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Abstract

Scene classification is a valuable classification subtask and has its own characteris-
tics which still needs more in-depth studies. Basically, scene characteristics are
distributed over the whole image, which cause the need of “seeing” comprehensive
and informative regions. Previous works mainly focus on region discovery and
aggregation, while rarely involves the inherent properties of CNN along with its
potential ability to satisfy the requirements of scene classification. In this paper,
we propose to understand scene images and the scene classification CNN models
in terms of the focus area. From this new perspective, we find that large focus
area is preferred in scene classification CNN models as a consequence of learning
scene characteristics. Meanwhile, the analysis about existing training schemes
helps us to understand the effects of focus area, and also raises the question about
optimal training method for scene classification. Pursuing the better usage of
scene characteristics, we propose a new learning scheme with a tailored loss in the
goal of activating larger focus area on scene images. Since the supervision of the
target regions to be enlarged is usually lacked, our alternative learning scheme is
to erase already activated area, and allow the CNN models to activate more area
during training. The proposed scheme is implemented by keeping the pairwise
consistency between the output of the erased image and its original one. In partic-
ular, a tailored loss is proposed to keep such pairwise consistency by leveraging
category-relevance information. Experiments on Places365 show the significant
improvements of our method with various CNNs. Our method shows an inferior
result on the object-centric dataset, ImageNet, which experimentally indicates that
it captures the unique characteristics of scenes.

1 Introduction

Image classification is one of the fundamental tasks of computer vision, and attracts a lot of attention
as a popular task for facilitating the improvement of convolution neural network (CNN) [16, 23, 26,
11, 14]. As a valuable classification subtask, scene classification has its own characteristics which still
needs further study. In comparison with objects, scenes are more complex and have many differences.
One of main differences is that the characteristics of scenes are basically distributed over the whole
image, while those of objects are confined within a clear boundary. This phenomenon inspires a core
idea of scene classification, “seeing” comprehensive and informative regions in the image.

Most scene classification methods aim to extract unspecific [9, 25, 6] or specific regions [29, 33, 3],
then aggregate them via statistical models [9, 6, 29] or relation modeling approaches [25, 3]. The
main challenge is that the extraction and aggregation are partially independent from the main CNN
backbone. It induces some issues as follows. 1) some sort of incompatibility caused by the separated
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ways to extract and represent regions. 2) inevitable computational consumption from extra region
extraction and aggregation processes. It is less studied to investigate the inherent properties of CNN
and make them adaptive to the needs of scene classification in a more organic and effective way.

In this paper, we explore a new way to understand scene images and the CNN models for scene
classification in terms of the focus area. It is defined as the region consisting of pixels with large
aggregated activation values in the feature maps. From this perspective, we obtain some observations
that reveal the differences in the characteristics of CNNs between scene and object classification,
which also correlates well with the properties of these two kinds of images, i.e., scenes are more
complex with richer objects. One of the interesting findings is that some properties of training scheme
could drive the development of large focus area of the corresponding CNN model, which raises a
question about how to optimize the training strategy by considering the scene characteristics.

In order to take advantages of the scene characteristics, we propose a new learning scheme with
a tailored loss for scene classification. Our goal is to inspire the CNN models to focus on more
regions in the feature maps. However, the supervision of potentially useful regions is difficult to
be obtained. In alternative, we attempt to erase the already activated regions (from the images) and
require the consistent outputs, thus, the CNN models themselves could expand the focus area with
further optimizing. This is also motivated by our preliminary observations that a scene image can
retain its semantic meaning even when some regions are masked. Specifically, the modified image is
generated by partially erasing the input images with the guidance of model preference. The tailored
loss is implemented as pairwise consistency of predictions, which can leverage the category-relevance
information.

The principle behind our proposed method is the adversarial learning mechanism under the setting
of pairwise consistency. Compared to the original image allows the unconfined exploration, the
modified image is used for discovering additional parts which are previously ignored in the original
branch. The consistency constraint with the shared parameters unifies these two modes of region
explorations, leveraging the underlying opposing operations to perform a more comprehensive
and robust information extraction process. In addition, instance-level pairwise consistency shares
the excellent quality of knowledge distillation, and yields the unchanged models with superior
performances.

