
Supplementary Material for
“Noisy Recurrent Neural Networks”

A Notation and Background

We begin by introducing some notations that will be used in this SM.

• ‖ · ‖F denotes Frobenius norm, ‖ · ‖p denote p-norm (p > 0) of a vector/matrix (in particular,
‖v‖ := ‖v‖2 denotes Euclidean norm of the vector v and ‖A‖2 denotes the spectral norm of
the matrix A).

• The ith element of a vector v is denoted as vi or [v]i and the (i, j)-entry of a matrix A is
denoted as Aij or [A]ij .

• I denotes identity matrix (the dimension should be clear from the context).
• tr denotes trace, the superscript T denotes transposition, and R+ := (0,∞).
• For a function f : Rn → Rm such that each of its first-order partial derivatives (with respect

to x) exist on Rn, ∂f∂x ∈ Rm×n denotes the Jacobian matrix of f .
• For a scalar-valued function g : Rn → R, ∇hg denotes gradient of g with respect to the

variable h ∈ Rn and Hhg denotes Hessian of g with respect to h.
• The notation a.s. means P-almost surely and E is expectation with respect to P, where P is

an underlying probability measure.
• For a matrix M , M sym = (M +MT )/2 denote its symmetric part, λmin(M) and λmax(M)

denote its minimum and maximum eigenvalue respectively, and σmin(M) and σmax(M)
denote its minimum and maximum singular value respectively.

• For a vector v = (v1, . . . , vd), diag(v) denotes the diagonal matrix with the ith diagonal
entry equal vi.

• 1 denotes a vector with all entries equal to one.
• eij denotes the Kronecker delta.
• C(I; J) denotes the space of continuous J-valued functions defined on I .
• C2,1(D × I; J) denotes the space of all J-valued functions V (x, t) defined on D × I which

are continuously twice differentiable in x ∈ D and once differentiable in t ∈ I .

Next, we recall the RNN models considered in the main paper.

Continuous-Time NRNNs. For a terminal time T > 0 and an input signal x = (xt)t∈[0,T ] ∈
C([0, T ];Rdx), the output yt ∈ Rdy , for t ∈ [0, T ], is a linear map of the hidden states ht ∈ Rdh
satisfying the Itô stochastic differential equation (SDE):

dht = f(ht, xt)dt+ σ(ht, xt)dBt, yt = V ht, (23)

where V ∈ Rdy×dh , f : Rdh × Rdx → Rdh , σ : Rdh × Rdx → Rdh×r and (Bt)t≥0 is an
r-dimensional Wiener process.

In particular, as an example and for empirical experiments, we focus on the choice of drift function:

f(h, x) = Ah+ a(Wh+ Ux+ b), (24)
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where a : R → R is a Lipschitz continuous scalar activation function (such as tanh) extended to
act on vectors pointwise, A,W ∈ Rdh×dh , U ∈ Rdh×dx and b ∈ Rdh , and the choice of diffusion
coefficient:

σ(h, x) = ε(σ1I + σ2diag(f(h, x))), (25)
where the noise level ε > 0 is small, and σ1 ≥ 0 and σ2 ≥ 0 are tunable parameters describing the
relative strength of additive noise and a multiplicative noise respectively.

We consider the following NRNN models by discretizing the SDE (23), as discussed in detail in the
main paper.

Discrete-Time NRNNs. Let 0 := t0 < t1 < · · · < tM := T be a partition of the interval [0, T ].
Denote δm := tm+1 − tm for each m = 0, 1, . . . ,M − 1, and δ := (δm). The Euler-Mayurama
(E-M) scheme provides a family (parametrized by δ) of approximations to the solution of the SDE in
(23):

hδm+1 = hδm + f(hδm, x̂m)δm + σ(hδm, x̂m)
√
δmξm, (26)

for m = 0, 1, . . . ,M − 1, where (x̂m)m=0,...,M−1 is a given sequential data, the ξm ∼ N (0, I) are
independent r-dimensional standard normal random vectors, and hδ0 = h0. Eq. (26) describes the
update equation of our NRNN models, an example of which is when f and σ are taken to be (24) and
(25) respectively (see also the experiments in the main paper). In the special case when ε := 0 in this
example, we recover the Lipschitz RNN of [6].

It is worth mentioning that while higher-order integrators are also possible to consider, the presence
of Itô white noise poses a significant challenge over the standard ODE case. Generally speaking,
implementations of higher-order schemes require additional computational effort which may
outweigh the benefit of using them. For instance, in implicit E-M schemes the zero of a nonlinear
equation has to be determined in each time step [12]. In Milstein and stochastic Runge-Kutta
schemes, there is an extra computational cost in simulating the Lévy area [21]. Similar challenges
arise for other multistep schemes and higher-order schemes.

Organizational Details. This SM is organized as follows.

• In Section B, we provide results that guarantee existence and uniqueness of solutions to the
SDE defining our continuous-time NRNNs.

• In Section C, we provide results that guarantee stability and convergence of our discrete-time
NRNNs. These results are in fact very general and may be of independent interest.

• In Section D, we provide results on implicit regularization due to noise injection in both
continuous-time and discrete-time NRNNs, in particular the proof of Theorem 1 in the main
paper.

• In Section E, we provide some background and results to study classification margin and
generalization bound of the corresponding discrete-time deterministic RNNs, in particular
the proof of Theorem 2 in the main paper.

• In Section F, we discuss stability of continuous-time NRNNs and the noise-induced stabi-
lization phenomenon, and provide conditions that guarantee almost sure exponential stability
of the NRNNs, in particular the proof of Theorem 3 in the main paper.

• In Section G, we provide details on the empirical results in the main paper and additional
results.

B Existence and Uniqueness of Solutions

Essential to any discussion concerning SDEs is the existence and uniqueness of solutions — in this
case, we are interested in strong solutions [14].

In the following, we fix a complete filtered probability space (Ω,F , (Ft)t≥0,P) which satisfies the
usual conditions [14] and on which there is defined an r-dimensional Wiener process (Bt)t≥0. We
also fix a T > 0 and denote f(ht, t) := f(ht, xt), σ(ht, t) := σ(ht, xt) to emphasize the explicit
dependence of the functions on time t through the input xt.

We start with the following assumptions on the SDE (23).
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Assumption B. (a) (Global Lipschitz condition) The coefficients f and σ are L-Lipschitz, i.e., there
exists a constant L > 0 such that

‖f(h, t)− f(h′, t)‖+ ‖σ(h, t)− σ(h′, t)‖F ≤ L‖h− h′‖ (27)

for all h, h′ ∈ Rdh and t ∈ [0, T ].
(b) (Linear growth condition) f and σ satisfy the following linear growth condition, i.e., there exists
a constant K > 0 such that

‖f(h, t)‖2 + ‖σ(h, t)‖2F ≤ K(1 + ‖h‖2) (28)

for all h ∈ Rdh and t ∈ [0, T ].

Under Assumption B, it is a standard result from stochastic analysis that the SDE (23) has a unique
solution (which is a continuous and adapted process (ht)t∈[0,T ] satisfying the integral equation
ht = h0 +

∫ t
0
f(hs, s)ds +

∫ t
0
σ(hs, s)dBs) for every initial value h0 ∈ Rdh , for t ∈ [0, T ] (see,

for instance, Theorem 3.1 in Section 2.3 of [23]). The uniqueness is in the sense that for any other
solution h′t satisfying the SDE,

P[ht = h′t for all t ∈ [0, T ]] = 1. (29)

For our purpose, the following conditions suffice to satisfy Assumption B.

Assumption C. The function a : R→ R is an activation function (i.e., a non-constant and Lipschitz
continuous function), and σ is Lσ-Lipschitz for some Lσ > 0.

Lemma 1. Consider the SDE (23) defining our CT-NRNN. Then, under Assumption C, Assumption
B is satisfied.

Proof. Note that f(h, t) = Ah + a(Wh + Uxt + b), where a is an activation function. For any
t ∈ [0, T ],

‖f(h, t)− f(h′, t)‖ ≤ ‖A(h− h′)‖+ ‖a(Wh+ Uxt + b)− a(Wh′ + Uxt + b)‖ (30)

≤ ‖A‖‖h− h′‖+ La‖W (h− h′)‖ (31)

≤ (‖A‖+ La‖W‖)‖h− h′‖, (32)

for all h, h′ ∈ Rdh , where La > 0 is the Lipschitz constant of the (non-constant) activation function
a. Therefore, the condition (a) in Assumption B is satisfied since by our assumption σ is Lσ-Lipschitz
for some constant Lσ > 0. In this case one can take L = max(‖A‖+ La‖W‖, Lσ) in Eq. (27).

Since f and σ are L-Lipschitz, they satisfy the linear growth condition (b) in Assumption B. Indeed,
if f is L-Lipschitz, then for t ∈ [0, T ],

‖f(h, t)‖ = ‖f(h, t)− f(0, t) + f(0, t)‖ ≤ L‖h‖+ ‖f(0, t)‖ ≤ L‖h‖+ Cf , (33)

for some constant Cf ∈ (0,∞), where we have used the fact that f(0, t) = a(Uxt + b) is bounded
for t ∈ [0, T ] (since continuous functions on compact sets are bounded). So,

‖f(h, t)‖2 ≤ (L‖h‖+ Cf )2 ≤ L2‖h‖2 + 2LCf‖h‖+ C2
f . (34)

For ‖h‖ ≥ 1, we have:

‖f(h, t)‖2 ≤ (L2 + 2LCf )‖h‖2 + C2
f ≤ (L2 + 2LCf + C2

f )(1 + ‖h‖2). (35)

For ‖h‖ < 1, we have:

‖f(h, t)‖2 ≤ (L2 +2LCf )‖h‖+C2
f ≤ (L2 +2LCf )+C2

f ≤ (L2 +2LCf +C2
f )(1+‖h‖2). (36)

Choosing K = L2 + 2LCf + C2
f gives us the linear growth condition for f .

Similarly, one can show that σ satisfies the linear growth condition. The proof is done.

Throughout the paper, we work with SDEs satisfying Assumption C. The following additional
assumption on the SDEs will be needed and invoked.
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Assumption D. For t ∈ [0, T ], the partial derivatives of the coefficients f i(h, t), σij(h, t) with
respect to h up to order three (inclusive) exist. Moreover, the coefficients f i(h, t), σij(h, t) and all
these partial derivatives are:

(i) bounded and Borel measurable in t, for fixed h ∈ Rdh ;

(ii) Lipschitz continuous in h, for fixed t ∈ [0, T ].

In particular, Assumption D implies that these partial derivatives (with respect to h) of f and σ satisfy
(a)-(b) in Assumption B. Assumption D holds for SDEs with commonly used activation functions
such as hyperbolic tangent. We remark that Assumption C-D may be weakened in various directions
(for instance, to locally Lipschitz coefficients) but for the purpose of this paper we need not go beyond
these assumptions.

