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Abstract

Recent works in self-supervised learning have advanced the state-of-the-art by1

relying on the contrastive learning paradigm, which learns representations by2

pushing positive pairs, or similar examples from the same class, closer together3

while keeping negative pairs far apart. Despite the empirical successes, theoretical4

foundations are limited – prior analyses assume conditional independence of the5

positive pairs given the same class label, but recent empirical applications use6

heavily correlated positive pairs (i.e., data augmentations of the same image). Our7

work analyzes contrastive learning without assuming conditional independence8

of positive pairs using a novel concept of the augmentation graph on data. Edges9

in this graph connect augmentations of the same data, and ground-truth classes10

naturally form connected sub-graphs. We propose a loss that performs spectral11

decomposition on the population augmentation graph and can be succinctly written12

as a contrastive learning objective on neural net representations. Minimizing this13

objective leads to features with provable accuracy guarantees under linear probe14

evaluation. By standard generalization bounds, these accuracy guarantees also15

hold when minimizing the training contrastive loss. In all, this work provides the16

first provable analysis for contrastive learning where the guarantees can apply to17

realistic empirical settings.18

1 Introduction19

Recent empirical breakthroughs have demonstrated the effectiveness of self-supervised learning,20

which trains representations on unlabeled data with surrogate losses and self-defined supervision21

signals [4, 6, 10, 14, 23, 24, 35, 38, 41, 42, 50–52]. Self-supervision signals in computer vision are22

often defined by using data augmentation to produce multiple views of the same image. For example,23

the recent contrastive learning objectives [3, 12, 13, 15, 22] encourage closer representations for24

augmentations (views) of the same natural data than for randomly sampled pairs of data.25

Despite the empirical successes, there is a limited theoretical understanding of why self-supervised26

losses learn representations that can be adapted to downstream tasks, for example, using linear27

heads. Recent mathematical analyses by Arora et al. [3], Lee et al. [28], Tosh et al. [44, 45] provide28

guarantees under the assumption that two views are somewhat independent conditioned on the label.29

However, the pair of augmented examples used in practical algorithms usually exhibit a strong30

correlation, even conditioned on the label. For instance, two augmentations of the same dog image31

share much more similarity than augmentations of two different random dog images. Thus the32

existing theory does not explain the practical success of self-supervised learning.33

This paper presents a theoretical framework for self-supervised learning without requiring conditional34

independence. We design a principled, practical loss function for learning neural net representations35

that resembles state-of-the-art contrastive learning methods. We prove that, under a simple and36
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Figure 1: Left: demonstration of the population augmentation graph. Two augmented data
are connected if they are views of the same natural data. Augmentations of data from different
classes in the downstream tasks are assumed to be nearly disconnected, whereas there are more
connections within the same class. We allow the existence of disconnected sub-graphs within a class
corresponding to potential sub-classes. Right: decomposition of the learned representations. The
representations (rows in the RHS) learned by minimizing the population spectral contrastive loss can
be decomposed as the LHS. The scalar sxi is positive for every augmented data xi. Columns of the
matrix labeled “eigenvectors” are the top eigenvectors of the normalized adjacency matrix of the
augmentation graph defined in Section 3.1. The operator � multiplies row-wise each sxi with the
xi-th row of the eigenvector matrix. When classes (or sub-classes) are exactly disconnected in the
augmentation graph, the eigenvectors are sparse and align with the sub-class structure. The invertible
Q matrix does not affect the performance of the rows under the linear probe.

realistic data assumption, linear classification using representations learned on a polynomial number37

of unlabeled data samples can recover the ground-truth labels of the data with high accuracy.38

The fundamental data property that we leverage is a notion of continuity of the population data within39

the same class. Though a random pair of examples from the same class can be far apart, the pair is40

often connected by (many) sequences of examples, where consecutive examples in the sequences are41

close neighbors within the same class. This property is more salient when the neighborhood of an42

example includes many different types of augmentations. Prior work [49] empirically demonstrates43

this type of connectivity property and uses it in the analysis of pseudolabeling algorithms.44

More formally, we define the population augmentation graph, whose vertices are all the augmented45

data in the population distribution, which can be an exponentially large or infinite set. Two vertices are46

connected with an edge if they are augmentations of the same natural example. Our main assumption47

is that for some proper m ∈ Z+, the sparsest m-partition (Definition 3.4) is large. This intuitively48

states that we can’t split the augmentation graph into too many disconnected sub-graphs by only49

removing a sparse set of edges. This assumption can be seen as a graph-theoretic version of the50

continuity assumption on population data. We also assume that there are very few edges across51

different ground-truth classes (Assumption 3.5). Figure 1 (left) illustrates a realistic scenario where52

dog and cat are the ground-truth categories, between which edges are very rare. Each breed forms a53

sub-graph that has sufficient inner connectivity and thus cannot be further partitioned.54

Our assumption fundamentally does not require conditional independence and can allow disconnected55

sub-graphs within a class. The classes in the downstream task can be also somewhat flexible as56

long as they are disconnected in the augmentation graph. For example, when the augmentation57

graph consists of m disconnected sub-graphs corresponding to fine-grained classes, our assumptions58

allow the downstream task to have any r ≤ m coarse-grained classes containing these fine-grained59

classes as a sub-partition. Prior work [49] on pseudolabeling algorithms essentially requires an exact60

alignment between sub-graphs and downstream classes (i.e., r = m). They face this limitation61

because their analysis requires fitting discrete pseudolabels on the unlabeled data. We avoid this62

difficulty because we consider directly learning continuous representations on the unlabeled data.63

We apply spectral decomposition—a classical approach for graph partitioning, also known as spectral64

clustering [37, 39] in machine learning—to the adjacency matrix defined on the population augmen-65

tation graph. We form a matrix where the top-k eigenvectors are the columns and interpret each66

row of the matrix as the representation (in Rk) of an example. Somewhat surprisingly, we show that67

this feature extractor can be also recovered (up to some linear transformation) by minimizing the68
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following population objective which is similar to the standard contrastive loss (Section 3.2):69

L(f) = −2 · Ex,x+

[
f(x)>f(x+)

]
+ Ex,x′

[ (
f(x)>f(x′)

)2 ]
,

where (x, x+) is a pair of augmentations of the same data, (x, x′) is a pair of independently random70

augmented data, and f is a parameterized function from augmented data to Rk. Figure 1 (right)71

illustrates the relationship between the eigenvector matrix and the learned representations. We call72

this loss the population spectral contrastive loss.73

We analyze the linear classification performance of the representations learned by minimizing the74

population spectral contrastive loss. Our main result (Theorem 3.7) shows that when the representation75

dimension exceeds the maximum number of disconnected sub-graphs, linear classification with76

learned representations is guaranteed to have a small error. Our theorem reveals a trend that a larger77

representation dimension is needed when there are a larger number of disconnected sub-graphs. Our78

analysis relies on novel techniques tailored to linear probe performance, which have not been studied79

in the spectral graph theory community to the best of our knowledge.80

The spectral contrastive loss also works on empirical data. Since our approach optimizes parametric81

loss functions, guarantees involving the population loss can be converted to finite sample results82

using off-the-shelf generalization bounds. The sample complexity is polynomial in the Rademacher83

complexity of the model family and other relevant parameters (Theorem 4.1 and Theorem 4.2).84

In summary, our main theoretical contributions are: 1) we propose a simple contrastive loss motivated85

by spectral decomposition of the population data graph, 2) under simple and realistic assumptions,86

we provide downstream classification guarantees for the representation learned by minimizing this87

loss on population data, and 3) our analysis is easily applicable to deep networks with polynomial88

unlabeled samples via off-the-shelf generalization bounds.89

In addition, we implement and test the proposed spectral contrastive loss on standard vision benchmark90

datasets. We demonstrate that the features learned by our algorithm can match or outperform several91

strong baselines [12, 14, 15, 21] when evaluated using a linear probe.92

2 Additional related works93

Empirical works on self-supervised learning. Self-supervised learning algorithms have been94

shown to successfully learn representations that benefit downstream tasks [4, 6, 10, 12, 13, 15, 22–95

24, 35, 38, 41, 42, 50–52]. Many recent self-supervised learning algorithms learn features with96

siamese networks [8], where two neural networks of shared weights are applied to pairs of augmented97

data. Introducing asymmetry to siamese networks either with a momentum encoder like BYOL [21]98

or by stopping gradient propagation for one branch of the siamese network like SimSiam [14] has99

been shown to effectively avoid collapsing. Contrastive methods [12, 15, 22] minimize the InfoNCE100

loss [38], where two views of the same data are attracted while views from different data are repulsed.101

Theoretical works on self-supervised learning. In addition to works [3, 28, 44, 45] discussed in102

the introduction, several other works [5, 43, 47, 48] also theoretically study self-supervised learning.103

The work Tsai et al. [47] prove that self-supervised learning methods can extract task-relevant104

information and discard task-irrelevant information, but lacks guarantees for solving downstream105

tasks efficiently with simple (e.g., linear) models. Tian et al. [43] study why non-contrastive self-106

supervised learning methods can avoid feature collapse. Cai et al. [9] analyze domain adaptation107

algorithms for subpopulation shift with a similar expansion condition as [49] while also allowing108

disconnected parts within each class, but require access to ground-truth labels during training. In109

contrast, our algorithm doesn’t need labels during pre-training.110

3 Spectral contrastive learning on population data111

In this section, we introduce our theoretical framework, the spectral contrastive loss, and the main112

analysis of the performance of the representations learned on population data.113

We use X to denote the set of all natural data (raw inputs without augmentation). We assume that114

each x̄ ∈ X belongs to one of r classes, and let y : X → [r] denote the ground-truth (deterministic)115

labeling function. Let PX be the population distribution overX from which we draw training data and116
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test our final performance. For the ease of exposition, we assume X to be a finite but exponentially117

large set (e.g., all real vectors in Rd with bounded precision).1118

We next formulate data augmentations. Given a natural data sample x̄ ∈ X , we use A(·|x̄) to denote119

the distribution of its augmentations. For instance, when x̄ represents an image, A(·|x̄) can be the120

distribution of common augmentations [12] that includes Gaussian blur, color distortion and random121

cropping. We use X to denote the set of all augmented data, which is the union of supports of all122

A(·|x̄) for x̄ ∈ X . As with X , we also assume that X is a finite but exponentially large set, and123

denote N = |X |.124

We will learn an embedding function f : X → Rk, and then evaluate its quality by the minimum125

error achieved with a linear probe. Concretely, a linear classifier has weights B ∈ Rk×r and predicts126

gf,B(x) = arg maxi∈[r](f(x)>B)i for an augmented data x (arg max breaks tie arbitrarily). Then,127

given a natural data sample x̄, we ensemble the predictions on augmented data and predict:128

ḡf,B(x̄) := arg max
i∈[r]

Pr
x∼A(·|x̄)

[gf,B(x) = i] .

Define the linear probe error as the error of the best possible linear classifier on the representations:129

E(f) := min
B∈Rk×r

Pr
x̄∼PX

[y(x̄) 6= ḡf,B(x̄)] (1)

3.1 Augmentation graph and spectral decomposition130

Our approach is based on the central concept of population augmentation graph, denoted by131

G(X , w), where the vertex set is all augmentation data X and w denotes the edge weights defined132

below. For any two augmented data x, x′ ∈ X , define the weight wxx′ as the marginal probability of133

generating the pair x and x′ from a random natural data x̄ ∼ PX :134

wxx′ := Ex̄∼PX [A(x|x̄)A(x′|x̄)] (2)

Therefore, the weights sum to 1 because the total probability mass is 1:
∑
x,x′∈X wxx′ = 1. The rela-135

tive magnitude intuitively captures the closeness between x and x′ with respect to the augmentation136

transformation. For most of the unrelated x and x′, the value wxx′ will be significantly smaller than137

the average value. For example, when x and x′ are random croppings of a cat and a dog respectively,138

wxx′ will be essentially zero because no natural data can be augmented into both x and x′. On the139

other hand, when x and x′ are very close in `2-distance or very close in `2-distance up to color140

distortion, wxx′ is nonzero because they may be augmentations of the same image with Gaussian141

blur and color distortion. We say that x and x′ are connected with an edge if wxx′ > 0. See Figure 1142