Experiments on one of the largest scene datasets, Places365 [38], demonstrate the effectiveness of the
proposed method with various CNNs by showing the significant performance improvements. Some
statistical analyses about the focus area indicate that our proposed method can enhance the capability
of exploring larger focus area in CNNs and fit the characteristics of scene images. We also evaluate
our method on ImageNet [15], and the inferior result can be the evidence to reveal the inner working
mechanism that is specifically designed for scene images.

2 Related work

Scene classification. In the era of CNN, many works [9, 5, 7, 18, 3, 31] explore various region
extraction and encoding methods based on CNN representations to improve scene classification. They
generally need lots of extra overhead compared to a single CNN classifier and are not easy to apply on
large scale datasets. A few researches focus on specific deep models designed for scene classification,
including Dictionary Learning CNN [19], spatial unstructured layer [10], and contextual relation
learning [40]. However, we aim to investigate the inherent properties of scene CNN model, and
propose an advanced training method to enhance it without any change of architecture.

Comparisons of scene and object networks. A growing number of works have been proposed to
understand the discrepancy between these two kinds of networks, especially in terms of the learned
representations. In [39], the mean image method is used to visualize the units of CNN layers, and
visually exhibits the relevance between the unit structures and the differences of the training data
in a qualitative way. Subsequently, a series of works tried to align the units of the CNN with some
semantic concepts by measuring the empirical receptive fields [36] or using the feature activation as
the segmentation results [1], and found that the networks trained to recognize scenes generally have
more interpretable units related to certain concepts, especially objects. In addition, Herranz et al.
[13] investigated the representations of CNNs trained on ImageNet and Places365 by comparing the
object scale ranges in these two datasets, and suggested the transfer performances could be improved
when choosing the suitable image sizes. In contrast, we analyze the feature maps by estimating the
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Figure 1: The distribution of the coverage ratio of focus area across various datasets (Places365 and
ImageNet) and training schemes (Simple and Complex). The bottom and top of the box show the
25th and 75th percentiles. The center line and triangle in the box denote the median and mean of the
data.

aggregated activation values and providing the new perspective of the focus area. Moreover, the
training schemes are also introduced and compared in terms of the focus area for better understanding
of the difference in the learned CNN models.

Erasing methods in CNN. Erasing regions or pixels in images or feature maps is an effective method
in weakly supervised object localization [24, 28, 32, 4] / segmentation [17], due to the observation
that the models often only concentrate on small and most discriminative regions of object when
supervised by only image-level labels. Our idea is inspired by this but study further the properties
of CNN from the perspective of the focus area, which changes previous empirical conclusion based
on some examples to a robust and reliable statistical analysis. In addition, we explore the erasing
method with a tailored loss and extending them into classification task with superior performances,
which enriches the understanding of the intrinsic correlations between the erasing method and image
classification.

3 Comparisons of scene and object networks via the focus area

A large number of previous image classification works propose various technical changes of CNN, and
evaluate them on ImageNet [15], which is an object-centric dataset. Despite the proposed large-scale
scene-centric datasets, Places205 [39] and Places365 [38], there is still a lack of researches on them,
due to the underlying assumption that effective models on object classification could be generalized
to scene classification. However, there are always some obvious differences between object and
scene images. In this case, scene classification should be investigated individually compared to object
classification.

Here, we provide a new perspective to analyze the differences between scene and object networks
by estimating the focus area of model on the input images. When the CNN models are trained, it is
possible to find out the regions, which the model concentrates on and extracts information from, to
make final decision. Various techniques have been developed to achieve this goal by using occluded
images [39], gradient information [22], or architecture tweaks [2]. The success of these attempts
motivates us to analyze the distributions of focus area of models trained on scene and object datasets,
and figure out the possible similarities and differences between them.
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Table 1: The classification performance (Top-1 accuracy %) of ImageNet and Places365 with two
training schemes, simple and complex ways.