C Stability and Convergence of the Euler-Maruyama Schemes

We provide stability and strong convergence results for the explicit Euler-Mayurama (E-M) approx-
imations of the SDE (23), which is time-inhomogeneous due to the dependence of the drift and
possibly diffusion coefficient on a time-varying input, here. Intuitively, strong convergence results
ensure that the approximated path follows the continuous path accurately, in contrast to weak conver-
gence results which can only guarantee this at the level of probability distribution. The latest version
of strong convergence results for time-homogeneous SDEs can be found in [7, 8]. The results for
our time-inhomogeneous SDEs can be obtained by adapting the proof in [7] without much difficulty.
Since we cannot find them in the literature, we provide them in this section.

First, we recall the discretization scheme. Let 0 := t0 < t1 < · · · < tM := T and tm+1 = tm + δm,
for m = 0, 1, . . . ,M − 1 and some time step δm > 0. Note that we work at full generality here since
the step sizes δm are not necessarily uniform and may even depend on the numerical solution, i.e.,
δm = δ(hδm) (see Example 1). The general results will be of independent interest, in particular for
further explorations in designing other variants of NRNNs.

For m = 0, 1, . . . ,M − 1, consider

hδm+1 = hδm + f(hδm, x̂m)δm + σ(hδm, x̂m)∆Bm, (37)

where ∆Bm := Btm+1 −Btm , (x̂m)m=0,1,...,M−1 is a given input sequential data, and hδ0 = h0.

Let t = max{tm : tm ≤ t}, mt = max{m : tm ≤ t} for the nearest time point before time t,
and its index. Denote the piecewise constant interpolant process h̄t = hδt . It is convenient to use
continuous-time approximations, so we consider the continuous interpolant that satisfies:

hδt = hδt + f(hδt , xt)(t− t) + σ(hδt , xt)(Bt −Bt), (38)

so that hδt is the solution of the SDE:

dhδt = f(hδt , xt)dt+ σ(hδt , xt)dBt = f(h̄t, xt)dt+ σ(h̄t, xt)dBt. (39)

We make the following assumptions about the time step.

Assumption E. The (possibly adaptive) time step function δ : Rdh → R+ is continuous and strictly
positive, and there exist constants α, β > 0 such that for all h ∈ Rdh , δ satisfies

〈h, f(h, t)〉+
1

2
δ(h)‖f(h, t)‖2 ≤ α‖h‖2 + β (40)

for every t ∈ [0, T ].

Note that if another time step function δε(h) is smaller than δ(h), then δε(h) also satisfies Assumption
E.

A simple adaptation of the proof of Theorem 2.1.1 in [7] to our case of time-inhomogeneous SDE
gives the following result.

4



Proposition 1 (Finite-time stability). Under Assumption B and Assumption E, T is a.s. attainable
(i.e., for ω ∈ Ω, P[∃N(ω) <∞ s.t. tN(ω) ≥ T ] = 1) and for all p > 0 there exists a constant C > 0
(depending on only p and T ) such that

E

[
sup
t∈[0,T ]

‖hδt‖p
]
≤ C. (41)

This is the discrete-time analogue of the result that E
[
supt∈[0,T ] ‖ht‖p

]
<∞ for all p > 0, which

can be proven by simply adapting the proof of Lemma 2.1.1. in [7].

In the case where the time step is adaptive, we take the following lower bound on the time step to
bound the expected number of time steps (how quickly δ(h)→ 0 as ‖h‖ → 0).
Assumption F. There exist constants a, b, q > 0 such that the adaptive time step function satisfies:

δ(h) ≥ 1

a‖h‖q + b
. (42)

Next, we provide strong convergence result for the numerical approximation with the time step δ.
When the time step δ is adaptive, one needs to rescale the time step function by a small scalar-valued
magnitude ε > 0 and then consider the limit as ε → 0. Following [7], we make the following
assumption.
Assumption G. The rescaled time step function δε satisfies

εmin(T, δ(h)) ≤ δε(h) ≤ min(εT, δ(h)), (43)

where δ satisfies Assumption E-F.

Under this additional assumption, we have the following convergence result, which can be proven
by adapting the proof of Theorem 2.1.2 in [7] to our time-inhomogeneous SDE case. The proof is
based on the argument used for the uniform time step analysis (see Theorem 2.2 in [11]), taking into
account the adaptive nature of the time step appropriately.
Theorem 4 (Strong convergence). Let the SDE (23) satisfy Assumption B and the time step function
satisfy Assumption G. Then, for all p > 0,

lim
ε→0

E

[
sup
t∈[0,T ]

‖hδ
ε

t − ht‖p
]

= 0, (44)

where hδt is the continuous interpolant satisfying (38) and ht satisfies the SDE (23).

In particular, the non-adaptive time stepping scheme satisfies the above assumptions. Therefore,
stability and strong convergence of the schemes are guaranteed by the above results.

Under stronger assumptions on the drift f we can obtain the order of strong convergence for the
numerical schemes; see Theorem 2.1.3 in [7] for the case of time-homogeneous SDEs. This result
can be adapted to our case to obtain order- 1

2 strong convergence, which is also obtained in the special
case when the step sizes are uniform (see Theorem 10.2.2 in [16]).
Theorem 5 (Strong convergence rate). Assume that f satisfies the following one-sided Lipschitz
condition, i.e., there exists a constant α > 0 such that for all h, h′ ∈ Rdh ,

〈h− h′, f(h, t)− f(h′, t)〉 ≤ α‖h− h′‖2 (45)

for all t ∈ [0, T ], and the following locally polynomial growth Lipschitz condition, i.e., there exists
γ, µ, q > 0 such that for all h, h′ ∈ Rdh ,

‖f(h, t)− f(h′, t)‖ ≤ (γ(‖h‖q + ‖h′‖q) + µ)‖h− h′‖, (46)

for all t ∈ [0, T ]. Moreover, assume that σ is globally Lipschitz and the time step function satisfies
Assumption G. Then, for all p > 0, there exists a constant C > 0 such that

E

[
sup
t∈[0,T ]

‖hδ
ε

t − ht‖p
]
≤ Cεp/2. (47)
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Lastly, it is worth mentioning the following adaptive scheme, which may be a useful option when
designing NRNNs.
Example 1 (Adaptive E-M). Under the same setup as the classical E-M setting, we may also
introduce an adaptive step size scheme through a sequence of random vectors dm. In this case,

hδm+1 = hδm + dm � f(hδm, x̂m)∆tm + σ(hδm, x̂m)(∆tm)1/2ξm, (48)

where � denotes the pointwise (Hadamard) product, and each dn may be dependent on hδi for
i ≤ m. Provided that dm → (1, . . . , 1) uniformly almost surely as ∆t → 0, one could also obtain
the same convergence as the classical E-M case. The adaptive setting allows for potentially better
approximations by shrinking step sizes in places where the solution changes rapidly. An intuitive
explanation for the instability of the standard E-M approximation of SDEs is that there is always a
very small probability of a large Brownian increment which causes the approximation to produce a
solution with undesirable growth. Using an adaptive time step eliminates this problem. Moreover,
this scheme includes, in appropriate sense, the stochastic depth in [20] (see page 9 there) and the
dropout in [19] as special cases upon choosing an appropriate dm and σ.

In particular, one can consider the following drift-tamed E-M scheme, where all components, dim, of
the elements of the sequence are generated as a function of hδm, i.e.,

dm =
1

max {1, c1‖hδm‖+ c2}
1, (49)

for some c1, c2 > 0. In this way, the drift term is “tamed” by a solution-dependent multiplicative
factor no larger than one, which prevents the hidden state in the next time step from becoming too
large. This adaptive scheme is related to the one introduced in [13] to provide an explicit numerical
method that would display strong convergence in circumstances where the standard E-M method
does not. Under certain conditions strong convergence of this scheme can be proven (even for SDEs
with superlinearly growing drift coefficients). Other adaptive schemes include the increment-tamed
scheme of [12] and many others.

D Implicit Regularization in NRNNs

As discussed in the main paper, although the learning is carried out in discrete time, it is worth
studying the continuous-time setting. The results for the continuous-time case may provide alternative
perspectives and, more importantly, will be useful as a reference for exploring other discretization
schemes for the CT-NRNNs. In Subsection D.1, we study implicit regularization for the continuous-
time NRNNs. In Subsection D.2, we study implicit regularization for discrete-time NRNNs and
comment on the difference between the continuous-time and discrete-time case.

We remark that the approach presented here is standard in showing implicit regularization. The
essence of the approach is to view NRNN as a training scheme for the deterministic RNN. Also, note
that had one attempted to conduct an analysis based on NRNN directly, the resulting bound would be
stochastic due to the presence of the diffusion term and it is not clear how this bound helps explaining
implicit regularization.

D.1 Continuous-Time Setting

Main Result and Discussions. For the sake of brevity, we denote ft(·) := f(·, xt) and σt(·) :=
σ(·, xt) for t ∈ [0, T ] in the following.

To begin, consider the process (h̄t)t∈[0,T ] satisfying the following initial value problem (IVP):

dh̄t = ft(h̄t)dt, h̄0 = h0. (50)

Let Ψ denote the unique fundamental matrix satisfying the following properties: for 0 ≤ s ≤ u ≤
t ≤ T ,

(a)

∂Ψ(t, s)

∂t
=
∂ft
∂h̄

(h̄t)Ψ(t, s);
∂Ψ(t, s)

∂s
= −Ψ(t, s)

∂ft
∂h̄

(h̄t); (51)
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(b) Ψ(t, s) = Ψ(t, u)Ψ(u, s);
(c) Ψ(t, s) = Ψ−1(s, t);
(d) Ψ(s, s) = I .

Also, let Σ(t, s) := Ψ(t, s)σs(h̄s) for 0 ≤ s ≤ t ≤ T .

The following result links the expected loss function used for training CT-NRNNs to that for training
deterministic CT-RNNs when the noise amplitude is small.
Theorem 6 (Explicit regularization induced by noise injection for CT-NRNNs). Under Assumption
A in the main paper,

E`(hT ) = `(h̄T ) +
ε2

2
[Q(h̄) +R(h̄)] +O(ε3), (52)

as ε→ 0, where Q and R are given by

Q(h̄) = (∇l(h̄T ))T
∫ T

0

ds Ψ(T, s)

∫ s

0

du v(u) + (∇l(h̄T ))T
∫ T

0

ds w(s), (53)

R(h̄) =

∫ T

0

ds tr(Σ(T, s)Σ(T, s)>∇2`(h̄T )), (54)

with v(u) a vector with the pth component (p = 1, 2, . . . , dh):

vp(u) = tr(Σ(s, u)ΣT (s, u)∇2[fs]
p(h̄s)), (55)

and w(s) a vector with the qth component (q = 1, 2, . . . , dh):

wq(s) =

r∑
k=1

dh∑
j,l=1

Ψqj
k,l(T, s)∂lσ

jk
s (h̄s)σ

lk
s (h̄s). (56)

Therefore, to study the difference between the CT-NRNNs and their deterministic version, it remains
to investigate the role of Q and R in Theorem 6. If the Hessian is positive semi-definite, then R(h̄)
is also positive semi-definite and thus a viable regularizer. On the other hand, Q(h̄) need not be
non-negative. However, by assuming that ∇2f and ∇σij are small (that is, f is approximately
linear and σ relatively independent of h̄), then Q can be perceived negligible and we may focus
predominantly on R. An argument of this kind was used in [4] in the context of Gauss-Newton
Hessian approximations. In particular, Q = 0 for linear NRNNs with additive noise. Therefore,
Theorem 6 essentially tells us that injecting noise to deterministic RNN is approximately equivalent to
considering a regularized objective functional. Moreover, the explicit regularizer is solely determined
by the flow generated by the Jacobian ∂ft

∂h̄
(h̄t), the diffusion coefficient σt and the Hessian of the

loss function, all evaluated along the dynamics of the deterministic RNN.