(left) for more illustrations.143

Given the structure of the population augmentation graph, we apply spectral decomposition to the144

population graph to construct principled embeddings. The eigenvalue problems are closely related to145

graph partitioning as shown in spectral graph theory [17] for both worst-case graphs [11, 25, 29, 33]146

and random graphs [1, 30, 34]. In machine learning, spectral clustering [37, 39] is a classical algorithm147

that learns embeddings by eigendecomposition on an empirical distance graph and invoking k-means148

on the embeddings.149

We will apply eigendecomposition to the population augmentation graph (and then later use linear150

probe for classification). Let wx =
∑
x′∈X wxx′ be the total weights associated to x, which is often151

viewed as an analog of the degree of x in weighted graph. A central object in spectral graph theory is152

the so-called normalized adjacency matrix:153

A := D−1/2AD−1/2 (3)

where A ∈ RN×N is adjacency matrix with entires Axx′ = wxx′ and D ∈ RN×N is a diagonal154

matrix with Dxx = wx.2155

Standard spectral graph theory approaches produce vertex embeddings as follows. Let γ1, γ2, · · · , γk156

be the k largest eigenvalues of A, and v1, v2, · · · , vk be the corresponding unit-norm eigenvectors.157

1This allows us to use sums instead of integrals and avoid non-essential nuances related to calculus.
2We index the matrix A, D by (x, x′) ∈ X × X . Generally we index N -dimensional axis by x ∈ X .
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Let F ? = [v1, v2, · · · , vk] ∈ RN×k be the matrix that collects these eigenvectors in columns, and we158

refer to it as the eigenvector matrix. Let u∗x ∈ Rk be the x-th row of the matrix F ?. It turns out that159

u∗x’s can serve as desirable embeddings of x’s because they exhibit clustering structure in Euclidean160

space that resembles the clustering structure of the graph G(X , w).161

3.2 From spectral decomposition to spectral contrastive learning162

The embeddings u∗x obtained by eigendecomposition are nonparametric—a k-dimensional parameter163

is needed for every x—and therefore cannot be learned with a realistic amount of data. The embedding164

matrix F ? cannot be even stored efficiently. Therefore, we will instead parameterize the rows of the165

eigenvector matrix F ? as a neural net function, and assume embeddings u∗x can be represented by166

f(x) for some f ∈ F , where F is the hypothesis class containing neural networks. As we’ll show167

in Section 4, this allows us to leverage the extrapolation power of neural networks and learn the168

representation on a finite dataset.169

Next, we design a proper loss function for the feature extractor f , such that minimizing this loss170

could recover F ? up to some linear transformation. As we will show in Section 4, the resulting171

population loss function on f also admits an unbiased estimator with finite training samples. Let F172

be an embedding matrix with ux on the x-th row, we will first design a loss function of F that can be173

decomposed into parts about individual rows of F .174

We employ the following matrix factorization based formulation for eigenvectors. Consider the175

objective176

min
F∈RN×k

Lmf(F ) :=
∥∥A− FF>∥∥2

F
. (4)

By the classical theory on low-rank approximation (Eckart–Young–Mirsky theorem [19]), any177

minimizer F̂ of Lmf(F ) contains scaling of the largest eigenvectors ofA up to a right transformation—178

for some orthonormal matrix R ∈ Rk×k, we have F̂ = F ? · diag([
√
γ1, . . . ,

√
γk])Q. Fortunately,179

multiplying the embedding matrix by any matrix on the right and any diagonal matrix on the left does180

not change its linear probe performance, which is formalized by the following lemma.181

Lemma 3.1. Consider an embedding matrix F ∈ RN×k and a linear classifier B ∈ Rk×r. Let182

D ∈ RN×N be a diagonal matrix with positive diagonal entries and Q ∈ Rk×k be an invertible183

matrix. Then, for any embedding matrix F̃ = D · F ·Q, the linear classifier B̃ = Q−1B on F̃ has184

the same prediction as B on F . As a consequence, we have185

E(F ) = E(F̃ ). (5)

where E(F ) denotes the linear probe performance when the rows of F are used as embeddings.186

The proof can be found in Section C.1.187

The main benefit of objective Lmf(F ) is that it’s based on the rows of F . Recall that vectors ux188

are the rows of F . Each entry of FF> is of the form u>x xx′ , and thus Lmf(F ) can be decomposed189

into a sum of N2 terms involving terms u>x ux′ . Interestingly, if we reparameterize each row ux by190

w
1/2
x f(x), we obtain a very similar loss function for f that resembles the contrastive learning loss191

used in practice [12] as shown below in Lemma 3.2. See Figure 1 (right) for an illustration of the192

relationship between the eigenvector matrix and the representations learned by minimizing this loss.193

We formally define the positive and negative pairs to introduce the loss. Let x̄ ∼ PX be a random194

natural data and draw x ∼ A(·|x̄) and x+ ∼ A(·|x̄) independently to form a positive pair (x, x+).195

Draw x̄′ ∼ PX and x′ ∼ A(·|x̄′) independently with x̄, x, x+. We call (x, x′) a negative pair.3196

Lemma 3.2 (Spectral contrastive loss). Recall that ux is the x-th row of F . Let ux = w
1/2
x f(x) for197

some function f . Then, the loss function Lmf(F ) is equivalent to the following loss function for f ,198

called spectral contrastive loss, up to a additive constant:199

Lmf(F ) = L(f) + const

where L(f) , −2 · Ex,x+

[
f(x)>f(x+)

]
+ Ex,x′

[(
f(x)>f(x′)

)2]
(6)

3Though x and x′ are simply two independent draws, we call them negative pairs following the literature [3].
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The proof can be found in Section C.1.200

We note that spectral contrastive loss is similar to many popular contrastive losses [12, 38, 40, 50]. For201

instance, the contrastive loss in SimCLR [12] can be rewritten as (with simple algebraic manipulation)202

−f(x)>f(x+) + log

(
exp

(
f(x)>f(x+)

)
+

n∑
i=1

exp
(
f(x)>f(xi)

))
.

Here x and x+ are a positive pair and x1, · · · , xn are augmentations of other data. Spectral contrastive203

loss can be seen as removing f(x)>f(x+) from the second term, and replacing the log sum of204

exponential terms with the average of the squares of f(x)>f(xi). We will show in Section 6 that our205

loss has a similar empirical performance as SimCLR without requiring a large batch size.206

3.3 Theoretical guarantees for spectral contrastive loss on population data207

In this section, we introduce the main assumptions on the data and state our main theoretical guarantee208

for spectral contrastive learning on population data.209

To formalize the idea that G cannot be partitioned into too many disconnected sub-graphs, we intro-210

duce the notions of Dirichlet conductance and sparsest m-partition, which are standard in spectral211

graph theory. Dirichlet conductance represents the fraction of edges from S to its complement:212

Definition 3.3 (Dirichlet conductance). For a graph G = (X , w) and a subset S ⊆ X , we define the213

Dirichlet conductance of S as214

φG(S) :=

∑
x∈S,x′ /∈S wxx′∑

x∈S wx
.

We note that when S is a singleton, there is φG(S) = 1 due to the definition of wx. We introduce the215

sparsest m-partition to represent the number of edges between m disjoint subsets.216

Definition 3.4 (Sparsest m-partition). Let G = (X , w) be the augmentation graph. For an integer217

m ∈ [2, |X |], we define the sparsest m-partition as218

ρm := min
S1,··· ,Sm

max{φG(S1), . . . , φG(Sm)}

where S1, · · · , Sm are non-empty sets that form a partition of X .219

When r is the number of underlying classes, we might expect ρr ≈ 0 since the augmentations from220

different classes almost compose a disjoint r-way partition of X . However, for m > r, we can expect221

ρm to be much larger. For instance, in the extreme case when m = |X | = N , every set Si is a222

singleton, which implies that ρN = 1.223

Next, we formalize the assumption that very few edges cross different ground-truth classes. It turns224

out that it suffices to assume that the labels are recoverable from the augmentations (which is also225

equivalent to that two examples in different classes can rarely be augmented into the same point).226

Assumption 3.5 (Labels are recoverable from augmentations). Let x̄ ∼ PX and y(x̄) be its label.227

Let the augmentation x ∼ A(·|x̄). We assume that there exists a classifier g that can predict y(x̄)228

given x with error at most α. That is, g(x) = y(x̄) with probability at least 1− α.229

We also introduce the following assumption which states that some universal minimizer of the230

population spectral contrastive loss can be realized by the hypothesis class.231

Assumption 3.6 (Realizability). Let F be a hypothesis class containing functions from X to Rk. We232

assume that at least one of the global minima of L(f) belongs to F .233

Our main theorem bound from above the linear probe error of the features learned by minimizing the234

population spectral contrastive loss.235

Theorem 3.7. Assume the representation dimension k ≥ 2r and Assumption 3.5 holds for α > 0.236

Let F be a hypothesis class that satisfies Assumption 3.6 and let f∗pop ∈ F be a minimizer of L(f).237

Then, we have238

E(f∗pop) ≤ Õ
(
α/ρ2

bk/2c

)
.
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Here we use Õ(·) to hide universal constant factors and logarithmic factor in k. We note that α = 0239

when augmentations from different classes are perfectly disconnected in the augmentation graph,240

in which case the above theorem guarantees the exact recovery of the ground truth. Generally, we241

expect α to be an extremely small constant independent of k, whereas ρbk/2c increases with k and242

can be much larger than α when k is reasonably large. For instance, when there are t sub-graphs that243

have sufficient inner connections, we expect ρt+1 to be on the order of a constant because any t+ 1244

partition needs to break one sub-graph into two pieces and incur a large conductance. We characterize245

the ρk’s growth on more concrete distributions in the next subsection.246

Previous works on graph partitioning [2, 29, 31] often analyze the so-called rounding algorithms247

that conduct clustering based on the representations of unlabeled data and do not analyze the248

performance of linear probe (which has access to labeled data). These results provide guarantees249

on the approximation ratio—the ratio between the conductance of the obtained partition to the best250

partition—which may depend on graph size [2] that can be exponentially large in our setting. The251

approximation ratio guarantee does not lead to a guarantee on the representations’ performance on252

downstream tasks. Our guarantees are on the linear probe accuracy on the downstream tasks and253

independent of the graph size. We rely on the formulation of the downstream task’s labeling function254

(Assumption 3.5) as well as a novel analysis technique that characterizes the linear structure of the255

representations. In Section C, we provide the proof of Theorem 3.7 as well as its more generalized256

version where k/2 is relaxed to be any constant fraction of k.257

3.4 Provable instantiation of Theorem 3.7 to mixture of manifold data258

In this section, we exemplify Theorem 3.7 on an example where the natural data distribution is a259

mixture of manifolds, and the augmentation transformation is adding Gaussian noise.260

Example 3.8 (Mixture of manifolds). Suppose PX is mixture of r ≤ d distributions P1, · · · , Pr,261

where each Pi is generated by some κ-bi-Lipschitz4 generator Q : Rd′ → Rd on some latent variable262

z ∈ Rd′ with d′ ≤ d which as a mixture of Gaussian distribution:263

x ∼ Pi ⇐⇒ x = Q(z), z ∼ N (µi,
1

d′
· Id′×d′).

Let the data augmentation of a natural data sample x̄ is x̄+ ξ where ξ ∼ N (0, σ
2

d · Id×d) is isotropic264

Gaussian noise with 0 < σ . 1√
d

. We also assume mini 6=j ‖µi − µj‖2 & κ·
√

log d√
d′

.265

Let the ground-truth label be the most likely mixture index i that generates x: y(x) := arg maxi Pi(x).266

We note that the intra-class distance in the latent space is on the scale of Ω(1), which can be much267

larger than the distance between class means which is assumed to be & κ·
√

log d√
d′

. Therefore, distance-268

based clustering algorithms do not apply. We apply Theorem 3.7 and get the following theorem:269

Theorem 3.9. When k ≥ 2r + 2, Example 3.8 satisfies Assumption 3.5 with α ≤ 1
poly(d) , and has270

ρbk/2c &
σ
κ
√
d

. As a consequence, the error bound is E(f∗pop) ≤ Õ
(

κ2

σ2·poly(d)

)
.271

The theorem above guarantees small error even when σ is polynomially small. In this case, the272

augmentation noise has a much smaller scale than the data (which is at least on the order of 1/κ). This273

suggests that contrastive learning can non-trivially leverage the structure of the underlying data and274

learn good representations with relatively weak augmentation. The proof can be found in Section D.275

4 Finite-sample generalization bounds276

In Section 3, we provide guarantees for spectral contrastive learning on population data. In this277

section, we show that these guarantees can be naturally extended to the finite-sample regime with278

standard concentration bounds. In particular, given a training dataset {x̄1, x̄2, · · · , x̄n}with x̄i ∼ PX ,279

we learn a feature extractor by minimizing the following empirical spectral contrastive loss:280

L̂n(f) := − 2

n

n∑
i=1

E x∼A(·|x̄i)
x+∼A(·|x̄i)

[
f(x)>f(x+)

]
+

1

n(n− 1)

∑
i 6=j

E x∼A(·|x̄i)
x′∼A(·|x̄j)

[(
f(x)>f(x′)

)2]
.