ResNet18 ResNet50
Simple Complex Simple Complex

ImageNet 68.80 69.93 74.72 75.78
Places365 54.36 54.30 55.53 55.75

Based on the feature maps from last convolution layer, we adopt a simple adaptive thresholding
method to discover the focus area of model on an input image. The channel-wise average pooling are
performed on the feature maps to generate a heatmap. Then the mean value of this heatmap is used as
the threshold to segment it into a binary map. Finally, the focus area is composed of the pixels with
positive value in the binary map. The underlying assumption is that the feature maps can serve as an
indicator to point out the regions which models desired [30, 27], and the pixels with high activation
values in the feature maps have more valuable information [1].

The two variables, considered in our analyses about focus area, are dataset and training scheme.
In terms of dataset, ImageNet and Places365 are used as object-centric and scene-centric datasets,
respectively. Additionally, we introduce two training schemes, including simple and complex ways.
The main difference between them is the crop percent in the input processing operations. The former
fixes the percent to 76% (224×224 / 256×256), while the latter chooses a random percent in range
[8%, 100%] and is widely used in modern CNN training process. The detailed description of these
training schemes could be found in appendix. Given a focus area, we compute the coverage ratio
of it to the whole image as an analytical metric. As the focus area on a single image may be too
specific and not informative, we gather the validation datasets of ImageNet and Places365 to form an
evaluation set for analyzing the distribution of the coverage ratio.

We present the classification performance and the visualization of the distribution of the coverage
ratio across datasets and training schemes. Referring to the box plots in Figure 1, it is clearly shown
that the model learned on Places365 tend to focus more parts of the input image than ImageNet
when comparing the median and mean of the data distribution, and the result holds for both training
schemes. It is likely that the model trained on Places365 learns the mechanism of comprehensive
exploration and activation as a necessary condition for recognizing a scene.

Recalling the definition of the focus area, the pixels in it all have the aggregated activation values
than the mean value, which indicates that they either have large activation in a few channels or be
frequently activated in many channels. Some evidences [8, 35] have shown that each channel (or
unit) in feature maps could be regarded as a part or a full of a detector for a semantic concept, and
the concept regions emerge as the pixels with large activation values. In this way, the focus area
roughly represents the group of detected semantic concepts in each image, suggesting that the size
of the focus area can be accepted as a quantitative index of the regions with semantic concepts. By
this correlation, the preference for large focus area seems to be a natural consequence of the scene
attributes (containing more semantic concepts).

Another intriguing finding is the effect of training scheme. In contrast with complex training, simple
way presents the capability of enhancing the region exploration of model and yielding large focus
area on more examples, as shown in Figure 1. We also show the classification performances of
two training schemes on ImageNet and Places365 in Table 1. It concludes that simple training is a
competitive choice for Places365, while it works worse on ImageNet. We infer that complex training
adopts the cropped patches with various scales and yields more diverse training examples, which is
better for object classification. However, the similar performances of them on Places365 indicate that
the ability of simple training to explore regions is useful for improving the performances, and could
bridge the gap caused by the stronger data augmentation. This performance difference also raises
question about the optimal training method considering scene characteristics, and motivates us to
design a new learning framework as the effective response.

4 Advanced training via pairwise consistency

Some earlier works [28, 32, 4] have effectively demonstrated that erasing certain regions in the image
or feature maps can force CNN to cover the full extent of object in the context of object classification
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Figure 2: The overview of our proposed method.

along with the classification performance degradation. We conclude that erasing regions can be a
useful way to help the CNN models focus on more information of the image, which is reflected by
more activated positions in the feature maps.

Based on this, we propose a new learning scheme and design a tailored loss for scene classification.
Our design also correlates well with an observation about scene images, which is that if some regions
of an image are hiding, we still have a high probability to classify this image as the same category or
even the same image. In this way, we decide to make the outputs of an input image and its modified
version consistent. The main components of this learning process are the modifying way and the
consistency function.

