
A Details of Derivation

In this subsection, we will provide the proof that the difference between Eq. (5) to Eq. (7) is upper
bounded (Thm. 1), the ranking can be estimated by a Gaussian process based on Asmp. 2 (Prop. 1),
and rankings of instances in caches can be approximated with features in past iterations (Prop. 2).

A.1 Proof of Theorem 1

The following lemmas are introduced to prove Thm. 1.
Lemma 1. (Hölder’s Inequality). ∀0 < p < 1, q = 1− p, we have

E[|XY |] ≤ E[|X|1/p]p · E[|Y |1/q]q.
Lemma 2. Given a second-order derivable function f and two positive arrays {ai}ni , {bi}ni , s.t.
ai ≥ bi, denote

Gf (x) =
�

i

f(ai · x)/
�

i

f(bi · x),

Gf (x) is monotonically decreasing w.r.t. x if f is monotonic and (f �)2 − f ��f ≥ 0.

Proof.
�
f

f �

��
=

(f �)2 − f ��f
(f �)2

≥ 0

⇒ f(bi · x) · f �(aj · x) ≤ f(aj · x) · f �(bi · x),

⇒ G�
f =

1

S2


�

i

f �(ai · x)
�

j

f(bj · x)−
�

i

f(ai · x)
�

j

f �(bj · x)




=
1

S2

�

i,j

(f �(ai · x)f(bj · x)− f(ai · x)f �(bj · x)) ≤ 0,

where S =
�

j

f(bj · x).

Proof of Thm. 1.

On one hand, it can be proved that R̂�
p − R̂� ≤ 0:

R̂�
p − R̂� =

1

|D+|
�

x+
i ∈D+

�

x−
i ∈D−

�ijpj −
1

|D+|
�

x+
i ∈D+

�iβ

=1|D+|
�

x+
i ,x−

i ∈Iβ

�ijpj −
1

|D+|
�

x+
i ∈D+

(1− pβ)�iβ

=(|D−|− 1)
1

|Iβ |
�

x+
i ,x−

i ∈Iβ

�ijpj −
1

|D+|
�

x+
i ∈D+

(1− pβ)�iβ

=(|D−|− 1)Êx+,x−∈Iβ
[� · p]− (1− pβ)Êx+∈D+[�iβ ]

(18)

According to our sufficient condition, ∃u ∈ (0, 1), v = 1− u, s.t.

(|D−|− 1)(Êx+,x−∈Iβ
[�1/u])u(Êx−∈D−

β
[p1/v])v ≤ (1− pβ)Êx+∈D+ [�iβ ]. (19)

With Lem. 1, we have

R̂�
p − R̂� ≤ (|D−|− 1)Êx+,x−∈Iβ

[�1/u]uÊx−∈D−
β
[p1/v]v − (1− pβ)Êx+∈D+[�iβ ] ≤ 0. (20)
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On the other hand, R̂�
p/R̂� is lower bounded by a monotonically decreasing function g(σ), which

tends to 1 when σ → 0:

R̂�
p/R̂� =

�
x+

i ∈D+,x−
j ∈D− �(s+i − s−j )pj�

x−
i ∈D− �(s+i − s−β )

≥
�

x+
i ∈D+ �

��
x−

j ∈D−(s
+
i − s−j )pj

�

�
x−

i ∈D− �(s+i − s−β )

=

�
x+

i ∈D+ �
�
δ̄i · σ

�
�

x−
i ∈D− �(δij · σ)

�g(σ).

(21)

We have δ̄i − δij = (s−i −�
xj∈D− s−j pj)σ ≥ 0 due to condition (b). According to �(0) > 0 and

Lem. 2, g(σ) is monotonically decreasing, and g(σ) → 1 when σ → 0. Since R̂�
p/R̂� ≤ 1, we have

R̂�
p/R̂� → 1.