4A κ bi-Lipschitz function satisfies 1
κ
‖f(x)− f(y)‖2 ≤ ‖x− y‖2 ≤ κ ‖f(x)− f(y)‖2.
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It is worth noting that L̂n(f) is an unbiased estimator of the population spectral contrastive loss L(f).281

(See Claim E.2 for a proof.) Therefore, we can derive generalization bounds via off-the-shelf concen-282

tration inequalities. LetF be a hypothesis class containing feature extractors fromX to Rk. We extend283

Rademacher complexity to function classes with high-dimensional outputs and define the Rademacher284

complexity of F on n data as R̂n(F) := maxx1,··· ,xn∈X Eσ
[
supf∈F,i∈[k]

1
n

(∑n
j=1 σjfi(xj)

)]
,285

where σ is a uniform random vector in {−1, 1}n and fi(z) is the i-th dimension of f(z).286

Recall that f∗pop ∈ F is a minimizer of L(f). The following theorem with proofs in Section E.1287

bounds the population loss of a feature extractor trained with finite data:288

Theorem 4.1. For some κ > 0, assume ‖f(x)‖∞ ≤ κ for all f ∈ F and x ∈ X . Let f∗pop ∈ F be a289

minimizer of the population loss L(f). Given a random dataset of size n, let f̂emp ∈ F be a minimizer290

of empirical loss L̂n(f). Then, with probability at least 1− δ over the randomness of data, we have291

L(f̂emp) ≤ L(f∗pop) + c1 · R̂n/2(F) + c2 ·

(√
log 2/δ

n
+ δ

)
,

where constants c1 . k2κ2 + kκ and c2 . kκ2 + k2κ4.292

We can apply Theorem 4.1 to any hypothesis class F of interest (e.g., deep neural networks) and plug293

in off-the-shelf Rademacher complexity bounds. For instance, in Section E.2 we give a corollary of294

Theorem 4.1 when F contains deep neural networks with ReLU activation.295

The theorem above shows that we can achieve near-optimal population loss by minimizing empirical296

loss up to some small excess loss. The following theorem characterizes how the error propagates to297

the linear probe performance mildly under some spectral gap conditions.298

Theorem 4.2. Assume representation dimension k ≥ 4r + 2, Assumption 3.5 holds for α > 0 and299

Assumption 3.6 holds. Recall γi be the i-th largest eigenvalue of the normalized adjacency matrix.300

Then, for any ε < γ2
k and f̂emp ∈ F such that L(f̂emp) < L(f∗pop) + ε, we have:301

E(f̂emp) .
α

ρ2
bk/2c

· log k +
kε

∆2
γ

,

where ∆γ := γb3k/4c − γk is the eigenvalue gap between the b3k/4c-th and the k-th eigenvalue.302

This theorem shows that the error on the downstream task only grows linearly with the error ε during303

pretraining. We can relax Assumption 3.6 to approximate realizability in the sense that F contains304

some sub-optimal feature extractor under the population spectral loss and pay an additional error305

term in the linear probe error bound. The proof of Theorem 4.2 can be found in Section E.3.306

5 Guarantee for learning linear probe with labeled data307

In this section, we provide theoretical guarantees for learning a linear probe with labeled data.308

Theorem 3.7 guarantees the existence of a linear probe that achieves a small downstream classification309

error. However, a priori it is unclear how large the margin of the linear classifier can be, so it is hard to310

apply margin theory to provide generalization bounds for 0-1 loss. We could in principle control the311

margin of the linear head, but using capped quadratic loss turns out to suffice and mathematically more312

convenient. We learn a linear head with the following capped quadratic loss: given a tuple (z, y(x̄))313

where z ∈ Rk is a representation of augmented data x ∼ A(·|x̄) and y(x̄) ∈ [r] is the label of x̄, for314

a linear probe B ∈ Rk×r we define loss `((z, y(x̄)), B) :=
∑r
i=1 min

{ (
B>z − ~y(x̄)

)2
i
, 1
}
, where315

~y(x̄) is the one-hot embedding of y(x̄) as a r-dimensional vector (1 on the y(x̄)-th dimension, 0 on316

other dimensions). This is a standard modification of quadratic loss in statistical learning theory that317

ensures the boundedness of the loss for the ease of analysis [36].318

The following Theorem 5.1 provides a generalization guarantee for the linear classifier that minimizes319

capped quadratic loss on a labeled dataset. The key challenge of the proof is showing the existence of320

a small-norm linear head B that gives small population quadratic loss, which is not obvious from321

Theorem 3.7 where only small 0-1 error is guaranteed. Recall γi is the i-th largest eigenvalue of322

the the normalized adjacency matrix. Given a labeled dataset {(x̄i, y(x̄i))}ni=1 where x̄i ∼ PX and323

y(x̄i) is its label, we sample xi ∼ A(·|x̄i) for i ∈ [n].324
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Theorem 5.1. In the setting of Theorem 3.7, assume γk ≥ Cλ for some Cλ > 0. Learn a linear325

probe B̂ ∈ arg min‖B‖F≤1/Cλ

∑n
i=1 `((f

∗
pop(xi), y(x̄i)), B) by minimizing the capped quadratic326

loss subject to a norm constraint. Then, with probability at least 1− δ over random data, we have327

Pr
x̄∼PX

(
ḡf∗pop,B̂

(x̄) 6= y(x̄)
)
.

α

ρ2
bk/2c

· log k +
r

Cλ
·
√
k

n
+

√
log 1/δ

n
.

Here the first term is the population error from Theorem 3.7. The last two terms are the generalization328

gap from standard concentration inequalities for linear classification and are small when the number329

of labeled data n is polynomial in the feature dimension k. We note that this result reveals a trade-330

off when choosing the feature dimension k: when n is fixed, a larger k decreases the population331

contrastive loss while increases the generalization gap for downstream linear classification. The proof332

of Theorem 5.1 is in Section F.333

6 Experiments334

We test spectral contrastive learning on benchmark vision datasets. We minimize the empirical335

spectral contrastive loss with an encoder network f and sample fresh augmentation in each iteration.336

The pseudo-code for the algorithm and more implementation details can be found in Section A.337

Encoder / feature extractor. The encoder f contains three components: a backbone network, a338

projection MLP and a projection function. The backbone network is a standard ResNet architecture.339

The projection MLP is a fully connected network with BN applied to each layer, and ReLU activation340

applied to each except for the last layer. The projection function takes a vector and projects it to a341

sphere ball with radius
√
µ, where µ > 0 is a hyperparameter that we tune in experiments. We find342

that using a projection MLP and a projection function improves the performance.343

Linear evaluation protocol. Given the pre-trained encoder network, we follow the standard linear344

evaluation protocol [14] and train a supervised linear classifier on frozen representations, which are345

from the ResNet’s global average pooling layer.346

Results. We report the accuracy on CIFAR-10/100 [26] and Tiny-ImageNet [27] in Table 1. Our347

empirical results show that spectral contrastive learning achieves better performance than two popular348

baseline algorithms SimCLR [12] and SimSiam [14]. In Table 2 we report results on ImageNet [18]349

dataset, and show that our algorithm achieves similar performance as other state-of-the-art methods.350

We note that our algorithm is much more principled than previous methods and doesn’t rely on large351

batch sizes (SimCLR [12]), momentum encoders (BYOL [21] and MoCo [22]) or additional tricks352

such as stop-gradient (SimSiam [14]).353

Datasets CIFAR-10 CIFAR-100 Tiny-ImageNet

Epochs 200 400 800 200 400 800 200 400 800

SimCLR (repro.) 83.73 87.72 90.60 54.74 61.05 63.88 43.30 46.46 48.12
SimSiam (repro.) 87.54 90.31 91.40 61.56 64.96 65.87 34.82 39.46 46.76

Ours 88.66 90.17 92.07 62.45 65.82 66.18 41.30 45.36 49.86

Table 1: Top-1 accuracy under linear evaluation protocal.

SimCLR BYOL MoCo v2 SimSiam Ours
acc. (%) 66.5 66.5 67.4 68.1 66.97

Table 2: ImageNet linear evaluation accuracy with 100-epoch pre-training. All results but ours are
reported from [14]. We use batch size 384 during pre-training.

7 Conclusion354

In this paper, we present a novel theoretical framework of self-supervised learning and provide355

provable guarantees for the learned representations on downstream linear classification. We hope our356

study can facilitate future theoretical analyses of self-supervised learning and inspire new practical357

algorithms. For instance, one interesting future direction is to test the topology of the augmentation358

graph on empirical data distributions and design algorithms using tools from graph theory.359
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A Experiment details517

The pseudo-code for our empirical algorithm is summarized in Algorithm 1.518

Algorithm 1 Spectral Contrastive Learning
Require: batch size N , structure of encoder network f

1: for sampled minibatch {x̄i}Ni=1 do
2: for i ∈ {1, · · · , N} do
3: draw two augmentations xi = aug(x̄i) and x′i = aug(x̄i).
4: compute zi = f(xi) and z′i = f(x′i).
5: compute loss L = − 2

N

∑N
i=1 z

>
i z
′
i + 1

N(N−1)

∑
i 6=j(z

>
i z
′
j)

2

6: update f to minimize L
7: return encoder network f(·)

Our results with different hyperparameters on CIFAR-10/100 and Tiny-ImageNet are listed in Table 3.519

Datasets CIFAR-10 CIFAR-100 Tiny-ImageNet

Epochs 200 400 800 200 400 800 200 400 800

SimCLR (repro.) 83.73 87.72 90.60 54.74 61.05 63.88 43.30 46.46 48.12
SimSiam (repro.) 87.54 90.31 91.40 61.56 64.96 65.87 34.82 39.46 46.76

Ours (µ = 1) 86.47 89.90 92.07 59.13 63.83 65.52 28.76 33.94 40.82
Ours (µ = 3) 87.72 90.09 91.84 61.05 64.79 66.18 40.06 42.52 49.86
Ours (µ = 10) 88.66 90.17 91.01 62.45 65.82 65.16 41.30 45.36 47.84

Table 3: Top-1 accuracy under linear evaluation protocal.

520

Additional details about the encoder. For the backbone network, we use the CIFAR variant of521

ResNet18 for CIFAR-10 and CIFAR-100 experiments and use ResNet50 for Tiny-ImageNet and522

ImageNet experiments. For the projection MLP, we use a 2-layer MLP with hidden and output523

dimensions 1000 for CIFAR-10, CIFAR100, and Tiny-ImageNet experiments. We use a 3-layer MLP524

with hidden and output dimension 8192 for ImageNet experiments. We set µ = 10 in the ImageNet525

experiment, and set µ ∈ {1, 3, 10} for the CIFAR-10/100 and Tiny-ImageNet experiments.526

Training the encoder. We train the neural network using SGD with momentum 0.9. The learning rate527

starts at 0.05 and decreases to 0 with a cosine schedule. On CIFAR-10/100 and Tiny-ImageNet we use528

weight decay 0.0005 and train for 800 epochs with batch size 512. On ImageNet we use weight decay529

0.0001 and train for 100 epochs with batch size 384. We use 1 GTX 1080 GPU for CIFAR-10/100530

and Tiny-ImageNet experiments, and use 8 GTX 1080 GPUs for ImageNet experiments.531

Linear evaluation protocol. We train the linear head using SGD with batch size 256 and weight532

decay 0 for 100 epochs, learning rate starts at 30.0 and is decayed by 10x at the 60th and 80th epochs.533

Image transformation details. We use the same augmentation strategy as described in [14].534

B Limitations and potential negative social impacts535

Limitations. This paper provides statistical guarantees for self-supervised learning. One limitation536

is that we don’t provide guarantees for optimization, and it is unclear whether standard optimization537

algorithms like SGD can provably reach the global minimum of the spectral contrastive loss. We538

believe this question is beyond the scope of this work but will be an interesting future direction.539

Potential negative social impacts. In the long run, one possible negative impact of our research (and540

AI research in general) is leading to a large scale of job losses as humans are replaced by machines.541

14



However, we believe that day is still far away given the current limitations of AI algorithms. We hope542

that our work can lead to more principled AI algorithms, which will overall benefit human society.543

C Proofs for Section 3544

We first prove a more generalized version of Theorem 3.7 in section C.2, and then prove Theorem 3.7545

in Section C.3.546

C.1 Proofs of Lemma 3.1 and Lemma 3.2547

Proof of Lemma 3.1. Let D = diag(s) where sx > 0 for x ∈ X . Let ux, ũx ∈ Rk be the x-th row of548

matrices F and F̃ , respectively. Recall that gu,B(x) = arg maxi∈[r](u
>
xB)i is the prediction on an549

augmented data x ∈ X with representation ux and linear classifier B. Let B̃ = Q−1B, it’s easy to550

see that gũ,B̃(x) = arg maxi∈[r](sx · u>xB)i. Notice that sx > 0 doesn’t change the prediction since551

it changes all dimensions of u>xB by the same scale, we have gũ,B̃(x) = gu,B(x) for any augmented552

data x ∈ X . The equivalence of loss naturally follows.553

Proof of Lemma 3.2. We can expand Lmf(F ) and obtain554

Lmf(F ) =
∑

x,x′∈X

(
wxx′√
wxwx′

− u>x ux′
)2

=
∑

x,x′∈X

(
w2
xx′

wxwx′
− 2 · wxx′ · f(x)>f(x) + wxwx′ ·

(
f(x)>f(x′)