Modifying image. Here, we will discuss which regions need to be erased. Normally, It is intuitive to
randomly choose regions, which is independent to the model and may not fit well. What is expected
is the kind of regions that could reflect the characteristics of images or models and are relevant to the
demands of classification.

Fortunately, it is widely recognized [30, 27, 34, 4] that the convolution feature maps can indicate the
model preferences in terms of spatial positions. A simple way [30, 4] to leverage this property is to
average the feature maps over channel dimensions, which will present the model-relevant regions as
a kind of learned knowledge. Furthermore, class activation map (CAM) [37] is proposed to direct the
attention to class-specific regions, which reveals the contents that provide evidences for making the
corresponding prediction. In our design, class-specific regions (produced by CAM) can present more
targeted information, and perform better in deriving region exploration as desired.

The generation of CAM depends on a specific module, termed CAM module, that sequentially
contains a convolution layer (1 × 1 in our setting), a global average pooling layer, and a fully
connected layer (as a classifier). Then, the output M of CAM is computed as follows,

M = F(A,W t) =

C∑
c=1

W t
cAc, (1)

where A ∈ RC×H×W is the output from the convolution layer, and W t is the weights in the classifier
to generate the prediction of class t. Note, the normalization is performed on the output map as
M = M−min(M)

max(M)−min(M) . Most modern CNN architectures can meet the demands of CAM generation.
So it is quite straightforward to use the original linear classifier of CNN to produce CAM.

However, we attach a CAM module to the input of last down-sampling layer (normally, spatial
dimension is 14× 14) for two reasons. One is that larger resolution feature maps may contain more
and better detail information. The other is that decoupling the classifier and the generation of CAM
would reduce the performance loss caused by erasing more relevant regions derived from the original
classifier. In addition, we use the prediction (category with the maximum output from the original
classifier) as class t, not the ground truth, because the focus point is the model’s characteristics, not
the properties of the input images.
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Guided by the output M , we can use a threshold γ to convert it to a binary mask MB , which indicates
the regions that need to be erased. Then, a modified image I∗ is yielded by multiplying the input
image I and the binary mask MB . The formulation of this process is shown as follows,

I∗ =MB � I, MB = T (M,γ), (2)
where � means element-wise multiplication, T denotes the thresholding function.

Pairwise consistency. Given the input image I and its modified version I∗, we propose a tailored loss
function to measure the similarity of their outputs so as to achieve pairwise consistency. Specifically,
two consistency forms can be considered, category-level and instance-level. In category-level
consistency, we assume that the pair of images belongs to the same category. In instance-level
consistency, a stricter constraint is created by enforcing the same prediction of these two images.

In practice, we keep the main component of CNN shared, and only create specific linear classifier
for two images, separately. In inference, the classifier of the modified image is discarded and
only the original image is used as input to make a prediction. For category-level consistency, two
cross-entropy loss with the same ground truth are used. For instance-level consistency, we use
Kullback-Leibler divergence as the metric to measure similarity between the output predictions, and
also keep supervising the main branch with the ground truth. Our final loss combines these two
consistency forms, and is formulated as

L = lmain + lside + αlmod + βlkl

=

K∑
k=1

−gk log(pk) +
K∑

k=1

−gklog(rk)

+ α

K∑
k=1

−gk log(qk) + β

K∑
k=1

−qk log(
qk
pk

), (3)

where p, q denote the predictions of the original and modified images respectively, g is the ground
truth (represented as one-hot vector). The item lside indicates the classification loss when applying
CAM module and yielding the prediction r. We empirically set α = 1 and β = 2 in all experiments.