Thm. 1 shows that R̂�
p could be an effective estimation of R̂�, especially when the score function f

converges. Thus, minimizing Eq. (7) could also minimize Eq. (5).

Next, we discuss the three hypotheses. We choose logistic function as our surrogate function, i.e.,
�(x) = log(1 + e−x), which meets the condition (a): (�2) − ���� = (1− ex · log(1 + e−x)) /(1 +
ex)2 ≥ 0. What’s more, an intuitive explanation of condition (b) is that the weighted average of all
negative scores is less than the β-largest score, which holds when β is small.

To verify that the condition (c) is easy to satisfy, we also provide an experiment on synthetic data.
Specifically, the scores are sampled from Gaussian distribution: {s+i }i

i.i.d∼ N (0.7,σ), {s−i }i
i.i.d∼

N (0.3,σ), and we show how R̂� and R̂�
p change with σ decreasing in Fig. 3, from which could be

told that R̂� and R̂�
p tends to be consistent with f converging.

A.2 Proof of Proposition 1

Restate of Proposition 1. Assume Δt → 0, Δs → 0, and Δs2 = βΔt, the probability that the
ranking of x reaches the ranking �α|A|� after a period T

P(x;A) ≈ 1√
2πσ

exp(− (R(x;A,θ)/|A|− α)2

2σ2
) (22)

where σ =
�
pβT/2.

Proof. Consider a one-dimensional random walk process. A particle starts from 0, and walks Δs
distance to the left or right with probability p/2 per Δt time, and stays in place with probability 1− p.
The probability of reaching kΔs after n = T/Δt steps is denoted as pk. Define a generating function
Gn(z) of pk as follows:

Gn(z) =

n�

k=−n

pkz
kΔs (23)

Obviously G0(z) = 1. Consider the process from step n − 1 to step n, the particle walks left or
right with probability p/2, which corresponds to p

2z
−ΔsGn−1(z) and p

2z
ΔsGn−1(z), respectively.

Additionally, it stays the same with probability 1− p, corresponding to (1− p)Gn−1(z). Therefore,
we have

Gn(z) = (
p

2
(zΔs + z−Δs) + 1− p)Gn−1(z) = (

p

2
(zΔs + z−Δs) + 1− p)n (24)
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Figure 3: Empirical risk with/without the approximation. Best viewed in color.

when Δs → 0, Δt → 0, Δs2 = βΔt, z = e−iω , G(z) is the Fourier transform of pk:
G(z) = F{pk}

= (
p

2
(zΔs + z−Δs) + 1− p)n

= (
p

2
(eiωΔs + e−iωΔs) + 1− p)n

= (p cos(ωΔs) + 1− p)n

= (p(1− 2 sin2(
1

2
ωΔs)) + 1− p)n

= (1− 2p sin2(
1

2
ωΔs))n

(1)≈ (p(1− 1

2
ω2Δs2) + 1− p)n

= (1− p

2
ω2βΔt)T/Δt

= (1− p

2
ω2βΔt)−1/(pω2βΔt/2)×(−pTβω2/2)

(2)≈ exp(−p

2
Tβω2)

(25)

Therefore, pk can be obtained by the inverse Fourier transform of G:

pk ≈ F−1{exp(−p

2
Tβω2)}

=
1√
2πσ

exp(−k2Δs2

2σ2
)

=
1√
2πσ

exp(− x2

2σ2
)

(26)

where σ =
�

pβT/2, x is the walk distance.
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The original problem is equivalent to the probability that the walking distance is R(x;A,θ)/|A|−α,
thus we have

P(x;A) ≈ 1√
2πσ

exp(− (R(x;A,θ)/|A|− α)2

2σ2
) (27)

(1). It’s due to sin(x) ≈ x when x → 0 and Δs → 0, (1 + x)n is a continuous smooth function.
(2). It’s due to (1 + x)1/x ≈ e when x → 0 and Δt → 0.