)2)
(7)

Notice that the first term is a constant that only depends on the graph but not the variable f . By the555

definition of augmentation graph, wxx′ is the probability of a random positive pair being (x, x′) while556

wx is the probability of a random augmented data being x. We can hence rewrite the sum of last two557

terms in Equation (7) as Equation (6).558

C.2 A generalized version of Theorem 3.7559

For the proof we will follow the convention in literature [29] and define the normalized Laplacian560

matrix as follows:561

Definition C.1. Let G = (X , w) be the augmentation graph defined in Section 3.1. The normalized562

Laplacian matrix of the graph is defined as L = I − D−1/2AD−1/2, where A is the adjacency563

matrix with Axx′ = wxx′ and D is a diagonal matrix with Dxx = wx.564

It is easy to see that L = I −A where A is the normalized adjacency matrix defined in Section 3.1.565

Therefore, when λi is the i-th largest eigenvalue of L, 1− λi is the i-th largest eigenvalue of A.566

We call a function defined on augmented data ŷ : X → [r] an extended labeling function. Given an567

extended labeling function, we define the following quantity that describes the difference between568

extended labels of two augmented data of the same natural data:569

φŷ :=
∑

x,x′∈X
wxx′ · 1 [ŷ(x) 6= ŷ(x′)] . (8)

We also define the following quantity that describes the difference between extended label of an570

augmentated data and the ground truth label of the corresponding natural data:571

∆(y, ŷ) := Pr
x∼PX ,x̃∼A(·|x)

(ŷ(x̃) 6= y(x)) . (9)

Recall the spectral contrastive loss defined in Section 3.2 is:572

L(f) := E x1∼PX ,x2∼PX ,

x∼A(·|x1),x+∼A(·|x1),x′∼A(·|x2)

[
−2 · f(x)>f(x+) +

(
f(x)>f(x′)

)2]
.

We first state a more general version of Theorem 3.7 as follows.573

15



Theorem C.2. Assume the set of augmented data X is finite. Let f∗pop ∈ arg minf :X→Rk L(f) be574

a minimizer of the population spectral contrastive loss L(f) with k ∈ Z+. Let k′ ≥ r such that575

k+ 1 = (1 + ζ)k′, where ζ ∈ (0, 1) and k′ ∈ Z+. Then, there exists a linear probe B∗ ∈ Rr×k and576

a universal constant c such that the linear probe predictor satisfies577

Ex̄∼PX ,x∼A(·|x̄)

[∥∥~y(x̄)−B∗f∗pop(x)
∥∥2

2

]
≤ c ·

(
poly(1/ζ) · log(k + 1) · φ

ŷ

ρ2
k′

+ ∆(y, ŷ)

)
,

where ~y(x̄) is the one-hot embedding of y(x̄) and ρk′ is the sparsest m-partition defined in Defini-578

tion 3.4. Furthermore, the error of the linear probe predictor can be bounded by579

Pr
x̄∼PX ,x∼A(·|x̄)

(
gf∗pop,B

∗(x) 6= y(x̄)
)
≤ 2c ·

(
poly(1/ζ) · log(k + 1) · φ

ŷ

ρ2
k′

+ ∆(y, ŷ)

)
.

Also, if we let λi be the i-th smallest eigenvalue of the normalized Laplacian matrix of the graph580

of the augmented data, we can find a matrix B∗ satisfying the above equations with norm bound581

‖B∗‖F ≤ 1/(1− λk).582

We provide the proof for Theorem C.2 below.583

Let λ1, λ2, · · · , λk, λk+1 be the k+ 1 smallest eigenvalues of the Laplacian matrix L. The following584

theorem gives a theoretical guarantee similar to Theorem C.2 except for that the bound depends on585

λk+1:586

Theorem C.3. Assume the set of augmented data X is finite. Let f∗pop ∈ arg minf :X→Rk be a587

minimizer of the population spectral contrastive loss L(f) with k ∈ Z+. Then, for any labeling588

function ŷ : X → [r] there exists a linear probe B∗ ∈ Rr×k with norm ‖B∗‖F ≤ 1/(1− λk) such589

that590

Ex̄∼PX ,x∼A(·|x̄)

[∥∥~y(x̄)−B∗f∗pop(x)
∥∥2

2

]
≤ φŷ

λk+1
+ 4∆(y, ŷ),

where ~y(x̄) is the one-hot embedding of y(x̄). Furthermore, the error can be bounded by591

Pr
x̄∼PX ,x∼A(·|x̄)

(
gf∗pop,B

∗(x) 6= y(x̄)
)
≤ 2φŷ

λk+1
+ 8∆(y, ŷ).

We defer the proof of Theorem C.3 to Section C.4.592

To get rid of the dependency on λk+1, we use following higher-order Cheeger’s inequality from [32].593

Lemma C.4 (Proposition 1.2 in [32]). Let G = (V,w) be a weight graph with |V | = N . Then, for594

any t ∈ [N ] and ζ > 0 such that (1 + ζ)t ∈ [N ], there exists a partition S1, S2, · · · , St of V with595

φG(Si) . poly(1/ζ)
√
λ(1+ζ)t log t,

where φG(·) is the Dirichlet conductance defined in Definition 3.3.596

Now we prove Theorem C.2 by combining TheoremC.3 and Lemma C.4.597

Proof of Theorem C.2. Let G = (X , w) be the augmentation graph. In Lemma C.4 let (1 + ζ)t =598

k + 1 and t = k′ we have: there exists partition S1, · · · , Sk′ ⊂ X such that φG(Si) .599

poly(1/ζ)
√
λk+1 log (k + 1) for ∀i ∈ [k′]. By Definition 3.4, we have ρk′ ≤ maxi∈[k′] φG(Si) .600

poly(1/ζ)
√
λk+1 log (k + 1), which leads to 1

λk+1
. poly(1/ζ) · log(k + 1) · 1

ρ2
k′

. Plugging this601

bound to Theorem C.3 finishes the proof.602

C.3 Proof of Theorem 3.7603

We will use the following lemma which gives a connection between φŷ , ∆(y, ŷ) and Assumption 3.5.604
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Lemma C.5. Let G = (X , w) be the augmentation graph, r be the number of underlying classes.605

Let S1, S2, · · · , Sr be the partition induced by the classifier g in Assumption 3.5. Then, there exists606

an extended labeling function ŷ such that607

∆(y, ŷ) ≤ α

and608

φŷ =
∑

x,x′∈X
wxx′ · 1 [ŷ(x) 6= ŷ(x′)] ≤ 2α.

Proof of Lemma C.5. We define function ŷ : X → [r] as follows: for an augmented data x ∈ X , we609

use function ŷ(x) to represent the index of set that x is in, i.e., x ∈ Sŷ(x). By Assumption 3.5 it is610

easy to see ∆(y, ŷ) ≤ α. On the other hand, we have611

φŷ =
∑

x,x′∈X
wxx′1 [ŷ(x) 6= ŷ(x′)]

=
∑

x,x′∈X
Ex̄∼PX [A(x|x̄)A(x′|x̄) · 1 [ŷ(x) 6= ŷ(x′)]]

≤
∑

x,x′∈X
Ex̄∼PX [A(x|x̄)A(x′|x̄) · (1 [ŷ(x) 6= y(x̄)] + 1 [ŷ(x′) 6= y(x̄)])]

=2 · Ex̄∼PX [A(x|x̄) · 1 [ŷ(x) 6= y(x̄)]]

=2 · Pr
x̄∼PX ,x∼A(·|x̄)

(
x /∈ Sy(x̄)

)
= 2α.

Here the inequality is because when ŷ(x) 6= ŷ(x′), there must be ŷ(x) 6= y(x̄) or ŷ(x′) 6= y(x̄).612

Now we give the proof of Theorem 3.7 using Lemma C.5 and Theorem C.2.613

Proof of Theorem 3.7. Let S1, S2, · · · , Sr be the partition of X induced by the classifier g given in614

Assumption 3.5. Define function ŷ : X → [r] as follows: for an augmented data x ∈ X , we use func-615

tion ŷ(x) to represent the index of set that x is in, i.e., x ∈ Sŷ(x). Let k′ = bk2 c in Theorem C.2, we616

have Prx̄∼PX ,x∼A(·|x̄)

(
gf∗pop,B

∗(x) 6= y(x̄)
)
. log(k) · φŷ

ρ2
bk/2c

+ ∆(y, ŷ). By Lemma C.5 we have617

φŷ ≤ 2α and ∆(y, ŷ) ≤ α, so we have Prx̄∼PX ,x∼A(·|x̄)

(
gf∗pop,B

∗(x) 6= y(x̄)
)
. α

ρ2
bk/2c

· log(k).618

Notice that by definition of ensembled linear probe predictor, ḡf∗pop,B
∗(x̄) 6= y(x̄) happens619

only if more than half of the augmentations of x̄ predicts differently from y(x̄), so we have620

Prx̄∼PX

(
ḡf∗pop,B

∗(x̄) 6= y(x̄)
)
≤ 2 Prx̄∼PX ,x∼A(·|x̄)

(
gf∗pop,B

∗(x) 6= y(x̄)
)
. α

ρ2
bk/2c

· log(k).621

C.4 Proof of Theorem C.3622

The proof of Theorem C.3 contains two steps. First, we show that when the feature extractor is623

composed of the minimal eigenvectors of the normalized Laplacian matrix L, we can achieve good624

linear probe accuracy. Then we show that minimizing L(f) gives us a feature extractor equally good625

as the eigenvectors.626

For the first step, we use the following lemma which shows that the smallest eigenvectors of L can627

approximate any function on X up to an error proportional to the Rayleigh quotient of the function.628

Lemma C.6. Let L be the normalized Laplacian matrix of some graph G. Let N = |X | be total629

number of augmented data, vi be the i-th smallest unit-norm eigenvector of L with eigenvalue λi630

(make them orthogonal in case of repeated eignevalues). Let R(u) := u>Lu
u>u

be the Rayleigh quotient631

of a vector u ∈ RN . Then, for any k ∈ Z+ such that k < N and λk+1 > 0, there exists a vector632

b ∈ Rk with norm ‖b‖2 ≤ ‖u‖2 such that633 ∥∥∥∥∥u−
k∑
i=1

bivi

∥∥∥∥∥
2

2

≤ R(u)

λk+1
‖u‖22 .
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Proof of Lemma C.6. We can decompose the vector u in the eigenvector basis as:634

u =

N∑
i=1

ζivi.

We have635

R(u) =

∑N
i=1 λiζ

2
i

‖u‖22
.

Let b ∈ Rk be the vector such that bi = ζi. Obviously we have ‖b‖22 ≤ ‖u‖
2
2. Noticing that636 ∥∥∥∥∥u−

k∑
i=1

bivi

∥∥∥∥∥
2

2

=

N∑
i=k+1

ζ2
i ≤

R(u)

λk+1
‖u‖22 ,

which finishes the proof.637

We also need the following claim about the Rayleigh quotient R(u) when u is a vector defined by an638

extended labeling function ŷ.639

Claim C.7. In the setting of Lemma C.6, let ŷ be an extended labeling function. Fix i ∈ [r]. Define640

function uŷi (x) :=
√
wx · 1 [ŷ(x) = i] and uŷi is the corresponding vector in RN . Also define the641

following quantity:642

φŷi :=

∑
x,x′∈X wxx′ · 1 [(ŷ(x) = i ∧ ŷ(x′) 6= i) or (ŷ(x) 6= i ∧ ŷ(x′) = i)]∑

x∈X wx · 1 [ŷ(x) = i]
.

Then, we have643

R(uŷi ) =
1

2
φŷi .

Proof of Claim C.7. Let f be any function X → R, define function u(x) :=
√
wx · f(x). Let644

u ∈ RN be the vector corresponding to u. Let A be the adjacency matrix with Axx′ = wxx′ and D645

be the diagonal matrix with Dxx = wx. By definition of Laplacian matrix, we have646

u>Lu = ‖u‖22 − u
>D−1/2AD−1/2u

=
∑
x∈X

wxf(x)2 −
∑

x,x′∈X
wxx′f(x)f(x′)

=
1

2

∑
x,x′∈X

wxx′ · (f(x)− f(x′))
2
.

Therefore we have647

R(u) =
u>Lu

u>u

=
1

2
·
∑
x,x′∈X wxx′ · (f(x)− f(x′))

2∑
x∈X wx · f(x)2

.