Discussion. The erasing idea is the fundamental element of driving the region exploration of the
CNN model. It could be thought as a paradigm that can spawn various specific technical approaches.
When applying it on scene classification, a core point is the balance between the loss of important
information and the enhancement of exploring regions. Compared with previous alternatively erasing
way [24, 28, 32, 4], our pairwise learning method has the advantage of handling these two opposing
situations, due to the available complete features in the original image and the drive capability of
the erased image. Instance-level pairwise consistency maximizes the benefits by using the category
correlation, which sufficiently helps the model expand the focus area and further meets the scene
demands. Our method only influences the training stage, and shows no change in inference. Although
the proposed method needs double memory usage and computational time during training, we believe
it is tolerable as an one-off process.

5 Experiments

In this section, we empirically evaluate the effectiveness of the proposed method and conduct some
ablation studies for the deeper analyses.

Datasets. Places365 [38] is one of largest scene-centric datasets with over 10 million labeled images
of scenes, which consists of 365 scene categories and two versions of training sets, Places365-
challenge and Places365-standard. We choose Places365-standard as the training set in following
experiments, which provides 1.8 million images. The validation set has 36,500 images, where
100 images per category. We report Top-1 and Top-5 accuracy (single crop) on the validation set.
Meanwhile, for fast evaluation, we also randomly choose 1000 images per category from Places365-
standard set, and construct a new training set, termed Places365-small. We also reported some
experimental results on object dataset, ImageNet [15], which contains 1000 object categories with
1.3 million training images and 50,000 validation images.
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Table 2: Top-1 and Top-5 accuracy (%) on Places365-small and Places365 dataset. “RF” is short for
receptive field, which is computed according to the CNN architectures. “Param.” denotes the number
of parameters.

Dataset Model Param. RF Baseline Our Method
Top-1 Top-5 Top-1 Top-5

ShuffleNetV2 2.85M 527 47.67 78.68 48.91 79.76
ResNet18 11.36M 435 48.21 79.22 49.70 80.62

Places365 ResNet34 21.47M 899 48.52 79.58 50.72 81.31
-small ResNet50 24.26M 427 49.66 80.67 50.92 81.70

DenseNet121 7.33M 2071 49.48 80.87 51.55 82.20

Places365

ShuffleNetV2 2.85M 527 54.01 84.05 54.95 84.56
ResNet18 11.36M 435 54.36 84.50 55.12 84.94
ResNet34 21.47M 899 54.84 84.72 56.23 85.79
ResNet50 24.26M 427 55.53 85.85 56.61 86.15

DenseNet121 7.33M 2071 55.40 85.50 56.84 86.44

Implementation details. We evaluate the proposed method on several CNN architectures (imple-
mented based on torchvision models1), including ResNet [11], ShuffleNetV2 [21], and DenseNet
[14]. We use simple data augmentation with random cropping (from 256 × 256 to 224 × 224)
and random horizontal flipping during training. In inference, we apply center-cropping in resized
256×256 images. All models are trained from scratch by synchronous SGD with momentum 0.9 and
a mini-batch size of 256, starting from learning rate 0.1 and decreasing it by cosine annealing strategy
[20]. All experiments are conducted with the PyTorch framework on 4 Titan RTX devices. The weight
decay is 2e−4 for ResNet and DenseNet on Places365, 1e−4 for ShuffleNetV2 on Places365, and
5e−4 for all models on Places365-small. We conduct experiments on Places365 with 40 epochs and
Places365-small with 30 epochs. We simply evaluate the hyper-parameter γ in range {0.5, 0.7, 0.9},
and find γ = 0.7 is a better choice. Although, we believe more detailed evaluation of γ may lead to
better performances.

5.1 Main results

Comparison with the baseline. The main results are shown in Table 2. We compare the baseline
and our method with five CNNs (ShuffleNetV2, ResNet18 / 34 / 50, and DenseNet121). It can be
observed that the proposed method significantly improves the performances. For example, when
applied on ResNet34, the proposed method achieves the largest improvements of 2.20%, 1.39%
on Places365-small and Places365 datasets, respectively. Note that these improvements are very
significant, because there are less performance differences (e.g. less than 1.5% for ResNet18 and
ResNet50) between various models with the standard training scheme.