Under these assumptions, ignoring higher-order terms and bounding the Frobenius inner product in
(54), we can interpret training with CT-NRNN as an approximation of the following optimal control
problem [29] with the running cost C(t) := 1

2 tr(σt(h̄t)
TΨ(T, t)T∇2`(h̄t)Ψ(T, t)σt(h̄t)):

minE(x,y)∼µ

[
`(h̄T ) + ε2

∫ T

0

C(t)dt

]
(57)

s.t. dh̄t = ft(h̄t)dt, t ∈ [0, T ], h̄0 = h0, (58)

where (x := (xt)t∈[0,T ], y) denotes a training example drawn from the distribution µ and the
minimization is with respect to the parameters (controls) in the corresponding deterministic RNN.
On the other hand, we can interpret training with the deterministic RNN as the above optimal control
problem with zero running cost or regularization. Note that if the Hessian matrix is symmetric positive
semi-definite, then C(t) is a quadratic form with the associated metric tensor MT

t Mt := ∇2`(h̄t)
and

C(t) =
1

2
〈Ψ(T, t)σt,Ψ(T, t)σt〉Mt

=
1

2
‖MtΨ(T, t)σt‖2F ≤

1

2
‖σt‖2F ‖Mt‖2F ‖Ψ(T, t)‖2F . (59)

Overall, we can see that the use of NRNNs as a regularization mechanism reduces the fundamental
matrices Ψ(T, s) according to the magnitude of the elements of σt.
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Proof of Theorem 6. Next, we prove Theorem 6. We will need some auxiliary results before doing
so.

For a small perturbation parameter ε > 0, the hidden states now satisfy the SDE

dht = ft(ht)dt+ εσt(ht)dBt,

where we have used the shorthand ft(·) = f(·, xt) and σt(·) = σ(·, xt). To investigate the effect of
the perturbation, consider the following hierarchy of differential equations:

dh
(0)
t = ft(h

(0)
t )dt, (60)

dh
(1)
t =

∂ft
∂h

(h
(0)
t )h

(1)
t dt+ σt(h

(0)
t )dBt, (61)

dh
(2)
t =

∂ft
∂h

(h
(0)
t )h

(2)
t dt+ Φ

(1)
t (h

(0)
t , h

(1)
t )dt+ Φ

(2)
t (h

(0)
t , h

(1)
t )dBt, (62)

with h(0)
0 = h0, h(1)

0 = 0, and h(2)
0 = 0, and where

Φ
(1)
t (h0, h1) =

1

2

∑
i,j

∂2ft
∂hi∂hj

(h0)hi1h
j
1 (63)

Φ
(2)
t (h0, h1) =

∑
i

∂σt
∂hi

(h0)hi1. (64)

In the sequel, we will suppose Assumption A in the main paper (which is equivalent to Assumption B
and Assumption D) holds. Under this assumption, each of these initial value problems have a unique
solution for t ∈ [0, T ]. The processes h(0)

t , h(1)
t and h(2)

t denote the zeroth-, first-, and second-order
terms in an expansion of ht about ε = 0. This can be easily seen using Kunita’s theory of stochastic
flows. In particular, by Theorem 3.1 in [17], letting h(1)

ε,t = ∂ht
∂ε , we find that

dh
(1)
ε,t =

∂ft
∂h

(ht)h
(1)
ε,t dt+

(
σt(ht) + εΦ

(2)
t (ht, h

(1)
ε,t )
)

dBt,

and so we find that h(1)
0,t = h

(1)
t . Similarly, h(2)

ε,t = ∂2ht
∂ε2 =

∂h
(1)
ε,t

∂ε can be shown to satisfy

dh
(2)
ε,t =

∂ft
∂h

(ht)h
(2)
ε,t dt+ 2Φ

(1)
t (ht, h

(1)
ε,t )dt

+

(
2Φ

(2)
t (ht, h

(1)
ε,t ) + ε

∑
k

[h
(1)
ε,t ]k

∂

∂hk
Φ

(2)
t (ht, h

(1)
ε,t )

)
dBt.

This equation is obtained by applying Theorem 3.1 in [17] to find the first derivative of the system
(ht, h

(1)
ε,t ) with respect to ε and projecting to the second coordinate. Taking ε = 0, we find that

h
(2)
0,t = 2h

(2)
t . Therefore, informally, a pathwise second-order Taylor expansion about ε = 0 reveals

that ht = h
(0)
t + εh

(1)
t + ε2h

(2)
t + O(ε3). To formalize this statement, we will later bound the

third-order error term in Lemma 3.

While the equation for h(0)
t is not explicitly solvable, both h(1)

t and h(2)
t are. In particular, for

t ∈ [0, T ] (see Eq. (4.28) in [25]):

h
(1)
t =

∫ t

0

Ψ(t, s)σs(h
(0)
s )dBs =

∫ t

0

Σ(t, s)dBs, (65)

h
(2)
t =

∫ t

0

Ψ(t, s)Φ(1)
s (h(0)

s , h(1)
s )ds+

∫ t

0

Ψ(t, s)Φ(2)
s (h(0)

s , h(1)
s )dBs. (66)

The key result needed to prove Theorem 6 is contained in the following theorem. In the sequel, big O
notation is to be understood in the almost sure sense.
Theorem 7. For a scalar-valued loss function ` ∈ C2(Rdh), for t ∈ [0, T ],

`(ht) = `(h
(0)
t ) + ε∇`(h(0)

t ) · h(1)
t + ε2

(
∇`(h(0)

t ) · h(2)
t +

1

2
(h

(1)
t )>∇2`(h

(0)
t )(h

(1)
t )

)
+O(ε3),

as ε→ 0.
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We now prove Theorem 7. The proof relies on two lemmas. The first bounds the solutions h(i) over
[0, T ].

Lemma 2. For any p > 0, sups∈[0,T ] ‖h
(0)
s ‖p <∞ and E sups∈[0,T ] ‖h

(i)
s ‖p <∞ for i = 1, 2.

Proof. For s ∈ [0, T ], h(0)
s = h0+

∫ s
0
fu(h

(0)
u )du, so recalling (x+y)2 ≤ 2x2+2y2 and ‖ft(h)‖2 ≤

K(1 + ‖h‖2),

‖h(0)
s ‖2 ≤ 2‖h0‖2 + 2

∫ s

0

‖fu(h(0)
u )‖2du

≤ 2

(
‖h0‖2 +K2s+K2

∫ s

0

‖h(0)
u ‖2du

)
.

Therefore, by Gronwall’s inequality,

‖h(0)
s ‖2 ≤ 2(‖h0‖2 +K2s)e2K2s

≤ 2(‖h0‖2 +K2T )e2K2T < +∞,

and so sups∈[0,T ] ‖h
(0)
s ‖ <∞. Similarly, for s ∈ [0, T ],

h(1)
s =

∫ s

0

∂fu
∂h

(h(0)
u )h(1)

u du+

∫ s

0

σu(h(0)
u )dBu.

Therefore, for p ≥ 2 (since (x+ y)p ≤ 2p−1(xp + yp) by Jensen’s inequality):

‖h(1)
s ‖p ≤ 2p−1

∫ s

0

∥∥∥∥∂fu∂h (h(0)
u )

∥∥∥∥p ‖h(1)
u ‖pdu+ 2p−1

∥∥∥∥∫ s

0

σu(h(0)
u )dBu

∥∥∥∥p .
Because the Itô integral is a continuous martingale, the Burkholder-Davis-Gundy inequality (see
Theorem 3.28 in [14]) implies that for positive constants Cp depending only on p (but not necessarily
the same in each appearance),

E sup
s∈[0,T ]

‖h(1)
s ‖p ≤ Cp

∫ s

0

E sup
s∈[0,u]

‖h(1)
s ‖pdu+ Cp

(∫ t

0

‖σu(h(0)
u )‖2du

)p/2
An application of Gronwall’s inequality yields

E sup
s∈[0,T ]

‖h(1)
s ‖p ≤ Cp

(∫ T

0

‖σu(h(0)
u )‖2du

)p/2
eCpT .

Therefore, E sups∈[0,T ] ‖h
(1)
s ‖p < ∞ for all p ≥ 2. The p ∈ (0, 2) case follows from Hölder’s

inequality. Repeating this same approach for h(2)
s completes the proof.

The second of our two critical lemmas provides a pathwise expansion of ht about ε in the vein of [3].
Doing so characterizes the response of the NRNN hidden states to small noise perturbations at the
sample path level. It can be seen as a strengthening of Theorem 2.2 in [9] for our time-inhomogeneous
SDEs.
Lemma 3. For a fixed ε0 > 0, and any 0 < ε ≤ ε0, with probability one,

ht = h
(0)
t + εh

(1)
t + ε2h

(2)
t + ε3Rε3(t),

where for any p > 0,
sup

ε∈(0,ε0)

E sup
t∈[0,T ]

‖Rε3(t)‖p <∞. (67)

Proof. It suffices to show that supε∈(0,ε0) E supt∈[0,T ] ‖Rε3(t)‖p < ∞ for p ≥ 2 — the p ∈ (0, 2)
case follows from Hölder’s inequality. In the sequel, we shall let K denote a finite number (not neces-
sarily the same in each appearance) depending only on f, σ, T, ε0, and p, and therefore independent
of t, ε.
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For ε > 0, let hεt = h
(0)
t + εh

(1)
t + ε2h

(2)
t and R3(t) = ε−3(ht−hεt), where ht, h

(1)
t , h

(2)
t are coupled

together through the same Brownian motion. Then

ε3R3(t) =

∫ t

0

(
fs(hs)− fs(h(0)

s )− ε∂fs
∂h

(h(0)
s )h(1)

s − ε2
∂fs
∂h

(h(0)
s )h(2)

s − ε2Φ(1)
s (h(0)

s , h(1)
s )

)
ds

+ ε

∫ t

0

σs(hs)− σs(h(0)
s )− εΦ(2)

s (h(0)
s , h(1)

s )dBs.

To simplify, we decompose ε3R3(t) into the sum of four random variables θi(t), i = 1, . . . , 4, given
by

θ1(t) =

∫ t

0

[fs(hs)− fs(hεs)] ds

θ2(t) =

∫ t

0

[
fs(h

ε
s)− fs(h(0)

s )− ε∂fs
∂h

(h(0)
s )h(1)

s − ε2
∂fs
∂h

(h(0)
s )h(2)

s − ε2Φ(1)
s (h(0)

s , h(1)
s )

]
ds

θ3(t) = ε

∫ t

0

[
σs(hs)− σs(h(0)

s + εh(1)
s )
]

dBs

θ4(t) = ε

∫ t

0

[
σs(h

(0)
s + εh(1)

s )− σs(h(0)
s )− εΦ(2)

s (h(0)
s , h(1)

s )
]

dBs.