Setting f(x) = 1 [ŷ(x) = i] finishes the proof.648

To see the connection between the feature extractor minimizing the population spectral contrastive649

loss L(f) and the feature extractor corresponding to eigenvectors of the Laplacian matrix, we use650

the following lemma which states that the minimizer of the matrix approximation loss defined in651

Section 3.2 is equivalent to the minimizer of population spectral contrastive loss up to a data-wise652

scaling.653

Lemma C.8. Let F̂mf be the matrix form of a feature extractor f̂mf : X → Rk. Then, F̂mf is a654

minimizer of Lmf(F ) if and only if655

f̂(x) :=
1
√
wx
· f̂mf(x)

is a minimizer of the population spectral contrastive loss L(f).656
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Proof of Lemma C.8. Notice that657

Lmf(F ) =
∥∥(I − L)− FF>

∥∥2

F

=
∑

x,x′∈X

(
wxx′√
wxwx′

− f(x)>f(x′)

)2

=
∑

x,x′∈X

(
f(x)>f(x′)

)2 − 2
∑

x,x′∈X

wxx′√
wxwx′

f(x)>f(x′) + ‖I − L‖2F . (10)

Recall that the definition of spectral contrastive loss is658

L(f) := −2 · Ex,x+

[
f(x)>f(x+)

]
+ Ex,x′

[(
f(x)>f(x′)

)2]
,

where (x, x+) is a random positive pair, (x, x′) is a random negative pair. We can rewrite the spectral659

contrastive loss as660

L(f) = −2
∑

x,x′∈X
wxx′ · f(x)>f(x′) +

∑
x,x′∈X

wxwx′ ·
(
f(x)>f(x′)

)2
=

∑
x,x′∈X

((
f(x)
√
wx

)>(
f(x′)
√
wx′

))2

− 2
∑

x,x′∈X

wxx′√
wxwx′

(
f(x)
√
wx

)>(
f(x′)
√
wx′

)
. (11)

Compare Equation (10) and Equation (11), we see their minimizers only differ by a term
√
wx, which661

finishes the proof.662

Note that the minimizer of matrix approximation loss is exactly the largest eigenvectors of I − L663

(also the smallest eigenvectors of L) due to Eckart–Young–Mirsky theorem, Lemma C.8 indicates664

that the minimizer of L(f) is equivalent to the smallest eigenvectors of L up to data-wise scaling.665

Now we are ready to prove Theorem C.3 by combining Lemma C.6, Claim C.7 and Lemma C.8.666

Proof of Theorem C.3. Let Fsc = [v1, v2, · · · , vk] be the matrix that contains the smallest k eigen-667

vectors of L as columns, and fsc : X → Rk is the corresponding feature extractor. For each i ∈ [r],668

we define function uŷi (x) :=
√
wx · 1 [ŷ(x) = i] and uŷi be the corresponding vector in RN . By669

Lemma C.6, there exists a vector bi ∈ Rk with norm bound ‖bi‖2 ≤
∥∥∥uŷi ∥∥∥

2
such that670 ∥∥∥uŷi − Fscbi

∥∥∥2

2
≤ R(uŷi )

λk+1

∥∥∥uŷi ∥∥∥2

2
. (12)

By Claim C.7, we have671

R(uŷi ) =
1

2
φŷi =

1

2
·
∑
x,x′∈X wxx′ · 1 [(ŷ(x) = i ∧ ŷ(x′) 6= i) or (ŷ(x) 6= i ∧ ŷ(x′) = i)]∑

x∈X wx · 1 [ŷ(x) = i]
.

So we can rewrite Equation (12) as:672 ∥∥∥uŷi − Fscbi

∥∥∥2

2
≤ φŷi

2λk+1
·
∑
x∈X

wx · 1 [ŷ(x) = i]

=
1

2λk+1

∑
x,x′∈X

wxx′ · 1 [(ŷ(x) = i ∧ ŷ(x′) 6= i) or (ŷ(x) 6= i ∧ ŷ(x′) = i)] .

(13)

Let matrix U = [uŷ1, · · · , uŷr ] contains all uŷi as columns, and let u : X → Rr be the corresponding673

feature extractor. Define matrix B ∈ RN×k such that B> = [b1, · · · , br]. Summing Equation (13)674

over all i ∈ [r] and by the definition of φŷ we have675 ∥∥U − FscB
>∥∥2

F
≤ 1

2λk+1

∑
x,x′∈X

wxx′ · 1 [ŷ(x) 6= ŷ(x′)] =
φŷ

2λk+1
, (14)
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where676

‖B‖2F =

r∑
i=1

‖bi‖22 ≤
r∑
i=1

∥∥∥uŷi ∥∥∥2

2
=
∑
x∈X

wx = 1.

Now we come back to the feature extractor f∗pop that minimizes the spectral contrastive loss function677

L(f). By Lemma C.8, function f∗mf(x) :=
√
wx · f∗pop(x) is a minimizer of matrix approximation678

loss. Let F ∗mf be the corresponding matrix. By Eckard-Young-Mirsky theorem, we have679

F ∗mf = FscDλQ,

where Q is an orthonomal matrix and680

Dλ =


√

1− λ1 √
1− λ2

· · · √
1− λk

 .
Let681

B∗ = BD−1
λ Q−1,

and let ~y(x̄) be the one-hot embedding of y(x̄), ~̂y(x) be the one-hot embedding of ŷ(x), we have682

Ex̄∼PX ,x∼A(·|x̄)

[∥∥~y(x̄)−B∗f∗pop(x)
∥∥2

2

]
≤2Ex̄∼PX ,x∼A(·|x̄)

[∥∥∥~̂y(x)−B∗f∗pop(x)
∥∥∥2

2

]
+ 2Ex̄∼PX ,x∼A(·|x̄)

[∥∥∥~̂y(x)− ~y(x̄)
∥∥∥2

2

]
=2
∑
x∈X

wx ·
∥∥∥~̂y(x)−B∗f∗pop(x)

∥∥∥2

2
+ 4∆(y, ŷ) (because wx is the probability of x)

=2
∑
x∈X
‖u(x)−B∗f∗mf(x)‖22 + 4∆(y, ŷ) (because f∗mf(x) =

√
wx · f∗pop(x))

=2
∥∥∥U − F ∗mfB

∗>
∥∥∥2

F
+ 4∆(y, ŷ) (rewrite in matrix form)

=2
∥∥U − FscB

>∥∥2

F
+ 4∆(y, ŷ) (by definition of B∗)

≤ φŷ

λk+1
+ 4∆(y, ŷ). (by Equation (14))

To bound the error rate, we first notice that gF∗mf,B
∗(x) 6= y(x̄) happens only if ‖~y(x̄)−B∗fsc(x)‖22 ≥683

1
2 , we have for any x ∈ X ,684 ∥∥∥~y(x̄)−B∗f̂ma(x)

∥∥∥2

2
≥ 1

2
· 1
[
gF∗mf,B

∗(x) 6= y(x̄)
]
. (15)

Now we bound the error rate on X as follows:685

Pr
x̄∼PX ,x∼A(·|x̄)

(
gf∗pop,B

∗(x) 6= y(x̄)
)

≤2Ex̄∼PX ,x∼A(·|x̄)

[∥∥~y(x̄)−B∗f∗pop(x)
∥∥2

2

]
(by Equation (15))

≤ 2φŷ

λk+1
+ 8∆(y, ŷ).

Finally we bound the norm of B∗ as686

‖B∗‖2F = Tr
(
B∗B∗>

)
= Tr

(
BD−2

λ B>
)
≤ 1

1− λk
‖B‖2F =

1

1− λk
.

687
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D Proofs for Section 3.4688

In this section, we give a proof of Theorem 3.9.689

The following lemma shows that the augmented graph for Example 3.8 satisfies Assumption 3.5 with690

some bounded α.691

Lemma D.1. In the setting of Theorem 3.9, the data distribution satisfies Assumption 3.5 with692

α ≤ 1
poly(d′) .693

Proof of Lemma D.1. For any z ∼ N (µi,
1
d′ · Id′×d′) and any j 6= i, by the tail bound of gaussian694

distribution we have695

Pr
z∼N (µi,

1
d′ ·Id′×d′ )

(
(z − µi)>

(
µj − µi
‖µj − µi‖2

)
.

√
log d√
d′

)
≥ 1− 1

poly(d)
.

Also, for ξ ∼ N (0, 1
d · Id×d), when σ ≤ 1√

d
we have696

Pr
ξ∼N (0,σ

2

d ·Id′×d′ )

(
‖ξ‖2 .

√
log d√
d

)
≥ 1− 1

poly(d)
.

Notice that
∥∥Q−1(Q(z) + ξ)− z

∥∥
2
≤ κ ‖ξ‖, we can set ‖µi − µj‖ & κ

√
log d√
d

. Therefore, when697

‖µi − µj‖ & κ
√

log d√
d′

we can combine the above two cases and have698

Pr
z∼N (µi,

1
d′ ·Id′×d′ ),ξ∼N (0,σ

2

d ·Id′×d′ )

(
Pi(z) > Pj(Q

−1(Q(z) + ξ))
)
≥ 1− 1

poly(d)
.

Since r ≤ d, we have699

Pr
x̄∼PX ,x∼A(·|x̄)

(y(x) 6= y(x̄)) ≥ 1− 1

poly(d)
.

700

We use the following lemma to give a lower bound for the sparest m-partition of the augmentation701

graph in Example 3.8.702

Lemma D.2. In the setting of Theorem 3.9, for any k′ > r and τ > 0, we have703

ρk′ ≥
cτ/κ

18
· exp

(
−2cστ + τ2

2σ2/d

)
,

where704

cσ := σ · Φ−1
d (

2

3
)

with Φd(z) := Prξ∼N (0, 1d Id×d)(‖ξ‖2 ≤ z), and705

cτ/κ := min
p∈[0, 34 ]

Φ(Φ−1(p) + τ
√
d/κ)

p
− 1

with Φ(z) :=
∫ z
−∞

e−u
2/2

√
2π

du.706

The proof of Lemma D.2 can be found in Section D.1. Now we give the proof of Example 3.9.707

Proof of Theorem 3.9. The result on α is directly from Lemma D.1. By concentration inequality,708

there must exists some universal constant C > 0 such that for any d ≥ C, we have 1−Φd(
√

3
2 ) ≤ 1

3 .709

When this happens, we have Φ−1
d ( 2

3 ) ≤
√

3
2 . Since for d ≤ C we can just treat d as constant, we710

have Φ−1
d ( 2

3 ) . 1. Set τ = σ/d in Lemma D.2, we have ρk′ & σ
κ
√
d

. Set k′ = bk/2c, we apply711

Theorem 3.7 and get the bound we need.712
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D.1 Proof of Lemma D.2713

In this section we give a proof for Lemma D.2. We first introduce the following claim which states714

that for a given subset of augmented data, any two data close in L2 norm cannot have a very different715

chance of being augmented into this set.716

Claim D.3. In the setting of Theorem 3.9, given a set S ⊆ Rd. If x ∈ Rd satisfies Pr(S|x) :=717

Prx̃∼A(·|x)(x̃ ∈ S) ≥ 2
3 . Then, for any x′ such that ‖x− x′‖2 ≤ τ , we have718

Pr(S|x′) ≥ 1

3
· exp

(
−2cστ + τ2

2σ2

)
,

where719

cσ := σ · Φ−1
d (

2

3
),

with Φd(z) := Prξ∼N (0, 1d ·Id×d)(‖ξ‖2 ≤ z).720

Proof of Claim D.3. By the definition of augmentation, we know721

Pr(S|x) = E
ξ∼N (0,σ

2

d ·Id×d)
[1 [x+ ξ ∈ S]] .

By the definition of cσ , we have722

Pr
ξ∼N (0,σ

2

d ·Id×d)

(‖ξ‖2 ≤ cσ) =
2

3
.

Since Pr(S|x) ≥ 2
3 by assumption, we have723

E
ξ∼N (0,σ

2

d ·Id×d)
[P (S|x+ ξ) · 1 [‖ξ‖2 ≤ cσ]] ≥ 1

3
.

Now we can bound the quanity of our interest:724

Pr(S|x′) =
1

(2πσ2/d)d/2

∫
ξ

e
− ‖ξ‖

2
2

2σ2/dP (S|x′ + ξ)dξ

=
1

(2πσ2/d)d/2

∫
ξ

e
−‖

ξ+x−x′‖22
2σ2/d P (S|x+ ξ)dξ

≥ 1

(2πσ2/d)d/2

∫
ξ

e
−‖

ξ+x−x′‖22
2σ2/d P (S|x+ ξ) · 1 [‖ξ‖2 ≤ cσ] dξ

≥ 1

(2πσ2/d)d/2

∫
ξ

e
− 2cστ+τ2+‖ξ‖22

2σ2/d P (S|x+ ξ) · 1 [‖ξ‖2 ≤ cσ] dξ

= e
− 2cστ+τ2

2σ2/d · E
ξ∼N (0,σ

2

d Id×d)
[P (S|x+ ξ) · 1 [‖ξ‖2 ≤ cσ]]

≥ 1

3
· exp

(
−2cστ + τ2

2σ2/d

)
.

