximation
error due to the complex dynamics which, in turn, varies from task to task. To compare with the origi-
nal Transformer, we seek to explore this empirically. More precisely, the L-depth encoder (decoder)
block with our proposed evolution strategy is expected to approximate L encoder (decoder) layers
of Transformer. Following the approximation error argument, TransEvolve is likely to bifurcate
more from Transformer as L gets larger. We experiment with multiple values of L while keeping the
total number of attention and feed-forward operations fixed (same as Transformer in the comparative
task). To illustrate, for WMT English-to-German translation task, Transformer uses 6 encoder blocks
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followed by 6 decoder blocks. Converted in our setting, one can use 1 encoder (decoder) each with
depth L = 6 or 2 encoders (decoders) each with depth L = 3 (given that the latter requires more
parameters compared to the former).

Encoder-decoder. To help compare with the original Transformer, we keep our design choices
similar to Vaswani et al. [2017]: embedding layer tied to the output logit layer, sinusoidal position
embeddings, layer normalization, etc. The temporal evolution of self-attention described in Section 4
can be straightforwardly extended to encoder-decoder attention. Given the decoder input X0

dec

and the encoder output Xenc, we compute the initial dot-product attention matrices Adec
0 and Aed

0 ,
corresponding to decoder self-attention and encoder-decoder attention, as follows:

Adec
0 = (X0

decW
dec
q )>(X0

decW
dec
k ); Aed

0 = (X0
decW

ed
q )>(XencW

ed
k ) (12)

If X0
dec and Xenc are sequences of length ndec and nenc, respectively, then Adec

0 and Aed
0 are

ndec × ndec and nenc × ndec matrices, respectively. We also compute the corresponding time-
evolution operators Adec

1 ,Adec
2 , Adec3 and Aed

1 ,A
ed
2 , A

ed
3 similar to Equation 6. Then at each depth l

in the decoder block, the time-evolved attention operations are as follows:

H̃l = Softmax(Adec
0 + Adec

1 T ldec + T ldecA
dec
2 +Adec3 (T ldec � T ldec))Xl

decW
l,dec
o + Xl

dec

Hl = Softmax(Aed
0 + Aed

1 T
l
ed + T ledA

ed
2 +Aed3 (T led � T led))XencW

l,ed
o + H̃l

(13)

where T ldec and T led are two independent vector maps of depth l representing the time-evolutions of
the decoder self-attention and the encoder-decoder attention. For the sake of brevity, we have shown
the full multi-head attentions in Equations 12 and 13 without showing the concatenation operation
(as in Equation 2).

Encoder-only. For many-to-one mapping tasks (e.g., text classification), we only use the encoder
part of TransEvolve. The sequential representations returned from the encoder are applied with an
average pooling along the sequence dimension and passed through a normalization layer to the final
feed-forward layer to predict the classes.

7 Experiments
7.1 Model Configurations

We set d = d′ across all the variations of TransEvolve. For the encoder-decoder models, we
experiment with the base version of TransEvolve with d = 512. For encoder-only tasks, we use a
small version with d = 256. In both base and small versions, the number of heads is set to 8.

As discussed in Section 6, one can vary the degree of temporal evolution (and the number of trainable
parameters) in TransEvolve by changing the value of L in the L-depth time-evolving encoder
(decoder) blocks. To keep the total depth of the model constant, we need to change the number of
these blocks as well. We design two such variations. Recall that the total depth of the Transformer
encoder-decoder model is 12 (6 encoders and 6 decoders); in TransEvolve, we choose (i) 1 encoder
(decoder) block with depth 6 (denoted as TransEvolve-fullFF-1, TransEvolve-randomFF-1, etc.),
and (ii) 2 encoder (decoder) blocks each with depth 3 (denoted by TransEvolve-randomFF-2, etc.).
This way, we obtain 4 variations of TransEvolve for our experiments.

7.2 Tasks

We evaluate TransEvolve over three different areas of sequence learning from texts: (i) sequence-
to-sequence mapping in terms of machine translation, (ii) sequence classification, and (iii) long
sequence learning. The former task requires the encoder-decoder architecture while the latter two are
encoder-only.

Machine Translation (MT). As a sequence-to-sequence learning benchmark, we use WMT 2014
English-to-German (En-De) and English-to-French (En-Fr) translation tasks. The training data for
these two tasks contain about 4.5 and 35 million sentence pairs, respectively. For both these tasks, we
use the base configuration of our proposed models. We report the performance of the En-De model
on WMT 2013 and 2014 En-De test sets (newstest2013 and newstest2014). En-Fr model is tested
only on WMT 2014 test set. Implementation details on these tasks are described in the Appendix.