Beginning with the more straightforward terms θ1(t), θ3(t), by Lipschitz continuity of f ,
‖fs(hs)− fs(hεs)‖ ≤ Lf ε3 ‖R3(s)‖ ,

and so

E sup
s∈[0,t]

‖θ1(s)‖p ≤ Kε3p
∫ t

0

E sup
s∈[0,u]

‖R3(s)‖ du.

In the same way, ‖σs(hs)− σs(h(0)
s + εh

(1)
s )‖ ≤ Lσε2‖h(2)

s + εR3(s)‖. Recall that (
∫ t

0
g(s)ds)p ≤

tp−1
∫ t

0
g(s)pds by Jensen’s inequality. Now, θ3(s) is a continuous martingale, and hence, the

Burkholder-Davis-Gundy inequality (see Theorem 3.28 in [14]) implies that for some constant
Cp > 0 depending only on p,

E sup
s∈[0,t]

‖θ3(s)‖p ≤ εpCp
(∫ t

0

E
∥∥∥σs(hs)− σs(h(0)

s + εh(1)
s )
∥∥∥2

ds

)p/2

≤ CpLpσε3p
(∫ t

0

E‖h(2)
s + εR3(s)‖2ds

)p/2
≤ CpLpσε3pT p/2−1

∫ t

0

E‖h(2)
s + εR3(s)‖pds

≤ CpLpσε3p2p−1T p/2−1

(∫ t

0

E‖h(2)
s ‖pds+ εp

∫ t

0

E‖R3(s)‖pds
)
.

From Lemma 2, it follows that

E sup
s∈[0,t]

‖θ3(s)‖p ≤ Kε3p
(

1 + εp
∫ t

0

E sup
s∈[0,u]

‖R3(s)‖pdu

)
.

Treating the θ2 term next, for each s ∈ [0, t], by Taylor’s theorem, there exists some εs ∈ (0, ε) such
that

fs(h
ε
s)− fs(h0)− ε∂fs

∂h
(h0)h1 = ε2

∂fs
∂h

(hεss )h2 + ε2Φ(1)
s (hεss , h1).

Therefore, by Lipschitz continuity of the derivatives of f ,

θ2(t) = ε2
∫ t

0

(
∂fs
∂h

(hεss )h2 + Φ(1)
s (hεss , h1)− ∂fs

∂h
(h0)h2 − Φ(1)

s (h0, h1)

)
ds

≤ Kε2
∫ t

0

‖hεss − h0‖ds

≤ Kε3
∫ t

0

‖h(1)
s ‖+ ε‖h(2)

s ‖ds.
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From Lemma 2, it follows that
E sup
s∈[0,T ]

‖θ2(s)‖p ≤ Kε3p.

Similarly, by Taylor’s theorem, there exists εs ∈ (0, ε) such that

σs(h
(0)
s + εh(1)

s )− σs(h(0)
s ) = εΦ(2)

s (h(0)
s + εsh

(1)
s , h(1)

s ),

and so for p ≥ 2, by the Burkholder-Davis-Gundy inequality and Lipschitz continuity of the
derivatives of σ,

E sup
s∈[0,t]

‖θ4(s)‖p ≤ Cpε2p
(∫ t

0

E
∥∥∥Φ(2)

s (h(0)
s + εsh

(1)
s , h(1)

s )− Φ(2)
s (h(0)

s , h(1)
s )
∥∥∥2

ds

)p/2

≤ KCpε3p
(∫ t

0

E‖h(1)
s ‖2ds

)p/2
≤ KCpT p/2ε3pE sup

s∈[0,T ]

‖h(1)
s ‖p ≤ Kε3p.

Combining estimates for θ1, θ2, θ3, θ4,

E sup
s∈[0,t]

‖R3(s)‖p

= 4p−1ε−3p

(
E sup
s∈[0,t]

‖θ1(s)‖p + E sup
s∈[0,t]

‖θ2(s)‖p + E sup
s∈[0,t]

‖θ3(s)‖p + E sup
s∈[0,T ]

‖θ4(s)‖p
)

≤ K

(
1 +

∫ t

0

E sup
s∈[0,u]

‖R3(s)‖p du

)
,

and so by Gronwall’s inequality, E sups∈[0,t] ‖R3(s)‖p ≤ KeKt. Since K is independent of t ≤ T
and ε ≤ ε0, it follows that

sup
ε∈(0,ε0)

E sup
s∈[0,t]

‖R3(s)‖p ≤ KeKt < +∞,

and the result follows.

We remark that perturbative techniques such as the one used to obtain Theorem 3 are standard in the
theory of stochastic flows.

Theorem 7 now follows in a straightforward fashion from Lemma 3 by taking a second-order Taylor
expansion of `(h(0)

t + εh
(1)
t + ε2h

(2)
t +O(ε3)) about ε = 0.

We are now in a position to prove Theorem 6 using Theorem 7.

Proof of Theorem 6. From Theorem 7, we have, upon taking expectation:

E`(ht) = `(h
(0)
t ) + ε(∇h(0)`)TEh(1)

t + ε2
(

(∇h(0)`)TEh(2)
t +

1

2
E(h

(1)
t )T (Hh(0)`)h

(1)
t

)
+O(ε3),

(68)
for t ∈ [0, T ], as ε→ 0, where Hh(0) denotes Hessian operator and the h(i)

t satisfy Eq. (60)-(62).

Since ∇ft and its derivative are bounded and are thus Lipschitz continuous, by Picard’s theorem the
IVP has a unique solution. Moreover, it follows from our assumptions that the solution to the IVP is
square-integrable (i.e.,

∫ t
0
‖Ψ(t, s)‖2F ds <∞ for any t ∈ [0, T ]). Therefore, the solution h(1)

t to Eq.
(61) can be uniquely represented as the following Itô integral:

h
(1)
t =

∫ t

0

Ψ(t, s)σ(h(0)
s , s)dBs, (69)

where Ψ(t, s) is the (deterministic) fundamental matrix solving the IVP (51). We have Eh(1)
t = 0

and

E‖h(1)
t ‖2 =

∫ t

0

‖Ψ(t, s)σ(h(0)
s , s)‖2F ds <∞. (70)

11



Similar argument together with Assumption D shows that the solution h(2)
t to Eq. (62) admits the

following unique integral representation, with the ith component:

h
(2)i
t =

1

2

∫ t

0

Ψij(t, s)[h(1)
s ]l

∂2bj

∂[h
(0)
s ]l∂[h

(0)
s ]k

[h(1)
s ]kds+

∫ t

0

Ψij(t, s)
∂σjk

∂[h
(0)
s ]l

[h(1)
s ]ldBks , (71)

where the last integral above is a uniquely defined Itô integral.

Plugging Eq. (69) into the above expression and then taking expectation, we have:

Eh(2)i
t =

1

2
E
∫ t

0

dsΨij(t, s)
∂2bj

∂[h
(0)
s ]l∂[h

(0)
s ]k

∫ s

0

dBl2u1

∫ s

0

dBk2u2
Ψll1(s, u1)σl1l2σk1k2Ψkk1(s, u2)

+
1

2
E
∫ t

0

dBksΨij(t, s)
∂σjk

∂[h
(0)
s ]l

∫ t

0

dBl2u Ψll1(s, u)σl1l2(h(0)
u , u), (72)

where we have performed change of variable to arrive at the last double integral above.

Using the semigroup property of Ψ, we have Ψ(t, s) = Ψ(t, 0)Ψ−1(s, 0) for any s ≤ t (and so
Ψij(t, s) = Ψij1(t, 0)(Ψ−1)j1j(s, 0) and Ψll1(s, u) = Ψll2(s, 0)(Ψ−1)l2l1(u, 0) etc.). Using this
property in (72) and then evaluating the resulting expression using properties of moments of stochastic
integrals (applying Eq. (5.7) and Proposition 4.16 in [10] – note that Itô isometry follows from Eq.
(5.7) there), we obtain (∇h(0)`)TEh(2)

t = Q(h(0)), where Q satisfies Eq. (53).

Similarly, plugging Eq. (69) into Eh(1)T
t (Hh(0)`)h

(1)
t , and then proceeding as above and applying

the cyclic property of trace, give 1
2E(h

(1)
t )T (Hh(0)`)h

(1)
t = R(h(0)), where R satisfies Eq. (54). The

proof is done.

D.2 Discrete-Time Setting: Proof of Theorem 1 in the Main Paper

The goal in this subsection is to prove Theorem 1 in the main paper, the discrete-time analogue of
Theorem 6. We recall the theorem in the following.
Theorem 8 (Explicit regularization induced by noise injection for discrete-time NRNNs – Theorem
1 in the main paper). Under Assumption A in the main paper,

E`(hδM ) = `(h̄δM ) +
ε2

2
[Q̂(h̄δ) + R̂(h̄δ)] +O(ε3), (73)

as ε→ 0, where the terms Q̂ and R̂ are given by

Q̂(h̄δ) = (∇l(h̄δM ))T
M∑
k=1

δk−1Φ̂M−1,k

M−1∑
m=1

δm−1vm, (74)

R̂(h̄δ) =

M∑
m=1

δm−1tr(σTm−1Φ̂TM−1,mHh̄δ l Φ̂M−1,mσm−1), (75)

with vm a vector with the pth component (p = 1, . . . , dh):

[vm]p = tr(σTm−1Φ̂TM−2,mHh̄δ [fM ]pΦ̂M−2,mσm−1).

Moreover,
|Q̂(h̄δ)| ≤ CQ∆2, |R̂(h̄δ)| ≤ CR∆, (76)

for CQ, CR > 0 independent of ∆.

To prove Theorem 8, the key idea is to first obtain a discretized version of the loss function in Theorem
7 by either discretizing the results in Theorem 7 or by proving directly from the discretized equations
(26). It then remains to compute the expectation of this loss as functional of the discrete-time process.
The first part is straightforward while the second part involves some tedious recursive computations.

Let 0 := t0 < t1 < · · · < tM := T be a partition of the interval [0, T ] and let δm = tm+1 − tm for
each m = 0, 1, . . . ,M − 1. For small parameter ε > 0, the E-M scheme is given by:

hδm+1 = hδm + f(hδm, x̂m)δm + εσ(hδm, x̂m)
√
δmξm, (77)
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where (x̂m)m=0,...,M−1 is a given sequential data, each ξm ∼ N (0, I) is an independent r-
dimensional standard normal random vector, and hδ0 = h0.

Consider the following hierarchy of recursive equations. For the sake of notation cleanliness, we
replace the superscript δ by hat when denoting the δ-dependent approximating solutions in the
following.