725

We now give the proof of Lemma D.2.726

Proof of Lemma D.2. Let S1, · · · , Sk′ be the disjoint sets that gives ρk′ in Definition 3.4. First we727

notice that when k′ > r, there must exist t ∈ [k′] such that for all i ∈ [r], we have728

Pr
x∼Pi,x̃∼A(·|x)

(x̃ ∈ St) ≤
1

2
. (16)

WLOG, we assume t = 1. So we know that729

ρk′ = max
i∈[k′]

φG(Si) ≥ φG(S1) ≥ min
j∈[r]

Ex∼Pj [Pr(S1|x)(1− Pr(S1|x))]

Ex∼Pj [Pr(S1|x)]
, (17)
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where730

Pr(S|x) := Pr
x̃∼A(·|x)

(x̃ ∈ S).

WLOG, we assume j = 1 minimizes the RHS of Equation (17), so we only need to prove731

Ex∼P1
[Pr(S1|x)(1− Pr(S1|x))]

Ex∼P1
[Pr(S1|x)]

≥
cτ/κ

18
· exp

(
−2cστ + τ2

2σ2/d

)
.

We define the following set732

R :=

{
x

∣∣∣∣Pr(S1|x) ≥ 2

3

}
.

Notice that733

Ex∼P1
[Pr(S1|x)] =

∫
x

P1(x) Pr(S1|x)dx

=

∫
x∈R

P1(x) Pr(S1|x)dx+

∫
x/∈R

P1(x) Pr(S1|x)dx. (18)

We can consider the following two cases.734

Case 1:
∫
x/∈R P1(x) Pr(S1|x)dx ≥ 1

2Ex∼P1
[Pr(S1|x)].735

This is the easy case because we have736

Ex∼P1 [Pr(S1|x)(1− Pr(S1|x))] ≥
∫
x/∈R

P1(x) Pr(S1|x)(1− Pr(S1|x))dx

≥ 1

3

∫
x/∈R

P1(x) Pr(S1|x)dx

≥ 1

6
Ex∼P1

[Pr(S1|x)] .

Case 2:
∫
x∈R P1(x) Pr(S1|x)dx ≥ 1

2Ex∼P1 [Pr(S1|x)].737

Define neighbourhood of R as738

N(R) :=

{
x

∣∣∣∣ ‖x− a‖2 ≤ τ for some a ∈ R
}
.

We have739

Ex∼P1
[Pr(S1|x)(1− Pr(S1|x))] ≥

∫
x∈N(R)\R

P1(x) Pr(S1|x)(1− Pr(S1|x))dx

≥ 1

9
· exp

(
−2cστ + τ2

2σ2/d

)
·
∫
x∈N(R)\R

P1(x)dx,

where the second inequality is by Claim D.3. Notice that740 ∫
x∈R

P1(x)dx ≤ 3

2

∫
x∈R

P1(x) Pr(S1|x)dx ≤ 3

2

∫
x

P1(x) Pr(S1|x)dx ≤ 3

4
,

where we use Equation (16). Define set R̃ := Q−1(R) be the set in the ambient space corresponding741

to R. Define742

Ñ(R̃) :=

{
x′ ∈ Rd

′
∣∣∣∣ ‖x′ − a‖2 ≤ τ

κ
for some a ∈ R̃

}
Due to Q being κ-bi-lipschitz, it is easy to see Ñ(R̃) ⊆ Q−1 (N(R)). According to the Gaussian743

isoperimetric inequality [7], we have744 ∫
x∈N(R)\R

P1(x)dx ≥ cτ/κ
∫
x∈R

P1(x)dx,
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where745

cτ/κ := min
0≤p≤3/4

Φ(Φ−1(p) + τ
√
d/κ)

p
− 1,

with Φ(·) is the Gaussian CDF function defined as746

Φ(z) :=

∫ z

−∞

e−u
2/2

√
2π

du.

So we have747

Ex∼P1
[Pr(S1|x)(1− Pr(S1|x))] ≥

cτ/κ

9
· exp

(
−2cστ + τ2

2σ2/d

)
·
∫
x∈R

P1(x)dx

≥
cτ/κ

9
· exp

(
−2cστ + τ2

2σ2/d

)
·
∫
x∈R

P1(x) Pr(S1|x)dx

≥
cτ/κ

18
· exp

(
−2cστ + τ2

2σ2/d

)
· Ex∼P1 [Pr(S1|x)] .

By Equation (18), either case 1 or case 2 holds. Combining case 1 and case 2, we have748

Ex∼P1 [Pr(S1|x)(1− Pr(S1|x))]

Ex∼P1
[Pr(S1|x)]

≥ min

{
1

6
,
cτ/κ

18
· exp

(
−2cστ + τ2

2σ2/d

)}
=
cτ/κ

18
· exp

(
−2cστ + τ2

2σ2/d

)
.

749

E Proofs for Section 4750

E.1 Proof of Theorem 4.1751

We restate the empirical spectral contrastive loss defined in Section 4 as follows:752

Definition E.1 (Empirical spectral contrastive loss). Consider a dataset X̂ = {x̄1, x̄2, · · · , x̄n}753

containing n data points i.i.d. sampled from PX . Let P̂X be the uniform distribution over X̂ . Let754

P̂x̄,x̄′ be the uniform distribution over data pairs (x̄i, x̄j) where i 6= j. We define the empirical755

spectral contrastive loss of a feature extractor f as756

L̂f (:) = −2E x̄∼P̂X ,
x∼A(·|x̄),x′∼A(·|x̄)

[
f(x)>f(x′)

]
+ E (x̄,x̄′)∼P̂

x̄,x̄′ ,

x∼A(·|x̄),x′∼A(·|x̄′)

[(
f(x)>f(x′)

)2]
.

The following claim shows that L̂n(f) is an unbiased estimator of population spectral contrastive757

loss.758

Claim E.2. L̂n(f) is an unbiased estimator of L(f), i.e.,759

EX̂
[
L̂n(f)

]
= L(f).

Proof. This is because760

EX̂
[
L̂n(f)

]
= −2 · EX̂

[
E x̄∼P̂X ,
x∼A(·|x̄),x′∼A(·|x̄)

[
f(x)>f(x′)

]]
+ EX̂

[
E (x̄,x̄′)∼P̂

x̄,x̄′ ,

x∼A(·|x̄),x′∼A(·|x̄′)

[(
f(x)>f(x′)

)2]]
= −2E x̄∼PX ,

x∼A(·|x̄),x′∼A(·|x̄)

[
f(x)>f(x′)

]
+ E x̄∼PX ,x̄

′∼PX ,
x∼A(·|x̄),x′∼A(·|x̄′)

[(
f(x)>f(x′)

)2]
= L(f).

761
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To make use of the Radmacher complexity theory, we need to write the empirical loss as the sum of762

i.i.d. terms, which is achieved by the following sub-sampling scheme:763

Definition E.3. Given dataset X̂ , we sample a subset of tuples as follows: first sample a permutation764

π : [n]→ [n], then we sample tuples S = {(zi, z+
i , z

′
i)}

n/2
i=1 as follows:765

zi ∼ A(·|x̄π(2i−1)),

z+
i ∼ A(·|x̄π(2i−1)),

z′i ∼ A(·|x̄π(2i)).

We define the following loss on S:766

L̂S(f) :=
1

n/2

n/2∑
i=1

[(
f(zi)

>f(z′i)
)2 − 2f(zi)

>f(z+
i )
]
.

It is easy to see that L̂S(f) is an unbiased estimator of L̂n(f):767

Claim E.4. For given X̂ , if we sample S as above, we have:768

ES
[
L̂S(f)

]
= L̂f (.)

Proof. This is obvious by the definition of L̂S(f) and L̂n(f).769

The following lemma reveals the relationship between the Rademacher complexity of feature extrac-770

tors and the Rademacher complexity of the loss defined on tuples:771

Lemma E.5. Let F be a hypothesis class of feature extractors from X to Rk. Assume ‖f(x)‖∞ ≤ κ772

for all x ∈ X . For i ∈ [k], define fi : X → R be the function such that fi(x) is the i-th dimension773

of f(x). Let Fi be the hypothesis containing fi for all f ∈ F . For m ∈ Z+, let R̂m(Fi) be the774

maximal possible empirical Rademacher complexity of Fi over m data:775

R̂m(Fi) := max
{x1,x2,··· ,xm}

Eσ

 sup
fi∈Fi

 1

m

m∑
j=1

σjfi(xj)

 ,
where x1, x2, · · · , xm are in X , and σ is a uniform random vector in {−1, 1}m. Then, the empirical776

Rademacher complexity on any m tuples {(zi, z+
i , z

′
i)}mi=1 can be bounded by777

Eσ

sup
f∈F

 1

m

m∑
j=1

σj

((
f(zj)

>f(z′j)
)2 − 2f(zj)

>f(z+
j )
) ≤ (16k2κ2 + 16kκ) ·max

i∈[k]
R̂m(Fi).

Proof.

Eσ

sup
f∈F

 1

m

m∑
j=1

σj

((
f(zj)

>f(z′j)
)2 − 2f(zj)

>f(z+
j )
)

≤Eσ

sup
f∈F

 1

m

m∑
j=1

σj
(
f(zj)

>f(z′j)
)2+ 2Eσ

sup
f∈F

 1

m

m∑
j=1

σjf(zj)
>f(z+

j )


≤2kκEσ

sup
f∈F

 1

m

m∑
j=1

σjf(zj)
>f(z′j)

+ 2Eσ

sup
f∈F

 1

m

m∑
j=1

σjf(zj)
>f(z+

j )


≤(2k2κ+ 2k) max

z1,z2,··· ,zm
z′1,z
′
2,··· ,z

′
m

max
i∈[k]

Eσ

 sup
fi∈Fi

 1

m

m∑
j=1

σjfi(zj)fi(z
′
j)

 ,
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here the second inequality is by Talagrand’s lemma. Notice that for any z1, z2 · · · zm and778

z′1, z
′
2, · · · , z′m in X and any i ∈ [k] we have779

Eσ

 sup
fi∈Fi

 1

m

m∑
j=1

σjfi(zj)fi(z
′
j)


≤1

2
Eσ

 sup
fi∈Fi

 1

m

m∑
j=1

σj
(
fi(zj) + fi(z

′
j)
)2+

1

2
Eσ

 sup
fi∈Fi

 1

m

m∑
j=1

σj
(
fi(zj)− fi(z′j)

)2
≤4κEσ

 sup
fi∈Fi

 1

m

m∑
j=1

σjfi(zj)

+ 4κEσ

 sup
fi∈Fi

 1

m

m∑
j=1

σjfi(z
′
j)

 ,
where the first inequaltiy is by Talagrand’s lemma. Combine these two equations and we get:780

Eσ

sup
f∈F

 1

m

m∑
j=1

σj

((
f(zj)

>f(z′j)
)2 − 2f(zj)

>f(z+
j )
)

≤(16k2κ2 + 16kκ) max
z1,z2,··· ,zm

max
i∈[k]

Eσ

 sup
fi∈Fi

 1

m

m∑
j=1

σjfi(zj)

 .
781

Proof of Theorem 4.1. By Claim E.2 and Claim E.4, we know that ES [L̂S(f)] = L(f), where S782

is sampled by first sampling X̂ then sample S according to Definition E.3. Notice that when X̂783

contains n i.i.d. samples natural data, the set of random tuples S contains n i.i.d tuples. Therefore,784

we can apply generalization bound with Rademacher complexity to get a uniform convergence785

bound. In particular, by Lemma E.5 and notice the fact that
(
f(zj)

>f(z′j)
)2−2f(zj)

>f(z+
j ) always786

take values in range [−2kκ2, 2kκ2 + k2κ4], we apply standard generalization analysis based on787

Rademacher complexity and get: with probability at least 1− δ2/4 over the randomness of X̂ and S,788

we have for any f ∈ F ,789

L(f) ≤ L̂S(f) + (32k2κ2 + 32kκ) max
i∈[k]
R̂n/2(Fi) + (4kκ2 + k2κ4) ·

√
4 log 2/δ

n
. (19)

This means with probability at least 1 − δ/2 over random X̂ , we have: with probability at least790

1− δ/2 over random tuples S conditioned on X̂ , Equation (19) holds. Since both L(f) and L̂n(f)791

take value in range [−2kκ2, 2kκ2 + k2κ4], we have: with probability at least 1− δ/2 over random792

X̂ , we have for any f ∈ F ,793

L(f) ≤ L̂n(f) + (32k2κ2 + 32kκ) ·max
i∈[k]
R̂n/2(Fi) + (4kκ2 + k2κ4) ·

(√
4 log 2/δ

n
+
δ

2

)
.