Sequence classification. We evaluate the performance of the encoder-only version of our model on
two text classification datasets: IMDB movie-review dataset [Maas et al., 2011] and AGnews topic
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Model
En-De En-Fr

#ParamsWMT WMT WMT
2013 2014 2014

Transformer BASE 25.8 27.3 38.1 65M
TransEvolve- randomFF-1 22.5 23.1 32.6 27M
TransEvolve- randomFF-2 24.2 23.8 33.4 33M
TransEvolve- fullFF-1 25.3 25.8 38.0 53M
TransEvolve- fullFF-2 26.2 27.2 39.5 59M

Table 2: Performance of
TransEvolve variants on
English-to-German (En-De)
and English-to-French (En-Fr)
translations in terms of BLEU
scores. Transformer results
are taken from the original
paper [Vaswani et al., 2017].

classification dataset Zhang et al. [2015]. The IMDB dataset consists of 25000 movie reviews each
for training and testing purposes. This is a binary classification task (positive/negative reviews). The
AGnews dataset is a collection of news articles categorized into 4 classes (Science & Technology,
Sports, Business, and World), each with 30000 and 1900 instances for training and testing, respec-
tively. For both these tasks, we use the small version of our model. Detailed configurations and
hyperparameters are given in the Appendix.

Long sequence learning. To test the effectiveness of our model for handling long sequences, we use
two sequence classification tasks: character-level classification of the IMDB reviews and latent tree
learning from sequences of arithmetic operations and operands with the ListOps dataset [Nangia
and Bowman, 2018]. For the IMDB reviews, we set the maximum number of tokens (characters) in
the training and testing examples to 4000 following [Peng et al., 2021]. In the ListOps dataset, an
input sequence of arithmetic operation symbols and digits in the range 0-9 is given as input; it is a
10-way classification task of predicting the single-digit output of the input operation sequence. We
consider sequences of length 500-2000 following [Peng et al., 2021]. Again, we use the small version
of TransEvolve for these two tasks. Further experimental details are provided in the Appendix.

7.3 Training and Testing Procedure

All experiments are done on v3-8 Cloud TPU chips. We use Adam optimizer with learning rate
scheduled per gradient update step as lr = lrmax√

d
×max(step−0.5, warmup_step−1.5 × step). For

the MT task, we set lrmax = 1.5 and warmup_step = 16000. For the remaining two tasks, these
values are set to 0.5 and 8000, respectively. For the translation tasks, we use a label smoothing
coefficient ε = 0.1. Training hyperparameters and other task-specific details are described in the
Appendix. For the translation tasks, we report the BLEU scores averaged from 10 last checkpoints,
each saved per 2000 update steps. For encoder-only tasks, we report the average best accuracy on
five separate runs with different random seeds. Comprehensive additional results are provided in the
Appendix.

8 Results and Discussion

Machine Translation. Table 2 summarizes the performance of TransEvolve variants against
Transformer (base version) on English-German and English-French translation tasks. TransEvolve-
randomFF versions perform poorly compared to fullFF versions.

Table 3: Text classification accuracy of TransEvolve vari-
ants on AGnews and IMDB dataset. Scores of Transformer,
Linformer, and Synthesizer are taken from [Tay et al., 2020a].

Model AGnews IMDB
Transformer 88.8 81.3
Linformer [Wang et al., 2020a] 86.5 82.8
Synthesizer [Tay et al., 2020a] 89.1 84.6
TransEvolve-randomFF-1 90.6 87.3
TransEvolve-randomFF-2 90.8 87.5
TransEvolve-fullFF-1 91.1 86.8
TransEvolve-fullFF-2 90.5 87.6

However, with less than 50% of
the parameters used by Transform-
ers, they achieve above 85% perfor-
mance of that of Transformer. With all
random rotation matrices replaced by
standard feed-forward layers, Trans-
Evolve with a single 6 layers deep en-
coder (decoder) block performs com-
parably to Transformer on the En-
Fr dataset. Finally, with 2 blocks
of depth 3 encoders, TransEvolve-
fullFF-2 outperforms Transformer on
the WMT 2014 En-Fr dataset by 1.2

points BLEU score, despite having 10% lesser parameters. On the En-De translation task, this model
performs comparable to Transformer, with 0.5 gain and 0.1 drops in BLEU scores on WMT 2013
and 2014 test datasets, respectively.
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Table 4: Accuracy (%) of TransEvolve on the long range sequence classification tasks. Speed is
measured w.r.t. Transformers on the character-level IMDB dataset for input sequences of length 1k,
2k, 3k and 4k. All results except TransEvolve variants are taken from [Peng et al., 2021].