For m = 0, 1, . . . ,M − 1:

ĥ
(0)
m+1 = ĥ(0)

m + δmf(ĥ(0)
m , x̂m), ĥ

(0)
0 = h0, (78)

ĥ
(1)
m+1 = Ĵmĥ

(1)
m +

√
δmσ(ĥ(0)

m , x̂m)ξm, ĥ
(1)
0 = 0, (79)

ĥ
(2)
m+1 = Ĵmĥ

(2)
m +

√
δm + δmΨ1(ĥ(0)

m , ĥ(1)
m ) + δmΨ2(ĥ(0)

m , ĥ(1)
m )ξm, ĥ

(2)
0 = 0, (80)

where the

Ĵm = I + δmf
′(ĥ(0)

m , x̂m) (81)

are the state-to-state Jacobians and

Ψ1(h0, h1) =
1

2

∑
i,j

∂2fm
∂hi∂hj

(h0)hi1h
j
1, (82)

Ψ2(h0, h1) =
∑
i

∂σm
∂hi

(h0)hi1. (83)

Note that the above equations can also be obtained by E-M discretization of Eq. (60)-(61).

The following theorem is a discrete-time analogue of Theorem 7. Recall that the big O notation is to
be understood in the almost sure sense.

Theorem 9. Under the same assumption as before, for a scalar-valued loss function ` ∈ C2(Rdh),
for m = 0, 1, . . . ,M − 1, we have

`(ĥm+1) = `(ĥ(0)
m ) + ε∇`(ĥ(0)

m ) · ĥ(1)
m + ε2

(
∇`(ĥ(0)

m ) · ĥ(2)
m +

1

2
(ĥ(1)
m )>∇2`(ĥ(0)

m )(ĥ(1)
m )

)
+O(ε3), (84)

as ε→ 0, where the ĥ(i)
m , i = 0, 1, 2, satisfy Eq.(78)-(80).

Proof. The proof is analogous to the one for continuous-time case, working with the discrete-time
process (77) instead of continuous-time process.

We begin by recalling a remark from the main text.

Remark 1. Interestingly, Theorem 8 looks like discrete-time analogue of Theorem 6 for CT-RNN,
except that, unlike the term Q there, the term Q̂ for the discrete-time case has no explicit dependence
on the derivative (with respect to h) of the noise coefficient σ. Therefore, a direct discretization of
the result in Theorem 6 would not give us the correct explicit regularizer for discrete-time NRNNs.
This remark highlights the difference between learning in the practical discrete-time setting versus
learning in the idealized continuous-time setting with NRNNs. This also means that we need to work
out an independently crafted proof for the discrete-time case.

The proof of Theorem 8 involves some tedious, albeit technically straightforward, computations. The
key ingredients are the recursive relations (78)-(80) and the property of standard Gaussian random
vectors that

Eξlpξjq = epqelj , (85)

where the epq denote the Kronecker delta.

To organize our proof, we begin by introducing some notation and proving a lemma.

13



Notation. For m = 1, . . . ,M − 1, let us denote f ′m := f ′(ĥ
(0)
m , x̂m), σm := σ(ĥ

(0)
m , x̂m),

Hljf
i
m :=

∂2f i(ĥ
(0)
m , x̂m)

∂[ĥ
(0)
m ]l∂[ĥ

(0)
m ]j

, (86)

Dlσ
ij
m :=

∂σij(ĥ
(0)
m , x̂m)

∂[ĥ
(0)
m ]l

, (87)

and
Φ̂m,k := JmJm−1 · · · Jk, Φ̂k,k+1 = I, (88)

for k = 1, . . . ,m. For computational convenience, we are using Einstein’s summation notation for
repeated indices in the following.

Lemma 4. For m = 0, 1, . . . ,M , Eĥ(1)
m = 0 and

E[ĥ(1)
m ]l[ĥ(1)

m ]j = δm−1σ
ll1
m−1σ

jl1
m−1 +

m−1∑
k=1

δk−1Φ̂ll2m−1,kΦ̂jj2m−1,kσ
l2l3
k−1σ

j2l3
k−1. (89)

Proof. From Eq. (79), we have ĥ(1)
0 = 0, ĥ(1)

1 =
√
δ0σt0ξ0 and, upon iterating, for m = 1, . . . ,M −

1,

ĥ
(1)
m+1 =

√
δmσmξm +

m∑
k=1

√
δk−1Φ̂m,kσk−1ξk−1. (90)

The first equality in the lemma follows from taking expectation of Eq. (90) and using the fact that
the ξk are (mean zero) standard Gaussian random variables. The second equality in the lemma
follows from taking expectation of a product of components of the ĥ(1)

m+1 in Eq. (90) and applying
the property (85).

Proof of Theorem 8. Iterating Eq. (80), we obtain ĥ(2)
0 = 0, ĥ(2)

1 = δ0Ψ1(h0, 0) +
√
δ0Ψ2(h0, 0)ξ0

and, for m = 1, . . . ,M − 1,

ĥ
(2)
m+1 = δmΨ1(ĥ(0)

m , ĥ(1)
m ) +

√
δmΨ2(ĥ(0)

m , ĥ(1)
m ) +

m∑
k=1

δk−1Φ̂m,kΨ1(ĥ
(0)
k−1, ĥ

(1)
k−1)

+

m∑
k=1

√
δk−1Φ̂m,kΨ1(ĥ

(0)
k−1, ĥ

(1)
k−1)ξk−1. (91)

Substituting in the formulae (82)-(83) in the right hand side above and then using Eq. (90):

[ĥ
(2)
m+1]i =

δm
2

[ĥ(1)
m ]lHljf

i
m[ĥ(1)

m ]j +

m∑
k=1

δk−1

2
Φ̂ipm,k[ĥ

(1)
k−1]lHljf

p
k−1[ĥ

(1)
k−1]j

+
√
δmDlσ

ij
m[ĥ(1)

m ]lξjm +

m∑
k=1

√
δk−1Φ̂iqm,kDlσ

qr
k−1[ĥ

(1)
k−1]lξrk−1 (92)

=
δm
2

[ĥ(1)
m ]lHljf

i
m[ĥ(1)

m ]j +

m∑
k=1

δk−1

2
Φ̂ipm,k[ĥ

(1)
k−1]lHljf

p
k−1[ĥ

(1)
k−1]j

+
√
δmDlσ

ij
mξ

j
m

(√
δm−1σ

ll1
m−1ξ

l1
m−1 +

m−1∑
k=1

√
δk−1Φ̂ll1m−1,kσ

l1l2
k−1ξ

l2
k−1

)
+
√
δ1Φ̂iqm,2Dlσ

qr
1 ξ

r
1(
√
δ0σ

ll1
0 ξl10 ) (93)

+

m∑
k=3

√
δk−1Φ̂iqm,kDlσ

qr
k−1ξ

r
k−1

(√
δk−2σ

lp1
k−2ξ

p1
k−2 +

k−2∑
k′=1

√
δk′−1Φ̂lp1k−2,k′σ

p1p2
k′−1ξ

p2
k′−1

)
,

where we have made use of the fact that ĥ(1)
0 = 0 and ĥ(1)

1 =
√
δ0σ0ξ0 in the last two lines above to

rewrite the summation (so that the summation over k in the last line above starts at k = 3).
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Therefore, using the above result, Lemma 4 and Eq. (85), we compute the expectation of [ĥ
(2)
m+1]i:

E[ĥ
(2)
m+1]i =

1

2

m+1∑
k=1

δk−1Φ̂ipm,kHljf
p
m

m∑
k=1

δk−1Φ̂ll2m−1,kσ
l2l3
k−1σ

j2l3
k−1Φ̂jj2m−1,k. (94)

Moreover, using Lemma 4, we obtain, for m = 1, 2, . . . ,M − 1,

E[ĥ
(1)
m+1]l[Hĥ(0) l]

lj [ĥ
(1)
m+1]j =

m+1∑
k=1

δk−1σ
l2l3
k−1Φ̂ll2m,k[Hĥ(0) l]

ljΦ̂jj2m,kσ
j2l3
k−1. (95)

The first statement of the theorem then follows from Theorem 9 and Eq. (94)-(95) (withm := M−1):

Q̂(h̄δ) = ∂il(h̄
δ
M )

M∑
k=1

δk−1Φ̂ipM−1,k

M−1∑
m=1

δm−1∂lj [fM ]pΦ̂ll2M−2,mσ
l2l3
m−1σ

j2l3
m−1Φ̂jj2M−2,m, (96)

R̂(h̄δ) =

M∑
m=1

δm−1σ
l2l3
m−1Φ̂ll2M−1,m[Hh̄δ l]

ljΦ̂jj2M−1,mσ
j2l3
m−1. (97)

The last statement of the theorem follows from taking straightforward bounds.

Remark 2. We remark that the computed ĥ(2)
m (a key step in the above proof), like that for h(2)

t in
the continuous-time case, has explicit dependence on the noise coefficient. It is only upon taking the
expectation (see Eq. (94)) that the dependence on the noise coefficient vanishes (whereas Eh(2)

t 6= 0
retains its dependence on the noise coefficient). This fully reconciles with Remark 1.

Remark 3. Moreover, one can compute the variance of l(ĥM ) to be ε2(∇l(ĥ(0)
M ))TC∇l(ĥ(0)

M ) +
O(ε3), as ε→ 0, where C is a PSD matrix whose (l, j)-entry is given by Eq. (89) with m := M . So
we see that the spread of l(ĥM ) about its average is O(ε2) as ε→ 0.

E Bound on Classification Margin and a Generalization Bound for
Deterministic RNNs: Proof of Theorem 2 in the Main Paper

We recall the setting considered in the main paper before providing proof to the results presented
there.

Let SN denote a set of training samples sn := (xn, yn) for n = 1, . . . , N , where each input
sequence xn = (xn,0, xn,1, . . . , xn,M−1) ∈ X ⊂ RdxM has a corresponding class label yn ∈
Y = {1, . . . , dy}. Following the statistical learning framework, these samples are assumed to be
independently drawn from an underlying probability distribution µ on the sample space S = X × Y .
An RNN-based classifier gδ(x) is constructed in the usual way by taking

gδ(x) = argmaxi=1,...,dyp
i(V h̄δM [x]), (98)

where pi(x) = ex
i

/
∑
j e
xj is the softmax function. Letting ` denoting the cross-entropy loss, such a

classifier is trained from SN by minimizing the empirical risk (training error)

RN (gδ) :=
1

N

N∑
n=1

`(gδ(xn), yn)

as a proxy for the true (population) risk (testing error)R(gδ) = E(x,y)∼µ`(g
δ(x), y) with (x, y) ∈ S .

The measure used to quantify the prediction quality is the generalization error (or estimation error),
which is the difference between the empirical risk of the classifier on the training set and the true risk:

GE(gδ) := |R(gδ)−RN (gδ)|. (99)
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The classifier is a function of the output of the deterministic RNN, which is an Euler discretization of
the ODE (1) in the main paper with step sizes δ = (δm). In particular, for the Lipschitz RNN,

Φ̂m,k = ĴmĴm−1 · · · Ĵk, (100)

where Ĵl = I + δl(A+DlW ), with Dij
l = a′([Wh̄δl + Ux̂l + b]i)eij .