Since negating the functions in a function class doesn’t change its Rademacher complexity, we also794

have the other direction: with probability at least 1− δ/2 over random X̂ , we have for any f ∈ F ,795

L(f) ≥ L̂n(f)− (32k2κ2 + 32kκ) ·max
i∈[k]
R̂n/2(Fi) + (4kκ2 + k2κ4) ·

(√
4 log 2/δ

n
+
δ

2

)
.

Combine them together we get the excess risk bound: with probability at least 1− δ, we have796

L(f̂) ≤ L(f∗F ) + (64k2κ2 + 64kκ) ·max
i∈[k]
R̂n/2(Fi) + (8kκ2 + 2k2κ4) ·

(√
4 log 2/δ

n
+
δ

2

)
,

where f̂ is minimizer of L̂n(f) in F and f∗F is minimizer of L(f) in F . Set c1 = 64k2κ2 + 64kκ797

and c2 = 16kκ2 + 4k2κ4 and notice that maxi∈[k] R̂n/2(Fi) = R̂n/2(F) finishes the proof.798
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E.2 Generalization bound for spectral contrastive learning with deep neural networks799

In this section, we examplify Theorem 4.1 with the norm-contralled Rademacher complexity bound800

introduced in [20], which gives the following theorem.801

Theorem E.6. Assume X is a subset of Euclidean space Rd and ‖x‖2 ≤ Cx for any x ∈ X . Let F802

be a hypothesis class of norm-contralled l-layer deep neural networks defined as803

{x→ Pκ(Wlσ(Wl−1σ(· · ·σ(W1x)))) : ‖Wi‖F ≤ Cw,i}
where σ(·) is element-wise ReLU activation, Pκ(·) is element-wise projection to interval [−κ, κ] for804

some κ > 0, Cw,i is the norm bound of the i-th layer, Wl has k rows and W1 has d columns. Then,805

with probability at least 1− δ over randomness of a dataset with size 2n, we have806

L(f̂) ≤ L∗F + c1 ·
CxCw

√
l√

n
+ c2 ·

(√
log 1/δ

n
+ δ

)
,

where f̂ is the minimizer of L̂2n(f) in F , L∗F is the minimal L(f) achievable by any function f ∈ F ,807

Cw :=
∏l
i=1 Cw,i, constants c1 . k2κ2 + kκ and c2 . kκ2 + k2κ4.808

Proof of Theorem E.6. Consider the following hypothesis class of real-valued neural networks:809

Freal ,
{
x→ Ŵlσ(Wl−1σ(· · ·σ(W1x))) : ‖Wi‖F ≤ Cw,i

}
where σ(·) is element-wise ReLU activation and Cw,i is the norm bound of the i-th layer defined in810

the theorem, Wl has k rows and Ŵ1 is a vector. By Theorem 1 of [20], we have811

R̂n (Freal) ≤
Cx(

√
2 log(2)l + 1)Cw√

n
.

Let the projection version of this hyposis class be:812

Freal+proj ,
{
x→ Pκ(Ŵlσ(Wl−1σ(· · ·σ(W1x)))) : ‖Wi‖F ≤ Cw,i

}
,

where Pκ(·) projects a real number into interval [−Cw, Cw]. Notice that Pκ(·) is 1-Lipschitz, by813

Telegrand’s lemma we have814

R̂n (Freal+proj) ≤
Cx(

√
2 log(2)l + 1)Cw√

n
.

For each i ∈ [k], define function fi : X → R such that fi(x) is the i-th dimension of f(x), define Fi815

be the hypothesis class including all fi for f ∈ F . Then when F is the composition of deep neural816

networks and projection function as defined in the theorem, it is obvious to see that Fi = Freal+proj817

for all i ∈ [k]. Therefore, by Theorem 4.1 we have818

L(f̂) ≤ L∗F + c1 ·
Cx(

√
2 log(2)l + 1)Cw√

n
+ c2 ·

(√
log 2/δ

n
+ δ

)
,

and absorbing the constants into c1 finishes the proof.819

E.3 Proof of Theorem 4.2820

In this section we give the proof of Theorem 4.2. We first introduce the following definitions of821

ε-optimal minimizers of matrix approximation loss and population spectral contrastive loss:822

Definition E.7. We say a function f̂mf is ε-optimal minimizer of matrix approximation loss Lmf if823

Lmf(F̂mf) ≤ min
F
Lmf(F ) + ε,

where F̂mf is f̂mf written in the matrix form. We say a function f̂ is ε-optimal minimizer of spectral824

contrastive loss L if825

L(f̂) ≤ min
f
L(f) + ε.
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We introduce the following generalized version of Theorem C.3, which captures the main effects of826

error in the representation.827

Theorem E.8. [Generalization of Theorem C.3] Assume the set of augmented data X is finite. Let828

λi be the i-th smallest eigenvalue of the normalize laplacian matrix. Let f̂ ∈ arg minf :X→Rk be829

a ε-optimal minimizer of the spectral contrastive loss function L(f) with k ∈ Z+. Then, for any830

labeling function ŷ : X → [r] there exists a linear probe B̂ ∈ Rr×k such that831

Pr
x̄∼PX ,x∼A(·|x̄)

(
gf̂ ,B̂(x) 6= y(x̄)

)
≤ min

1≤k′≤k

(
2φŷ

λk′+1
+

4k′ε

(λk+1 − λk′)2

)
+ ∆(y, ŷ),

where φŷ and ∆(y, ŷ) are defined in Equations 8 and 9 respectively.832

The proof of lemma E.8 is deferred to Section E.4.833

Now we are ready to prove Theorem 4.2 using Theorem E.8.834

Proof of Theorem 4.2. In Theorem E.8 we let k′ = b 3
4kc on the RHS of the bound and get: for any835

ŷ : X → [r] there exists B̂ ∈ Rr×k such that836

Pr
x∼PX ,x̃∼A(·|x)

(
gf̂ ,B̂(x̃) 6= y(x)

)
≤ 2φŷ

λb 3
4kc+1

+
3kε

(λk+1 − λb 3
4kc

)2
+ ∆(y, ŷ).

Let S1, S2, · · · , Sr be the partition of X induced by the classifier g in Assumption 3.5. Define837

function ŷ : X → [r] as follows: for an augmented data x ∈ X , we use function ŷ(x) to represent838

the index of set that x is in, i.e., x ∈ Sŷ(x). Then by Lemma C.5 we have φŷ ≤ 2α and ∆(y, ŷ) ≤ α.839

In Lemma C.4 let (1 + ζ)t = b 3
4kc + 1 and t = bk2 c, then there is ζ ≥ 0.5, so we have: there840

exists a partition S1, · · · , Sb k2 c ⊂ X such that φG(Si) .
√
λb 3

4kc+1 log (k) for ∀i ∈ [bk2 c]. By841

Definition 3.4, we have ρb k2 c .
√
λb 3

4kc+1 log (k), which leads to 1
λb 3

4
kc+1

. log(k)
ρ2

b k
2
c

. So we have842

Pr
x̄∼PX ,x∼A(·|x̄)

(
gf̂ ,B̂(x) 6= y(x̄)

)
.

α

ρ2
b k2 c
· log(k) +

kε

(λk+1 − λb 3
4kc

)2

.
α

ρ2
b k2 c
· log(k) +

kε

(λk − λb 3
4kc

)2
.

Notice that by the definition of ensembled linear probe predictor, ḡf̂ ,B̂(x̄) 6= y(x̄) happens843

only if more than half of the augmentations of x̄ predicts differently from y(x̄), so we have844

Prx̄∼PX

(
ḡf̂ ,B̂ 6= y(x̄)

)
≤ 2 Prx̄∼PX ,x∼A(·|x̄)

(
gf̂ ,B̂(x) 6= y(x̄)

)
which finishes the proof.845

E.4 Proof of Theorem E.8846

In this section, we give the proof for Theorem E.8.847

Lemma E.9 (Generalization of Lemma C.8). Let F̂mf be the matrix form of a feature extractor848

f̂mf : X → Rk. Then, F̂mf is a ε-optimal minimizer of Lmf(F ) if and only if849

f̂(x) :=
1
√
wx
· f̂mf(x)

is a ε-optimal minimizer of spectral contrastive loss L(f).850

Proof of Lemma E.9. The proof follows the proof of Lemma C.8.851

We will use the following important lemma about ε-optimal minimizer of Lmf:852
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Lemma E.10. Let λi be the i-th minimal eigenvalue of the normalized Laplacian matrix L with853

corrsponding unit-norm eigenvector vi. Let f : X → Rk be ε-optimal minimizer of Lmf where854

ε < (1− λk)2. Let F ∈ RN×k be the matrix form of f , where N = |X |. Let Π⊥f vi be the projection855

of vi onto the subspace orthogonal to the column span of F . Then, for i ≤ k we have856 ∥∥Π⊥f vi
∥∥2

2
≤ ε

(λk+1 − λi)2
.

Proof. For function f with matrix form F , we overload notation Lmf(·) and use Lmf(f) to represent857

Lmf(F ).858

We first prove that the column rank of f is k. If the column rank of f is less than k, then859

there must exists some function f ′ : X → Rk−1 such that Lmf(f
′) = Lmf(f). Accord-860

ing to the Eckart–Young–Mirsky Theorem, we have minf :X→Rk Lmf(f) =
∑N
j=k+1(1 − λj)

2861

and minf :X→Rk−1 Lmf(f) =
∑N
j=k(1 − λj)

2. Therefore, Lmf(f) = Lmf(f
′) ≥ (1 − λk)2 +862

minf :X→Rk Lmf(f), contradicting with ε < (1− λk)2. As a result, the column rank of f has to be k.863

Recall normalized adjacency matrix A = I−L. We use Ai to denote the i-th column of A. We use Â864

to denote matrix FF> and Âi to denote the i-th column of Â. Let z1, · · · , zk be unit-norm orthogonal865

vectors in the column span of F . Since the column span of Â is the same as the column span of866

F , we know columns of Â are in span{z1, · · · , zk}. Let zk+1, · · · , zN be unit-norm orthogonal867

vectors such that together with z1, · · · , zk they form an orthonormal basis of RN . We use Πf and868

Π⊥f to denote matrices
∑k
j=1 zjz

>
j and

∑N
j=k+1 zjz

>
j respectively, then for any vector v ∈ RN ,869

vectors Πfv and Π⊥f v are the projections of v onto the column span of f and its orthogonal space870

respectively.871

We first give a lower bound of Lmf(f) as follows:872

Lmf(f) =
∥∥∥A− Â∥∥∥2

F
=

N∑
j=1

∥∥∥Aj − Âj∥∥∥2

2
≥

N∑
j=1

∥∥Aj −ΠfAj
∥∥2

2

=

N∑
j=1

∥∥∥∥∥Aj −
(

k∑
t=1

ztz
>
t

)
Aj

∥∥∥∥∥
2

2

=

N∑
j=1

∥∥∥∥∥
(

N∑
t=k+1

ztz
>
t

)
Aj

∥∥∥∥∥
2

2

=

∥∥∥∥∥
(

N∑
t=k+1

ztz
>
t

)
A

∥∥∥∥∥
2

F

=
∥∥Π⊥f A

∥∥2

F
.

where the first equality is by definition of Lmf(f), the second equality is by writing the Frobenius873

norm square as the sum of column norm square, the inequality is because Âj must be in the span of874

z1, · · · , zk while ΠfAj is the vector in this span that is closest to Aj , the third equality is writing the875

projection function in the matrix form, the fourth equality is because z1, · · · zd are an orthonormal876

basis, the fifth equality is rewriting to Frobenius norm, and the last equality is by definition of Π⊥f .877

Notice that878 ∥∥Π⊥f A
∥∥2

F
= Tr

(
A
>

Π⊥f
>

Π⊥f A
)

= Tr
(
A
>

Π⊥f A
)

= Tr
(
AA
>

Π⊥f

)
.

We can rewrite the above lower bound as879

Lmf(f) ≥ Tr
(
AA
>

Π⊥f

)
= Tr

 N∑
j=1

(1− λj)2vjv
>
j

N∑
t=k+1

ztz
>
t

 =

N∑
j=1

N∑
t=k+1

(1− λj)2〈vj , zt〉2.