Models Tasks Speed
ListOps charIMDB 1k 2k 3k 4k

Transformer 36.4 64.3 1.0 1.0 1.0 1.0
Linformer [Wang et al., 2020a] 35.7 53.9 1.2 1.9 3.7 5.5
Reformer [Kitaev et al., 2020] 37.3 56.1 0.5 0.4 0.7 0.8
Sinkhorn [Tay et al., 2020b] 17.1 63.6 1.1 1.6 2.9 3.8
Synthesizer [Tay et al., 2020a] 37.0 61.7 1.1 1.2 2.9 1.4
Big Bird [Zaheer et al., 2020] 36.0 64.0 0.9 0.8 1.2 1.1
Linear attention [Katharopoulos et al., 2020] 16.1 65.9 1.1 1.9 3.7 5.6
Performers [Choromanski et al., 2020] 18.0 65.4 1.2 1.9 3.8 5.7
Random Feature Attention (RFA) [Peng et al., 2021] 36.8 66.0 1.1 1.7 3.4 5.3
TransEvolve-randomFF-1 43.2 65.3 1.2 1.3 1.2 1.2
TransEvolve-randomFF-2 39.1 66.1 1.1 1.2 1.2 1.1
TransEvolve-fullFF-1 42.2 65.7 1.2 1.2 1.2 1.1
TransEvolve-fullFF-2 37.8 65.6 1.1 1.1 1.0 1.1

Text classification. Table 3 summarizes the accuracy of TransEvolve on text classification tasks.
It should be noted that these results are not comparable to the state-of-the-art results on these two
datasets; all four models mentioned here use no pretrained word embeddings to initialize (which
is essential to achieve benchmark results for these tasks, mostly due to the smaller sizes of these
datasets) or extra data for training. These results provide a comparison of purely model-specific
learning capabilities. Upon that, TransEvolve-fullFF-1 achieves the best performance on both
datasets. For topic classification on AGnews, it scores 91.1% accuracy, outperforming Synthesizer
(the best baseline) by 2%. The improvements are even more substantial on IMDB. TransEvolve-
fullFF-2 achieves an accuracy of 87.6% with improvements of 3% and 6.3% upon Synthesizer and
Transformer, respectively.

Long sequence tasks. TransEvolve shows remarkable performance in the arena of long sequence
learning as well. As shown in Table 4, TransEvolve outperforms Transformer along with previous
methods on both ListOps and character-level sentiment classification on IMDB reviews. On ListOps,
TransEvolve-randomFF-1 establishes a new benchmark of 43.2% accuracy — beating Reformer
(existing state-of-the-art) by 4.9% and Transformer by 5.8%. Moreover, all four versions of Trans-
Evolve show a gain in accuracy compared to the previous models. It is to be noted that we use
the small version of TransEvolve (with 256 hidden size) for these tasks, while Transformer uses
the base version (512). So all these improvements are achieved while using 25% of Transformer’s
parameter size. On the char-IMDB dataset, while only TransEvolve-randomFF-2 outperforms the
existing state-of-the-art, i.e., Random Feature Attention (RFA), other variants of TransEvolve also
turn out to be highly competitive. TransEvolve-randomFF-2 achieves 66.1% accuracy, improving
upon RFA by 0.1% and Transformer by 1.8%. While all the variants of TransEvolve run faster
compared to Transformer, they do not show any additional speed-up for longer sequences like RFA
or Performers. This behavior is reasonable given the fact that TransEvolve still performs softmax
on O(n2) sized attention matrix at each depth. Moreover, the speedups reported in Table 4 are with
the same batch size for Transformer. Practically, the lightweight TransEvolve-randomFF models
can handle much larger batch size (along with larger learning rates). This results in a more than 3×
training speedup for all the lengths compared to Transformer. The relative gain in speed compared
to Transformer or Reformer is achieved due to linear computation of pre-softmax weights (except
for the initial attention calculation) and a reduced number of parameters. This is also supported by
the fact that randomFF versions run faster than fullFF ones, and speed decreases with the increased
number of shallower encoder blocks.