In the following, we let conv(X ) denote the convex hull of X . We denote x̂0:m := (x̂0, . . . , x̂m)
so that x̂ = x̂0:M−1, and use the notation f [x] to indicate the dependence of the function f on the
vector x. Moreover, we will need the following two definitions to characterize a training sample
si = (xi, yi)

Working in the above setting, we now recall and prove the second main result in the main paper,
providing bounds for classification margin for the deterministic RNN classifiers gδ .
Theorem 10 (Classification margin bound for the deterministic RNN – Theorem 2 in the main paper).
Suppose that Assumption A in the main paper holds. Assume that the o(si) > 0 and

γ(si) :=
o(si)

C
∑M−1
m=0 δm supx̂∈conv(X ) ‖Φ̂M,m+1[x̂]‖2

> 0, (101)

where

C = ‖V ‖2
(

max
m=0,1,...,M−1

∥∥∥∥∂f(h̄δm, x̂m)

∂x̂m

∥∥∥∥
2

)
> 0

is a constant (in particular, C = ‖V ‖2 (maxm=0,...,M−1 ‖DmU‖2) for Lipschitz RNNs), the Φ̂m,k
are defined in (100) and the δm are the step sizes. Then, we have the following upper bound on the
classification margin for the training sample si:

γd(si) ≥ γ(si). (102)

Moreover, under additional assumptions one can obtain the following generalization bound, which
follows from Theorem 10.
Theorem 11 (A generalization bound for the deterministic RNN). Under the same setting as Theorem
10, if we further assume that X is a (subset of) k-dimensional manifold with k ≤ dxM , γ :=
minsi∈SN γ(si) > 0, and `(gδ(x), y) ≤ Lg for all s ∈ S, then for any δ′ > 0, with probability at
least 1− δ′,

GE(gδ) ≤ Lg

(
1

γk/2

√
dyCkM2k+1 log 2

N
+

√
2 log(1/δ′)

N

)
, (103)

where CM > 0 is a constant that measures complexity of X , N is the number of training examples
and dy is the number of label classes.

Remark 4. Generalization bounds involving classification margins (for RNNs in particular) are a
separate topic with a significant presence in the literature. We emphasize that the generalization
bound above is one of the many bounds that one can derive for RNNs. There exist much tighter
bounds (for various variants of RNNs under various assumptions and settings) which may be equally
applicable and lead to the same claimed conclusion, but are much more difficult to state (see, for
instance, Theorem E.1 in [28]). There are also other types of generalization bounds that are not
obtained in terms of classification margin in the literature. Although they are interesting in their
own, our focus here is on bounds that can be expressed in terms of classification margin. Therefore,
meaningful comparisons between these generalization bounds are not straightforward.

In order to prove Theorem 10 and Theorem 11, we place ourselves in the algorithmic robustness
framework of [30]. This framework provides bounds for the generalization error based on the
robustness of a learning algorithm that learns a classifier g by exploiting the structure of the training
set SN . Robustness is, roughly speaking, the desirable property for a learning algorithm that if a
testing sample is “similar" to a training sample, then the testing error is close to the training error
(i.e., the algorithm is insensitive to small perturbations in the training data).

To ensure that our exposition is self-contained, we recall important definitions and results from
[30, 27] to formalize the previous statement in the context of our deterministic RNNs in the following.

16



Definition 4. Let SN be a training set and S the sample space. A learning algorithm is (K, ε(SN ))-
robust if S can be partitioned into K disjoint sets denoted by Kk, k = 1, . . . ,K:

Kk ⊂ S, k = 1, . . . ,K, (104)

S = ∪Kk=1Kk, and Kk ∩ Kk′ = ∅,∀k 6= k′, (105)

such that for all si ∈ SN and all s ∈ S,

si = (xi, yi) ∈ Kk ∧ s = (x, y) ∈ Kk =⇒ |`(g(xi), yi)− `(g(x), y)| ≤ ε(SN ). (106)

The above definition says that a robust learning algorithm selects a classifier g for which the losses of
any s and si in the same partition Kk are close.

The following result from Theorem 1 in [30] will be critical to the proof of Theorem 10. It provides a
generalization bound for robust algorithms.
Theorem 12. If a learning algorithm is (K, ε(SN ))-robust and `(g(x), y) ≤M for all s = (x, y) ∈
S, for some constant M > 0, then for any δ > 0, with probability at least 1− δ,

GE(g) ≤ ε(SN ) +M

√
2K log(2) + 2 log(1/δ)

m
. (107)

Note that the above generalization bound is data-dependent, in contrast to bounds obtained via
approaches based on complexity or stability arguments that give bounds in terms of data agnostic
measures such as the Rademacher complexity or the VC dimension, which are found not sufficient
for explaining the good generalization properties of deep neural networks.

The number of partition K in the above can be bounded in terms of the covering number of the
sample space S, which gives a way to measure the complexity of sets. We recall the definition of
covering number in the following.
Definition 5 (Covering). Let A be a set. We say that A is ρ-covered by a set A′, with respect to the
(pseudo-)metric d, if for all a ∈ A, there exists a′ ∈ A′ with d(a, a′) ≤ ρ. We call the cardinality of
the smallest A′ that ρ-covers A covering number, denoted by N (S; d, ρ).

The covering number is the smallest number of (pseudo-)metric balls of radius ρ needed to cover
S and we denote it by N (S; d, ρ), where d denotes the (pseudo-)metric. The choice of metric d
determines how efficiently one may cover X . For example, the Euclidean metric d(x, x′) = ‖x−x′‖2
for x, x′ ∈ X . The covering number of many structured low-dimensional data models can be
bounded in terms of their intrinsic properties. Since in our case the space S = X × Y , we write
N (S; d, ρ) ≤ dy ·N (X ; d, ρ), where dy is the number of label classes. We take d to be the Euclidean
metric: d(x,x′) = ‖x− x′‖2 for x,x′ ∈ X , unless stated otherwise.
Lemma 5 (Example 27.1 from [26]). Assume that X ⊂ Rm lies in a k-dimensional subspace of Rm.
Let c = maxx∈X ‖x‖ and take d to be the Euclidean metric. Then N (X ; d, ρ) ≤ (2c

√
k/ρ)k.

In other words, a subset, X , of a k-dimensional manifold has the covering number (CM/ρ)k, where
CM > 0 is a constant. We remark that other complexity measures such as Rademacher complexity
can be bounded based on the covering number (see [26] for details).

The class of robust learning algorithms that is of interest to us is the large margin classifiers. We
define classification margin in the following.
Definition 6 (Classification margin). The classification margin of a training sample si = (xi, yi)
measured by a metric d is defined as the radius of the largest d-metric ball in X centered at xi that is
contained in the decision region associated with the class label yi, i.e., it is:

γd(si) = sup{a : d(xi,x) ≤ a =⇒ g(x) = yi ∀x}. (108)

Intuitively, a larger classification margin allows a classifier to associate a larger region centered
on a point xi in the input space to the same class. This makes the classifier less sensitive to input
perturbations and a noisy perturbation of xi is still likely to fall within this region, keeping the
classifier prediction. In this sense, the classifier becomes more robust.

The following result follows from Example 9 in [30].
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Proposition 2. If there exists a γ > 0 such that γd(si) > γ for all si ∈ SN , then the classifier g is
(dy · N (X ; d, γ/2), 0)-robust.

In our case the networks are trained by a loss (cross-entropy) that promotes separation of different
classes at the network output. The training aims at maximizing a certain notion of score of each
training sample.
Definition 7 (Score). For a training sample si = (xi, yi), we define its score as

o(si) = min
j 6=yi

√
2(eyi − ej)TSδ[xi] ≥ 0, (109)

where ei ∈ Rdy is the Kronecker delta vector with eii = 1 and eji = 0 for i 6= j, Sδ[xi] :=
p(V h̄δM [xi]) with h̄δM [xi] denoting the hidden state of the RNN, driven by the input sequence xi, at
terminal index M .

The RNN classifier gδ is defined as

gδ(x) = arg max
i∈{1,...,dy}

Si[x], (110)

and the decision boundary between class i and class j in the output space is given by the hyperplane
{z = p(V h̄δM ) : zi = zj}. A positive score implies that at the network output, classes are separated
by a margin that corresponds to the score. However, a large score may not imply a large classification
margin – recall that the classification margin is a function of the decision boundary in the input space,
whereas the training algorithm aims at optimizing the decision boundary at the network output in the
output space.

We need the following lemma relating a pair of vectors in the input space and the output space.
Lemma 6. For any x, x′ ∈ X ⊂ RdxM , and a given RNN output functional F [·],

‖F [x]−F [x′]‖2 ≤ sup
x̄∈conv(X )

‖J [x̄]‖2 · ‖x− x′‖2, (111)

where J [x] = dF [x]/dx is the input-output Jacobian of the RNN output functional.

Proof. Let t ∈ [0, 1] and define the function F (t) = F [x + t(x′ − x)]. Note that

dF (t)

dt
= J [x + t(x′ − x)](x′ − x). (112)

Therefore,

F [x′]−F [x] = F (1)− F (0) =

∫ 1

0

dF (t)

dt
dt =

(∫ 1

0

J [x + t(x′ − x)]dt

)
(x′ − x), (113)

where we have used the fundamental theorem of calculus.

Now,

‖F [x]−F [x′]‖2 ≤
∥∥∥∥∫ 1

0

J [x + t(x′ − x)]dt

∥∥∥∥
2

· ‖(x′ − x)‖2 (114)

≤ sup
x,x′∈X ,t∈[0,1]

‖J [x + t(x′ − x)]‖2 · ‖(x′ − x)‖2 (115)

≤ sup
x̄∈conv(X )

‖J [x̄]‖2 · ‖x− x′‖2, (116)

where we have used the fact that x + t(x′ − x) ∈ conv(X ) for all t ∈ [0, 1] to arrive at the last line.
The proof is done.

The classification margin depends on the score and the network’s expansion and contraction of
distances around the training points. These can be quantified by studying the network’s input-output
Jacobian matrix. The following proposition provides classification margin bounds in terms of the
score and input-output Jacobian associated to the RNN classifier.
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Proposition 3. Assume that a RNN classifier gδ(x), defined in (110), classifies a training sample xi
with the score o(si) > 0. Then we have the following lower bound for the classification margin:

γd(si) ≥
o(si)

supx∈conv(X ) ‖J [x]‖2
, (117)

where conv(X ) denotes the convex hull of X and J [x] = dF [x]/dx, with F [x] = p(V h̄δM [x]), is
the input-output Jacobian associated to the RNN.

Proof. The proof is essentially identical to that of Theorem 4 in [27]. We provide the full detail here
for completeness.

Denote o(si) = o(x(i), y(i)), where x(i) := (x
(i)
0 , · · · , x(i)

M−1) ∈ X ⊂ RdxM , and vij =
√

2(ei −
ej), where ei ∈ Rdy denotes the Kronecker delta vector.