We define variable Sj ,
∑j
t=1

∑d
l=k+1〈vt, zl〉2 for any j ∈ [N ]. Also denote λd+1 = 1. We have880

the following equality:881

N∑
j=1

N∑
t=k+1

(1− λj)2〈vj , zt〉2 =

N∑
j=1

(
(1− λj)2 − (1− λj+1)2

)
Sj .
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Notice that Sj ≥ 0 and also when i ≤ j ≤ k, we have Sj ≥
∥∥∥Π⊥f vi

∥∥∥2

2
, we have882

N∑
j=1

N∑
t=k+1

(1− λj)2〈vj , zt〉2 ≥
(
(1− λi)2 − (1− λk+1)2

) ∥∥Π⊥f vi
∥∥2

2
+

N∑
j=k+1

(
(1− λj)2 − (1− λj+1)2

)
Sj ,

where we replace every Sj with 0 when j < k, replace Sj with
∥∥∥Π⊥f vi

∥∥∥2

2
when i ≤ j ≤ k, and keep883

Sj when j ≥ k + 1. Now notice that884

SN =

N∑
t=1

N∑
l=k+1

〈vt, zl〉2 =

N∑
l=k+1

N∑
t=1

〈vt, zl〉2 =

N∑
l=k+1

‖zl‖22 = N − k,

and also885

Sj+1 − Sj =

N∑
l=k+1

〈vj+1, zl〉2 ≤
N∑
l=1

〈vj+1, zl〉2 = 1,

there must be Sj ≥ j − k when j ≥ k + 1. So we have886

N∑
j=1

N∑
t=k+1

(1− λj)2〈vj , zt〉2

≥
(
(1− λi)2 − (1− λk+1)2

) ∥∥Π⊥f vi
∥∥2

2
+

N∑
j=k+1

(
(1− λj)2 − (1− λj+1)2

)
(j − k)

=
(
(1− λi)2 − (1− λk+1)2

) ∥∥Π⊥f vi
∥∥2

2
+

N∑
j=k+1

(1− λj)2

=
(
(1− λi)2 − (1− λk+1)2

) ∥∥Π⊥f vi
∥∥2

2
+ Lmf(f

∗
pop),

where f∗pop is the minimizer of Lmf, and the last equality is by Eckart–Young–Mirsky Theorem. So we887

know Lmf(f) ≥
(
(1− λi)2 − (1− λk+1)2

) ∥∥∥Π⊥f vi

∥∥∥2

2
+ Lmf(f

∗
pop), which implies that

∥∥∥Π⊥f vi

∥∥∥2

2
≤888

ε
(1−λi)2−(1−λk+1)2 ≤ ε

(λk+1−λi)2 .889

The following lemma generalizes Lemma C.6.890

Lemma E.11 (Generalization of Lemma C.6). Let L be the normalized Laplacian matrix of graph891

G = (X , w), where |X | = N . Let f : X → Rk be an ε-optimal minimizer of Lmf(f) where892

ε < (1− λk)2. Let F be the matrix form of f and Fi is the i-th column of F . Let R(u) := u>Lu
u>u

be893

the Rayleigh quotient of a vector u ∈ RN . Then, for any k ∈ Z+ such that k < N , there exists a894

vector b ∈ Rk such that895 ∥∥∥∥∥u−
k∑
i=1

biFi

∥∥∥∥∥
2

2

≤ min
1≤k′≤k

(
2R(u)

λk′+1
+

2k′ε

(λk+1 − λk′)2

)
‖u‖22 .

Proof. Let k′ be the choice that minimizes the right hand side. We use pv(u) to denote the projection896

of u onto the span of v1, · · · , vk′ . We use pv,f (u) to denote the projection of pv(u) onto the span of897

f1, · · · , fk. Then we know that898

‖u− pv,f (u)‖22 ≤ 2 ‖u− pv(u)‖22 + 2 ‖pv(u)− pv,f (u)‖22 . (20)

By the proof of Lemma C.6, we know that899

‖u− pv(u)‖22 ≤
R(u)

λk′+1
‖u‖22 . (21)
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On the other hand, we have900

‖pv(u)− pvf (u)‖22 =
∥∥Π⊥f pv(u)

∥∥2

2

=

∥∥∥∥∥∥
k′∑
i=1

Π⊥f viv
>
i u

∥∥∥∥∥∥
2

2

≤

 k′∑
i=1

∥∥Π⊥f vi
∥∥2

2

 ·
 k′∑
i=1

(v>i u)2


≤ k′ε

(λk+1 − λk′)2
‖u‖22 , (22)

where the first inequality if by Cauchy–Schwarz inequality and the second inequality if by901

Lemma E.10. Plugging Equation (21) and Equation (22) into Equation (20) finishes the proof.902

Now we prove Theorem E.8 using the above lemmas.903

Proof of Theorem E.8. By Lemma E.9, the ε-optimal minimizer of L(f) is only different from ε-904

optimal minimizer of Lmf(f) by a positive constant for each x. Since this difference won’t influence905

the perdiction accuracy, we only need to prove this theorem assuming f̂ is ε-optimal minimizer of906

Lmf(f).907

For each i ∈ [r], we define the function ui(x) = 1 [ŷ(x) = i] ·√wx. Let u : X → Rk be the function908

such that u(x) has ui at the i-th dimension. By Lemma E.11, there exists a vector bi ∈ Rk such that909 ∥∥∥ui − F̂ bi∥∥∥2

2
≤ min

1≤k′≤k

(
2R(ui)

λk′+1
+

2k′ε

(λk+1 − λk′)2

)
‖ui‖22

Let matrices U = [u1, · · · , ur] and B̂> = [b1, · · · , br]. We sum the above equation over all i ∈ [r]910

and get911 ∥∥∥U − F̂ B̂>∥∥∥2

F
≤

r∑
i=1

min
1≤k′≤k

(
2R(ui)

λk′+1
+

2k′ε

(λk+1 − λk′)2

)
‖ui‖22

≤ min
1≤k′≤k

r∑
i=1

(
2R(ui)

λk′+1
‖ui‖22 +

2k′ε

(λk+1 − λk′)2
‖ui‖22

)
. (23)

Notice that912

r∑
i=1

R(ui) ‖ui‖22 =

r∑
i=1

1

2
φŷi
∑
x∈X

wx · 1 [ŷ(x) = i]

=
1

2

r∑
i=1

∑
x,x′∈X

wxx′ · 1 [(ŷ(x) = i ∧ ŷ(x′) 6= i) or (ŷ(x) 6= i ∧ ŷ(x′) = i)]

=
1

2

∑
x,x′∈X

wxx′ · 1 [ŷ(x) 6= ŷ(x′)] =
1

2
φŷ, (24)

where the first equality is by Claim C.7. On the other hand, we have913

r∑
i=1

‖ui‖22 =

r∑
i=1

∑
x∈X

wx · 1 [ŷ(x) = i] =
∑
x∈X

wx = 1. (25)

Plugging Equation (24) and Equation (25) into Equation (23) gives us914 ∥∥∥U − F̂ B̂>∥∥∥2

F
≤ min

1≤k′≤k

(
φŷ

λk′+1
+

2k′ε

(λk+1 − λk′)2

)
.
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Notice that by definition of u(x), we know that prediction gf̂ ,B̂(x) 6= ŷ(x) only happens if915 ∥∥∥u(x)− B̂f̂(x)
∥∥∥2

2
≥ wx

2 . Hence we have916 ∑
x∈X

1

2
wx · 1

[
gf̂ ,B̂(x) 6= ŷ(x)

]
≤
∑
x∈X

∥∥∥u(x)− B̂f̂(x)
∥∥∥2

2
=
∥∥∥U − F̂ B̂>∥∥∥2

F
.

Now we are ready to bound the error rate on X :917

Pr
x∼X

(gf̂ ,B̂(x) 6= ŷ(x)) =
∑
x∈X

wx · 1
[
gf̂ ,B̂(x) 6= ŷ(x)

]
≤ 2 ·

∥∥∥U − f̂ B̂>∥∥∥2

F
≤ min

1≤k′≤k

(
2φŷ

λk′+1
+

4k′ε

(λk+1 − λk′)2

)
.

Here for the equality we are using the fact that Pr(x) = wx. We finish the proof by noticing that by918

the definition of ∆(y, ŷ):919

Pr
x̄∼PX ,x∼A(·|x̄)

(
gf̂ ,B̂(x) 6= y(x̄)

)
≤ Pr
x̄∼PX ,x∼A(·|x̄)

(
gf̂ ,B̂(x) 6= ŷ(x)

)
+ Pr
x̄∼PX ,x∼A(·|x̄)

(y(x̄) 6= ŷ(x))

≤ min
1≤k′≤k

(
2φŷ

λk′+1
+

4k′ε

(λk+1 − λk′)2

)
+ ∆(y, ŷ).

920

F Proofs for Section 5921

In this section we give the proof of Theorem 5.1. We first introduce the following lemma, which922

states the expected norm of representations:923

Lemma F.1. Let f∗pop : X → Rk be a minimizer of population spectral contrastive loss L(f). Then,924

we have925

Ex̄∼PX ,x∼A(·|x̄)

[∥∥f∗pop(x)
∥∥2

2

]
≤ k. (26)

Proof of Lemma F.1. By Lemma C.8 and the definition of w, we have926

Ex̄∼PX ,x∼A(·|x̄)

[∥∥f∗pop(x)
∥∥2

2

]
=
∑
x∈X

wx
∥∥f∗pop(x)

∥∥2

2
=
∑
x∈X

∥∥∥f̂ma(x)
∥∥∥2

2
=
∥∥∥F̂mf

∥∥∥2

F
, (27)

where F̂mf is a minimizer of the matrix approximation loss defined in Section 3.2. By Eckard-Young-927

Mirsky theorem, F̂mf looks like928

F̂mf = FscDλQ,

where Fsc = [v1, v2, · · · , vk] contains the k smallest eigenvectors of the laplacian matrix L as929

columns, Q is an orthonomal matrix and930

Dλ =


√

1− λ1 √
1− λ2

· · · √
1− λk

 .
So we have931 ∥∥∥F̂mf

∥∥∥2

F
= Tr

(
FscD

2
λF
>
sc

)
≤ Tr

(
FscF

>
sc

)
= k,

where we use the fact that Dλ has diagonal values less than 1 and vi is unit-norm. Pluggin this into932

Equation (27) finishes the proof.933

Now we give the proof of Theorem 5.1:934
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Proof of Theorem 5.1. Let f∗pop be the minimizer of population spectral contrastive loss L(f). We935

abuse notation and use yi to denote y(x̄i), and let zi = f∗pop(xi). We first study the average empirical936

Rademacher complexity of the capped quadratic loss on a dataset {(zi, yi)}ni=1, where (zi, yi) is937

sampled as in Section 5:938

R̂n(`) :=E{(zi,yi)}ni=1
Eσ

[
sup

‖B‖F≤1/Cλ

1

n

[
n∑
i=1

σi`((zi, yi), B)

]]

≤2rE{(zi,yi)}ni=1
Eσ

[
sup

‖b‖2≤1/Cλ

1

n

[
n∑
i=1

σiw
>zi

]]

≤ 2r

Cλ

√
E[‖zi‖2]

n
≤ 2r

√
k

Cλ
√
n
,

where the first inequality uses Talagrand’s lemma and the fact that `σ is 2-Lipschitz, the second in-939

equality is by standard Rademacher complexity of linear models, the third inequality is by Lemma F.1.940

By Theorem C.2, there exists a linear probe B∗ with norm bound ‖B∗‖F ≤ 1/(1 − λk) ≤ 1/Cλ941

such that942

Ex̄∼PX ,x∼A(·|x̄)

[
`
(
(f∗pop(x), y(x̄)), B∗

)]
. poly(1/ζ) log(k + 1) · φ

ŷ

ρ2
k′

+ ∆(y, ŷ),

where (1 + ζ)k′ = k + 1. Let B̂ be the minimizer of
∑n
i=1 ` ((zi, yi), B) subject to ‖B‖F ≤ 1/Cλ,943

then by standard generalization bound, we have: with probability at least 1− δ, we have944

Ex̄∼PX ,x∼A(·|x̄)

[
`
(

(f∗pop(x), y(x̄)), B̂
)]

. poly(1/ζ) log(k + 1) · φ
ŷ

ρ2
k′

+ ∆(y, ŷ) +
r
√
k

Cλ
√
n

+

√
log 1/δ

n
.

Follow the same steps as in the proof of Theorem 3.7, we can get a genalization bound of945

Ex̄∼PX ,x∼A(·|x̄)

[
`
(

(f∗pop(x), y(x̄)), B̂
)]

.
α

ρ2
bk/2c

· log k +
r

Cλ
·
√
k

n
+

√
log 1/δ

n
.

Notice that y(x̄) 6= gf∗pop,B̂
(x) only if `

(
(f∗pop(x), y(x̄)), B̂

)
≥ 1

2 , we have the error bound946

Pr
x̄∼PX ,x∼A(·|x̄)

(
gf∗pop,B̂

(x) 6= y(x̄)
)
.

α

ρ2
bk/2c

· log k +
r

Cλ
·
√
k

n
+

√
log 1/δ

n
.

The result on ḡf∗pop,B̂
naturally follows by the definition of ḡ.947
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