A.3 Proof of Proposition 2

Restate of Proposition 2. Assume that gφ is L-Lipschitz continuous on φ, and �φ − φ̂� ≤ �, the
error of ranking estimation on A is

|R(x;A,θ,w)−R(x;A, θ̂,w)| ≤
�

i∈A
I[2�L > |wT (gφ(x)− gφ(xi))|/�w�] (28)

Proof.
|ΔR| =|R(x;A,θ,w)−R(x;A, θ̂,w)|

=|
�

i∈A
I[fθ(x) < fθ(xi)]−

�

i∈A
I[fθ̂(x) < fθ̂(xi)]|

≤
�

i∈A
|I[fθ(x) < fθ(xi)]− I[fθ̂(x) < fθ̂(xi)]|

=
�

i∈A
I[|Δfθ(x)−Δfθ(xi)| > |fθ(x)− fθ(xi)|]

(29)

where Δfθ(x) = fθ(x)−fθ̂(x). Since gφ is L-Lipschitz continuous on φ, i.e., �gφ(x)−gφ̂(x)� ≤
L�φ− φ̂� ≤ �L, we have

|Δfθ(x)| = |fθ(x)− fθ̂(x)|
= |wT (gφ(x)− gθ̂(x))|
≤ �w��gφ(x)− gφ̂(x)�
≤ �L�w�

(30)

thus
|Δfθ(x)−Δfθ(xi)| ≤ 2�L�w� (31)

From Eq. (29) and Eq. (30), we have

|ΔR| ≤
�

i∈A
I[2�L�w� > |fθ(x)− fθ(xi)|]

=
�

i∈A
I[2�L > |wT (gφ(x)− gφ(xi))|/�w�]

(32)

B Hypothesis Testing

In this subsection, a hypothesis test for Assumption 1 is conducted. Specifically, during the training
phase, we randomly select 1000 instances {xi}1000i=1 from the DR dataset, and track the difference
sequence {d(t) = E[R(x;A,θt+1) − R(x;A,θt)]}t. The null hypothesis H0 and the alternative
hypothesis H1 are as follows:
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Figure 4: Examined p-value on χ̂2(m). Best viewed in color.

H0 : the difference sequence {d(t)} is white noise at a short period.
H1 : the difference sequence {d(t)} is not white noise at a short period.

We apply the Box-Pierce test which is commonly used in signal processing. Formally, the examined
variable is constructed as

χ̂2(m)
�
= N(ρ̂21 + ρ̂22 + · · ·+ ρ̂2m) (33)

where m is the stage to examined, N is the number of samples and ρ̂k is the estimator of the k-rank
variance of {d(t)}. According to H0, χ̂2(m) approximately obeys a χ2(m) distribution. Therefore,
we can transform the obtained χ̂2(m) into the p-value, which is visualized in Fig. 4. From the
visualization results, it can be observed that as the training stabilizes, the p-value is much greater
than 0.05 in most cases, so there is not enough evidence to reject H0.

C Algorithm Summary

In this subsection, we provide a summary for the process of our proposed algorithm in Alg. 1.
Firstly, we initialize the model parameters and the cache (Line 1 and 2). At each iteration, we
extract embeddings for the sampled mini-batch (Line 5), and update the cross-batch cache with
extracted embeddings (Line 6). Then, we calculate the rankings in cache (Line 7). Afterward, the
rankings of instances in mini-batch are estimated, and transformed into P̃(xk−

i ;D−
k ) (Line 8 and

9). Finally, the model parameters θ can be updated with gradient backpropagation (Line 10).

D Details of Competitors

To validate the effectiveness of our proposed method, we compare with seven methods: Cross-Entropy
(CE), NNRank [4], F&H [11], F&H + AUC, SoftLabel [9], DDAG [35] and Eban’s method [10]. For
fair comparison, we replace the feature extractor with ReXNet200 for all competitors, and train these
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