The classification margin of the training sample si is:

γd(si) = sup{a : ‖x(i) − x‖2 ≤ a =⇒ gδ(x) = y(i) ∀x} (118)

= sup{a : ‖x(i) − x‖2 ≤ a =⇒ o(x, y(i)) > 0 ∀x}. (119)

By Definition 7, o(x, y(i)) > 0 if and only if minj 6=y(i) v
T
y(i)j
F [x] > 0.

On the other hand,

min
j 6=y(i)

vTy(i)jF [x] = min
j 6=y(i)

(vTy(i)jF [x(i)] + vTy(i)j(F [x]−F [x(i)])) (120)

≥ min
j 6=y(i)

vTy(i)jF [x(i)] + min
j 6=y(i)

vTy(i)j(F [x]−F [x(i)]) (121)

= o(x(i), y(i)) + min
j 6=y(i)

vTy(i)j(F [x]−F [x(i)]). (122)

Therefore, o(x(i), y(i)) + minj 6=y(i) v
T
y(i)j

(F [x]−F [x(i)]) > 0 implies that o(x, y(i)) > 0 and so

γd(si) ≥ sup

{
a : ‖x(i) − x‖2 ≤ a =⇒ o(x(i), y(i)) + min

j 6=y(i)
vTy(i)j(F [x]−F [x(i)]) > 0 ∀x

}
(123)

= sup

{
a : ‖x(i) − x‖2 ≤ a =⇒ o(x(i), y(i))− max

j 6=y(i)
vTy(i)j(F [x(i)]−F [x]) > 0 ∀x

}
(124)

= sup

{
a : ‖x(i) − x‖2 ≤ a =⇒ o(x(i), y(i)) > max

j 6=y(i)
vTy(i)j(F [x(i)]−F [x]) ∀x

}
.

(125)

Now, using the fact that ‖vy(i)j‖2 = 1 and Lemma 6, we have:

max
j 6=y(i)

vTy(i)j(F [x(i)]−F [x]) ≤ sup
x̄∈conv(X )

‖J [x̄]‖2 · ‖x(i) − x‖2. (126)

Using this inequality gives:

γd(si) ≥ sup

{
a : ‖x(i) − x‖2 ≤ a =⇒ o(x(i), y(i)) > sup

x̄∈conv(X )

‖J [x̄]‖2 · ‖x(i) − x‖2 ∀x

}
(127)

≥ o(x(i), y(i))

supx̄∈conv(X ) ‖J [x̄]‖2
. (128)

The proof is done.
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We now have all the needed ingredients to prove Theorem 10 and Theorem 11.

Proof of Theorem 10 and Theorem 11. By Proposition 2, Lemma 5, and our assumption on com-
plexity of the sample space, the RNN classifier is (dy · (2CM/γ)k, 0)-robust, for some constant
CM > 0. Due to Theorem 12 (with M := Lg there), it remains to prove the upper bound (102) for
the classification margin of a training sample to complete the proof. Theorem 11 then follows from
Theorem 12 (with M := Lg there) and the inequality (103) follows immediately from Theorem 12.

By Proposition 3, we have

γd(si) ≥
o(si)

supx̂∈conv(X ) ‖J [x̂]‖2
, (129)

where J [x̂] := dF [x̂]/dx̂ is the input-output Jacobian associated to the RNN. Therefore, to complete
the proof it suffices to show that

‖J [x̂]‖2 ≤ C
M−1∑
m=0

δm‖Φ̂M,m+1[x̂]‖2, (130)

where C is the constant from the theorem and Φ̂m+1,k, 0 ≤ k ≤ m ≤M − 1 satisfies:

Φ̂k,k = I, (131)

Φ̂m+1,k = ĴmΦ̂m,k, (132)

where Ĵm = I + δmf
′(ĥ0

m, x̂m) (with the ĥ(0)
m satisfying Eq. (78), recalling that we are replacing the

superscript δ by hat when denoting the δ-dependent approximating solutions for the sake of notation
cleanliness) and the δm > 0 are the step sizes.

Iterating (132) up to the (m+ 1)th step, for m ≥ k, gives:

Φ̂m+1,k = ĴmĴm−1 · · · Ĵk =:

m∏
l=k

Ĵl. (133)

Note that

Φ̂m+1,k =
∂ĥ

(0)
m+1

∂ĥ
(0)
m

∂ĥ
(0)
m

∂ĥ
(0)
m−1

· · ·
∂ĥ

(0)
k+1

∂ĥ
(0)
k

=
dĥ

(0)
m+1

dĥ
(0)
k

. (134)

Now, applying chain rule:

J [x̂] =
∂p(V ĥ

(0)
M )

∂ĥ
(0)
M

M−1∑
j=0

∂ĥ
(0)
M

∂ĥ
(0)
M−1

· · ·
∂ĥ

(0)
j+2

∂ĥ
(0)
j+1

∂ĥ
(0)
j+1

∂x̂j
, (135)

where p is the softmax function.

We compute:
∂p(V ĥ

(0)
M )

∂ĥ
(0)
M

= V E, (136)

where Eij = pi(eij − pj). From (134), we have

∂ĥ
(0)
M

∂ĥ
(0)
M−1

· · ·
∂ĥ

(0)
j+2

∂ĥ
(0)
j+1

= Φ̂M,j+1. (137)

On the other hand,
∂ĥ

(0)
j+1

∂x̂j
= δj

∂f(ĥ
(0)
j , x̂j)

∂x̂j
, (138)

for j = 0, 1, . . . ,M − 1. Note that for Lipschitz RNNs, we have
∂ĥ

(0)
j+1

∂x̂j
= δjDjU , where Dij

l =

a′([Wĥ
(0)
l + Ux̂l + b]i)eij .
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Using the results of the above computations gives:

J [x̂] = V E

M−1∑
m=0

δmΦ̂M,m+1
∂f(ĥ

(0)
m , x̂m)

∂x̂m
. (139)

Therefore,

‖J [x̂]‖2 ≤ ‖V E‖2
M−1∑
m=0

‖δmΦ̂M,m+1‖2

∥∥∥∥∥∂f(ĥ
(0)
m , x̂m)

∂x̂m

∥∥∥∥∥
2

(140)

≤ ‖V ‖2

(
max

m=0,1,...,M−1

∥∥∥∥∥∂f(ĥ
(0)
m , x̂m)

∂x̂m

∥∥∥∥∥
2

)
M−1∑
m=0

δm‖Φ̂M,m+1‖2 (141)

= C

M−1∑
m=0

δm‖Φ̂M,m+1‖2. (142)

For the Lipschitz RNN, we have C := ‖V ‖(maxm=0,1,...,M−1 ‖DmU‖2). The proof is done.

It follows immediately from Eq. (142) that we have the following sufficient condition for stability with
respect to hidden states of deterministic RNN to guarantee stability with respect to input sequence.

Corollary 1. Fix a M and assume that C
∑M−1
m=0 δm < 1. Then, ‖Φ̂M,m+1‖2 ≤ 1 for m =

0, . . . ,M − 1 implies that ‖J [x̂]‖2 < 1.

F Stability and Noise-Induced Stabilization for NRNNs: Proof of Theorem 3
in the Main Paper

We begin by discussing stochastic stability for SDEs, which are the underlying continuous-time
models for our NRNNs.

Although the additional complexities of SDEs over ODEs often necessitate more involved analyses,
many of the same ideas typically carry across. This is also true for stability. A typical approach for
proving stability of ODEs involves Lyapunov functions — in Chapter 4 of [23], such approaches
are extended for SDEs. This gives way to three notions of stability: (1) stability in probability; (2)
moment stability; and (3) almost sure stability. Their definitions are provided in Definitions 4.2.1,
4.3.1, 4.4.1 in [23], and are repeated below for convenience.

To preface the definition, consider initializing (23) at two different random variables h0 and h′0 :=
h0 + ε0, where ε0 ∈ Rdh is a constant non-random perturbation with ‖ε0‖ ≤ δ. The resulting hidden
states, ht and h′t, are set to satisfy (23) with the same Brownian motion Bt, starting from their initial
values h0 and h′0, respectively. The evolution of εt = h′t − ht satisfies

dεt = Aεtdt+ ∆at(εt)dt+ ∆σt(εt)dBt, (143)

where ∆at(εt) = a(Wh′t + Uxt + b)− a(Wht + Uxt + b) and ∆σt(εt) = σt(ht + εt)− σt(ht).
Since ∆at(0) = 0, ∆σt(0) = 0 for all t ∈ [0, T ], εt = 0 admits a trivial equilibrium for (143).

Definition 8 (Stability for SDEs). The trivial solution of the SDE (143) is

(i) stochastically stable (or, stable in probability) if for every ε ∈ (0, 1), r > 0, there exists a
δ = δ(ε, r) > 0 such that P(‖εt‖ < r for all t ≥ 0) ≥ 1− ε whenever ‖ε0‖ < δ.

(ii) stochastically asymptotically stable if it is stochastically stable and, moreover, for every
ε ∈ (0, 1), there exists a δ0 = δ0(ε) > 0 such that P(limt→∞ εt = 0) ≥ 1 − ε whenever
‖ε0‖ < δ0.

(iii) almost surely exponentially stable if lim supt→∞ t−1 log ‖εt‖ < 0 with probability one
whenever ‖ε0‖ < δ1.

(iv) p-th moment exponentially stable if there exists λ,C > 0 such that E‖εt‖p ≤
C‖ε0‖pe−λ(t−t0) for all t ≥ t0.

21



The properties in Definition 8 are said to hold globally if they also hold under no restrictions on
ε0. Stability in probability neglects to quantify rates of convergence, and is implied by almost sure
exponential stability. On the other hand, for our class of SDEs, p-th moment exponential stability
would imply almost sure exponential stability (see Theorem 4.2 in [23]).

One critical difference between Lyapunov stability theory for ODEs and SDEs lies in the stochastic
stabilization phenomenon. Let L be the infinitesimal generator (for a given input signal xt) of the
diffusion process described by the SDE (143):

L =
∂

∂t
+
∑
i

(
(Aε)i + ∆ait(ε)

) ∂

∂εi
+

1

2

∑
i,j

[
∆σt(ε)∆σt(ε)

>]ij ∂2

∂εi∂εj
. (144)

The generator for the corresponding ODE arises by taking ∆σt ≡ 0. In classical Lyapunov theory
for ODEs, the existence of a non-negative Lyapunov function V satisfying LV ≤ 0 in some
neighbourhood of the equilibrium is both necessary and sufficient for stability (see Chapter 4 of [15]).
For SDEs, it has been shown that this condition is sufficient, but no longer necessary [23, 22]. This is
by the nature of stochastic stabilization — the addition of noise can can have the surprising effect of
increased stability over its deterministic counterpart. Of course, this is not universally the case as
some forms of noise can be sufficiently extreme to induce instability; see Section 4.5 in [23].

Identifying sufficient conditions which quantify the stochastic stabilization phenomenon are especially
useful in our setting, and as it turns out (see also [19]), these are most easily obtained for almost
sure exponential stability. Therefore, our stability analysis will focus on establishing almost sure
exponential stability. The objective is to analyze such stability of the solution εt = 0, that is, to see
how the final state εT (and hence the output y′T − yT = V εT of the RNN) changes for an arbitrarily
small initial perturbation ε0 6= 0.

