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A Proofs

For the following proofs, we treat the variables as continuous variables and always use the integral. If
one or some of the variables are discrete, it is straight-forward to replace the corresponding integral(s)
with summation sign(s) and the proofs still hold.

A.1 Remark 1

Proof.

i) If there exists a representation z defined by the mapping p(z|x) that aligns both the marginal
and conditional distribution, then ∀d, d′, y we have:

p(y, z|d) = p(z|d)p(y|z, d)
= p(z|d′)p(y|z, d′) = p(y, z|d′). (8)

By marginalizing both sides of Eq 8 over z, we get p(y|d) = p(y|d′) .
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ii) If p(y|d) is unchanged w.r.t. the domain d, then we can always find a domain invariant
representation, for example, p(z|x) = δ0(z) for the deterministic case (that maps all x to 0),
or p(z|x) = N (z; 0, 1) for the probabilistic case.

These representations are trivial and not of our interest since they are uninformative of the
input x. However, the readers can verify that they do align both the marginal and conditional
distribution of data.

A.2 Remark 2

Proof.

• If I(z, d) = 0, then p(z|d) = p(z), which means p(z|d) is invariant w.r.t. d.

• If p(z|d) is invariant w.r.t. d, then ∀z, d :

p(z) =

∫
p(z|d′)p(d′)dd′ =

∫
p(z|d)p(d′)dd′

(since p(z|d′) = p(z|d)∀d′)

= p(z|d)
∫
p(d′)dd′ = p(z|d)

=⇒ I(z, d) = 0 (9)

A.3 Theorem 1

Proof.

i) Marginal alignment: ∀z we have:

p(z|d) =
∫
p(x|d)p(z|x)dx

=

∫
p(fd′,d(x

′)|d)p(z|fd′,d(x′))
∣∣∣det Jfd′,d(x

′)
∣∣∣ dx′

(by applying variable substitution in multiple integral: x′ = fd,d′(x))

=

∫
p(x′|d′)

∣∣∣det Jfd′,d(x
′)
∣∣∣−1 p(z|x′)∣∣∣det Jfd′,d(x

′)
∣∣∣ dx′

(since p(fd′,d(x′)|d) = p(x′|d′)
∣∣∣det Jfd′,d(x

′)
∣∣∣−1 and p(z|fd′,d(x′)) = p(z|x′))

=

∫
p(x′|d′)p(z|x′)dx′

= p(z|d′) (10)

ii) Conditional alignment: ∀z, y we have:

p(z|y, d) =
∫
p(x|y, d)p(z|x)dx

=

∫
p(fd′,d(x

′)|y, d)p(z|fd′,d(x′))
∣∣∣det Jfd′,d(x

′)
∣∣∣ dx′
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(by applying variable substitution in multiple integral: x′ = fd,d′(x))

=

∫
p(x′|y, d′)

∣∣∣det Jfd′,d(x
′)
∣∣∣−1 p(z|x′)∣∣∣det Jfd′,d(x

′)
∣∣∣ dx′

(since p(fd′,d(x′)|y, d) = p(x′|y, d′)
∣∣∣det Jfd′,d(x

′)
∣∣∣−1 and p(z|fd′,d(x′)) = p(z|x′))

=

∫
p(x′|y, d′)p(z|x′)dx′

= p(z|y, d′) (11)

Note that

p(y|z, d) = p(y, z|d)
p(z|d)

=
p(y|d)p(z|y, d)

p(z|d)
(12)

Since p(y|d) = p(y) = p(y|d′), p(z|y, d) = p(z|y, d′) and p(z|d) = p(z|d′), we have:

p(y|z, d) = p(y|d′)p(z|y, d′)
p(z|d′)

= p(y|z, d′) (13)

B Discussion on the choice of the distance metric between representations

As discussed in Section 3.2, we enforce the representation network gθ to be invariant under the
domain transformation fd,d′ (with any two domains d, d′), meaning that gθ(x) = gθ(fd,d′(x)).

In our implementation, we use the squared error distance as the distance between gθ(x) and
gθ(fd,d′(x)). Admittedly, this distance tends to have the side effect of making the norm of the
representation smaller. However, as visualized in Section 5.3, it does successfully align the distribu-
tions of the representation.

We also considered other distances such as contrastive distance and the cosine distance. We present
below in Table 4 an ablation study with difference choices of the distance metrics, for the Rotated
Mnist experiment with the target domainM75. Note that in this Rotated Mnist dataset, domains
M75 andM0 are (equally) the hardest target domains. Therefore, we chooseM75 for this ablation
study to compare the performance of the variants.

Table 4: Ablation study: Rotated MNIST experiments withM75 as the target domain.

Distance Metric Accuracy

Squared Error Distance 97.1±0.3
Contrastive Distance 95.8±0.9

Cosine Distance 90.1±0.3

As the Squared Error Distance gives the best performance and also is the most stable one in practice,
we decide to use it for our implementation.
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