Effects of model variations. Random rotation matrices, instead of standard feed-forward layers and
varying the number (conversely, the depth) of TransEvolve encoder blocks, show a task-dependent
effect on performance. TransEvolve versions with a single 6-layer deep encoder perform better
than 2 successive 3-layer deep encoders in the case of ListOps. In other encoder-only tasks, there are
no clear winners among the two. Similar patterns can be observed among TransEvolve-randomFF
and TransEvolve-fullFF. In the case of machine translation though, it is straightforward that having
a lesser number of feed-forward parameters (randomFF vs. fullFF) and/or fewer encoder blocks
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with deeper evolution deteriorate the performance. In general, the performance of TransEvolve
variations degrades with the decrease in the total parameter size on translation tasks. Encoder-only
models use only self-attention, while the encoder-decoder models use self, cross, and causal attentions.
From the viewpoint of multi-particle dynamical systems, the latter two are somewhat different from
the former one. In self-attention, each of the ‘particles’ is interacting with each other simultaneously
at a specific time-step. However, in causal attention, the interactions are ordered based on the token
positions even within a specific timestep. So while decoding, there is an additional evolution of token
representations at each step. Moreover, in encoder-decoder tasks as well, TransEvolve outperforms
the original Transformer in two datasets (En-De 2013 and En-Fr 2014) clearly, while providing
comparable performance in another (En-De 2014). It is the random matrix versions that suffered
the most in these versions. The way we designed the random matrix feedforward transformations
incorporates the depth information via evolution while reducing the parameter size. In encoder-only
tasks, this evolution scheme looks comparable to depth-independent, parameter-dense full versions in
expressive power. Moreover, each of the tasks presents different learning requirements. Intuitively,
ListOps or character-level sentiment classification tasks have a smaller input vocabulary (hence, fewer
amounts of information to encode in each embedding), but longer intra-token dependency (resulting
in a need for a powerful attention mechanism) compared to sentiment or topic classification at the
word level. Random matrix versions provide depth-wise information sharing that may facilitate the
model to better encode complex long-range dependencies, but they might remain under-parameterized
to transform information-rich hidden representations. This complexity trade-off can be the possible
reason behind randomFF versions, outperforming fullFF in both the long-range tasks while vice versa
in text classification tasks.

These variations indicate that TransEvolve is not just a compressed approximation of Transformer.
Particularly in the case of encoder-only tasks, the depth-wise evolution of self-attention and feed-
forward projection helps TransEvolve to learn more useful representations of the input with a
much fewer number of trainable parameters. This also suggests that the nature of the dynamical
system underlying a sequence learning problem differs heavily with different tasks. For example,
the staggering performance of TransEvolve-randomFF-1 on the ListOps dataset implies that the
diffusion component of the underlying ODE is more dominant over the convection component, and the
error |F (xi(t),x(t), t)− F̃ (xi(t), f(x(t0), t))| remain small with increasing |t− t0|. One may even
conjecture whether the Hölder coefficients of the functions F and G (in Equation 4) underlying the
learning problem govern the performance difference. However, we leave this for future exploration.

9 Conclusion

Transformer stacks provide a powerful neural paradigm that gives state-of-the-art prediction quality,
but they come with heavy computational requirements and large models. Drawing on an analogy
between representation evolution through successive Transformer layers and dynamic particle inter-
actions through time, we use numerical ODE solution techniques to design a computational shortcut
to Transformer layers. This not only lets us save trainable parameters and training time complexity,
but can also improve output quality in a variety of sequence processing tasks. Apart from build-
ing a better-performing model, this novel perspective carries the potential to uncover an in-depth
understanding of sequence learning in general.

Limitations. It is to be noted that TransEvolve does not get rid of quadratic operations completely,
as in the case of linear attention models like Linformer or Performer. It still performs costly softmax
operations on quadratic matrices. Also, at least for once (from the initial conditions) TransEvolve
computes pre-softmax O(n2) dot-product matrices. However, the significant reduction in model size
compensates for this pre-existing overhead. Also, the speedup achieved by TransEvolve is majorly
relevant in the training part and many-to-one mapping. In the case of autoregressive decoding, Trans-
Evolve does not provide much gain over the Transformer compared to the linear versions [Peng et al.,
2021]. Since the linearization approaches of the attention operation usually seeks to approximate the
pair-wise attention kernel k(x, y) as some (possibly random) feature map φ(x)φ(y), one may seek to
design a temporal evolution of the kernel by allowing temporally evolving feature maps. We leave
this as potential future work.
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