To this end, we consider an extension of the Lyapunov exponent to SDEs at the level of sample path
[23].
Definition 9 (Almost sure global exponential stability). The sample (or pathwise) Lyapunov exponent
of the trivial solution of (143) is Λ = lim supt→∞ t−1 log ‖εt‖. The trivial solution εt = 0 is almost
surely globally exponentially stable if Λ is almost surely negative for all ε0 ∈ Rdh .

For the sample Lyapunov exponent Λ(ω), there is a constant C > 0 and a random variable 0 ≤
τ(ω) <∞ such that for all t > τ(ω), ‖εt‖ = ‖h′t − ht‖ ≤ CeΛt almost surely. Therefore, almost
sure exponential stability implies that almost all sample paths of (143) will tend to the equilibrium
solution ε = 0 exponentially fast. With this definition in tow, we state and prove our primary stability
result, which is equivalent to Theorem 3 in the main paper.
Theorem 13 (Bounds for sample Lyapunov exponent of the trivial solution). Assume that Assumption
C holds. Suppose that a is La-Lipschitz, 0 ≤ aT∆(ε, t)ε ≤ La‖ε‖22 and 0 ≤ σ1‖ε‖ ≤ ‖∆σt(ε)‖F ≤
σ2‖ε‖ for all nonzero ε ∈ Rdh , t ∈ [0, T ]. Then, with probability one,

−σ2
2 +

σ2
1

2
+ λmin(Asym) ≤ Λ ≤ −σ2

1 +
σ2

2

2
+ Laσmax(W ) + λmax(Asym), (145)

for any ε0 ∈ Rdh .

To establish the bounds in Theorem 13, we appeal to the following theorem, which arises from
combining Theorems 4.3.3 and 4.3.5 in [23] in the case p = 2. Here, for a function V , we let
Vε = ∂V/∂ε.

Theorem 14 (Stochastic Lyapunov theorem). If there exists a function V ∈ C2,1(Rdh × R+;R+)
and c1, C1 > 0, c2, C2 ∈ R, c3, C3 ≥ 0 such that for all ε 6= 0 and t ≥ t0,

(i) c1‖ε‖2 ≤ V (ε, t) ≤ C1‖ε‖2,

(ii) c2V (ε, t) ≤ LV (ε, t) ≤ C2V (ε, t), and

(iii) c3V (ε, t)2 ≤ ‖Vε(ε, t)∆σt(ε)‖2F ≤ C3V (ε, t)2,

then, with probability one, the Lyapunov exponent Λ lies in the interval

2c2 − C3

4
≤ Λ ≤ −c3 − 2C2

4
. (146)
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The proof of Theorem 14 involves the Itô formula, an exponential martingale inequality and a Borel-
Cantelli type argument. The functions V above are called stochastic Lyapunov functions and the use
of the theorem involves construction of these functions. We are now in a position to prove Theorem
13, and will find that the choice V (ε, t) = ‖ε‖2 will suffice.

Proof of Theorem 13. It suffices to verify the conditions of Theorem 2 with V (ε, t) = V (ε) = ‖ε‖2.

Clearly (i) is satisfied. To show (iii), by the conditions on ∆σt, we have that 4σ2
1‖ε‖4 ≤

‖Vε(ε)∆σt(ε)‖2F ≤ 4σ2
2‖ε‖4. It remains only to show (ii). Observe that

LV (ε) = ε>(A+A>)ε+ 2∆at(ε)ε+ tr(∆σt(ε)∆σt(ε)>).

Since 0 ≤ ∆at(ε)ε and

|∆at(ε)ε| ≤ ‖a(Wh′t + Uxt + b)− a(Wht + Uxt + b)‖ ‖ε‖
≤ La ‖Wε‖ ‖ε‖ ≤ Laσmax(W ) ‖ε‖2 ,

it follows that
LV (ε) ≤ (2λmax(Asym) + 2Laσmax(W ) + σ2

2)‖ε‖2,
and

LV (ε) ≥ (2λmin(Asym) + σ2
1)‖ε‖2.

The bound (146) now follows from Theorem 14 with c1 = C1 = 1, c2 = 2λmin(Asym) + σ2
1 ,

C2 = 2λmax(Asym) + 2Laσmax(W ) + σ2
2 , c3 = 4σ2

1 , and C3 = 4σ2
2 .

Remark 5. To see if the bounds in Theorem 13 are indeed sharp (at least for certain cases), consider
the linear SDE dHt = AHtdt+BHtdWt, where A ∈ Rdh×dh , B = σI , σ ∈ R and Wt is a scalar
Wiener process. Then, since A and B commute, they can be simultaneously diagonalized, and so the
linear SDE can be reduced via transformation to a set of independent one-dimensional linear SDEs.
In particular, one can show that Ht = exp((A−B2/2)t+BWt))H0 and the Lyapunov exponents
Λ of this system are the real part of the eigenvalues of A−B2/2. Note that λmin(Asym −B2/2) ≤
Λ ≤ λmax(Asym − B2/2) a.s.. Since B = σI , this inequality implies Eqn. (145) with La := 0.
The bounds are tight in the scalar case (dh = 1 and A is a scalar), with the inequality becoming an
equality.
Remark 6. Even in the additive noise setting, however, the Lyapunov exponents of the CT-NRNN
driven by additive noise are not generally the same as those of the corresponding deterministic CT-
RNN. Oseledets multiplicative ergodic theorem implies they will be the same if the data generating
process xt is ergodic [1]. Characterizing Lyapunov exponents for SDEs is a non-trivial affair in
general — we refer to, for instance, [2] for details on this.

G Experimental Details

G.1 Experimental Results Presented in the Main Paper

Following [6], we construct the hidden-to-hidden weight matrices A and W as

A = T (B, βa, γa) := (1− βa) · (B +BT ) + βa · (B −BT )− γaI, (147)

W = T (C, βw, γw) := (1− βw) · (C + CT ) + βw · (C − CT )− γwI. (148)

Here, B and C denote weight matrices that have the same dimensions as A and W . The tuning
parameters γa and γw can be used to increase dampening. We initialize the weight matrices by
sampling weights from the normal distribution N (0, σ2

init), where σ2
init is the variance. Table 4

summarizes the tuning parameters that we have used in our experiments. We train our models for 100
epochs, with scheduled learning rate decays at epochs {90}. We use Adam with default parameters
for minimizing the objective.

We performed a random search to obtain the tuning parameters. Since our model is closely related to
the Lipschitz RNN, we started with the tuning parameters proposed in [6]. We evaluated different
noise levels, both for multiplicative and additive noise, in the range [0.01, 0.1]. We tuned the levels of
noise-injection so that the models achieve state-of-the-art performance on clean input data. Further,
we observed that the robustness of the model is not significantly improving when trained with
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Table 4: Tuning parameters used to train the NRNN.
Name d_h lr decay β γa γw ε σ2

init add. noise mult. noise

Ordered MNIST 128 0.001 0.1 0.75 0.001 0.001 0.01 0.1/128 0.02 0.02
Ordered MNIST 128 0.001 0.1 0.75 0.001 0.001 0.01 0.1/128 0.05 0.02

Permuted MNIST 128 0.001 0.1 0.75 0.001 0.001 0.01 0.1/128 0.02 0.02
Permuted MNIST 128 0.001 0.1 0.75 0.001 0.001 0.01 0.1/128 0.05 0.02

ECG 128 0.001 0.1 0.9 0.001 0.001 0.1 0.1/128 0.06 0.03
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Figure 3: Hessian loss landscapes for deterministic (left) and noisy (right) model, computed using
PyHessian.

increased levels of noise-injections. Overall, our experiments indicated that the model is relatively
insensitive to the particular amount of additive and multiplicative noise level in the small noise
regime.

Further, we need to note that we only considered models that used a combination of additive and
multiplicative noise-injections. One could also train models using either only additive or multiplicative
noise-injections. We did not investigate in detail the trade-offs between the different strategies. The
motivation for our experiments was to demonstrate that (i) models trained with noise-injections can
achieve state-of-the-art performance on clean input data, and (ii) such models are also more resilient
to input perturbations.

Figure 3 shows that NRNN exhibits a smoother Hessian landscape than that of the deterministic
counterpart.

For establishing a fair set of baselines, we used the following implementations and prescribed tuning
parameters for the other models that we considered.

• Exponential RNN. We used the following implementation: https://github.com/
Lezcano/expRNN. We used the default parameters. We trained the model, with hidden
dimension dh = 128, for 100 epochs.

• CoRNN. We used the following implementation, provided as part of the Supplementary
Material: https://openreview.net/forum?id=F3s69XzWOia. We used the default
parameters proposed by the authors for training the model with hidden dimension dh = 128.
We trained the model for 100 epochs with learning rate decay at epoch 90.

• Lipschitz RNN. We used the following implementation, provided as part of the Supple-
mentary Material: https://openreview.net/forum?id=-N7PBXqOUJZ. We used the
default parameters proposed by the authors for training the model with hidden dimension
dh = 128. We trained the model for 100 epochs with learning rate decay at epoch 90.

• Antisymmetric RNN. To our best knowledge, there is no public implementation by the
authors for this model. However, the Antisymmetric RNN can be seen as a special case of
the Lipschitz RNN or the NRNN, without the stabilizing term A and without noise-injection.
We trained this model by using our implementation and the following tuning parameters:
β = 1.0, γ = 0.001, lr = 0.002, ε = 0.01. We trained the model for 100 epochs with
learning rate decay at epoch 90.
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Table 5: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the permuted MNIST task.

Name clean σ = 0.1 σ = 0.2 σ = 0.3 α = 0.03 α = 0.05 α = 0.1

Antisymmetric RNN [5] 92.8% 92.4% 89.5% 81.9% 90.5% 87.9% 72.6%
CoRNN [24] 96.05% 65.1% 38.25% 29.1% 84.8% 73.8% 52.6%
Exponential RNN [18] 93.3% 90.6% 78.4% 61.6% 80.4% 70.6% 51.6%
Lipschitz RNN [6] 95.9% 95.4% 93.5% 83.7% 93.7% 90.2% 70.8%
NRNN (mult./add. noise: 0.02/0.02) 94.9% 94.8% 94.6% 94.3% 94.0% 93.1% 88.6%
NRNN (mult./add. noise: 0.02/0.05) 94.7% 94.6% 94.6% 94.4% 94.0% 93.2% 90.5%
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(a) White noise perturbations.
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Figure 4: Test accuracy for the permuted MNIST task as function of the strength of input perturbations.

G.2 Additional Results for Permuted Pixel-by-Pixel MNIST Classification

Here we consider the permuted pixel-by-pixel MNIST classification task. This task sequentially
presents a scrambled sequence of the 784 pixels to the model and uses the final hidden state to predict
the class membership probability of the input image.

Table 5 shows the average test accuracy (evaluated for models that are trained with 10 different seed
values). Here we present results for white noise and salt and pepper (S&P) perturbations. Again, the
NRNNs show an improved resilience to input perturbations. Figure 4 summarizes the performance of
different models with respect to white noise and salt and pepper perturbations.
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