Interestingly, we also find the positive correlation between the receptive field and the improvement of
the proposed method. For example, ResNet34 and DenseNet121 have larger receptive field sizes (899
and 2071) along with bigger relative improvements (4.53% and 4.18%), compared to ResNet50 with
smaller receptive field size (427) and relative improvement (2.54%). It suggests that the proposed
method benefits much from the large receptive field, as it facilitates the ability of our method to
explore more possible useful regions. Another interesting finding is that the performance ranking of
ResNet50 and DenseNet121 is different between baseline and our method. Considering the large
difference in the receptive field size, we infer that the proposed method is able to leverage the potential
value of big receptive field, which may be limited in the standard training scheme.

Comparison with other erasing methods. We compare the proposed method with other related
erasing methods, HaS [24], ACoL [32], and ADL [4]. All three methods are proposed for weakly
supervised object localization task, which concentrate on the characteristics of object images, and
suffer degraded classification performances (excluding HaS). While ACoL and ADL achieve the
comparable or worse classification performances in WSOL, they clearly outperform the baselines in

1https://github.com/pytorch/vision
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Table 3: Comparison with other erasing methods,
HaS [24], ACoL [32], and ADL [4].

Methods HaS ADL ACoL Ours
ResNet18 49.25 48.70 49.03 49.70
ResNet34 49.91 48.68 49.55 50.72

Table 4: The position of CAM module.

Model ResNet18 ResNet34 DenseNet
stage4 49.62±0.22 49.77±0.08 51.29±0.08
stage3 49.70±0.10 50.72±0.05 51.55±0.17

Table 5: Comparison with object classification. All experiments are based on ResNet18, and trained
with the complex training settings. Top-1 accuracy % (single crop) is reported.

Dataset Places365-small Places365 ImageNet
Baseline 47.80 54.30 69.93

Ours 48.68 54.78 69.57

the context of scene classification, as shown in Table 3. Naturally, as a data augmentation method,
HaS still show a superior performance when applied on scene images.

The superior results of HaS verify the effectiveness of erasing idea. Compared to it, ADL and ACoL
apply the erasing operations on the middle layers, which results in the worse performances. However,
all these methods are inferior to our method. This can be attributed to the tailored pairwise consistency
loss along with the effective region generation method.

Comparison with object classification. We also evaluate the proposed method on ImageNet [15],
the most popular object dataset. All comparison experiments in Table 5 use the baseline training
procedure in [12] with a total batch size of 256, and 90 epochs, also named complex training scheme
in section 3. It can be observed that our method has a negative effect on object classification and show
inferior performance compared to the baseline. Note that the complex data augmentation strategy
adopt many cropped patches with various scales, which yields more training examples, but also noise
especially on scene images. In this way, many small scale patches are hard to be recognized as scenes,
leading to the inappropriate situations under the setting of pairwise consistency. Despite this bad
impact, the proposed method still obtain better performances. This comparison clearly indicates that
our method is specifically designed for scene images and leverage their unique attributes.

5.2 Ablation studies

The position of CAM module. We evaluate two positions for inserting the CAM module, stage3
(convolution layers operated on 14×14 feature maps) and stage4 (convolution layers operated on 7×7
feature maps). Although we assume that the erased image will have the same category distribution as
the original input, it may be hard to hold when the erased regions cover lots of discriminative parts.
As a result, we insert the CAM module at stage3, which is a little far away from the final classifier
and produces the less discriminative regions. As shown in Table 4, it can be seen that this strategy
works well on the models with large receptive field, like ResNet34 and DenseNet121, and retain the
similar performances on the models with small receptive field, such as ResNet18. Limited by the
computation resource, we only report the error bar in Table 4 with 3 repeated runs. The results show
that the random deviations are relatively small and do not interfere with our conclusions.

Table 6: Consistent or not? “AM”
means Attention Mining loss [17],
which aims to minimize the predic-
tion value of the modified image at
the ground truth.

Loss AM CPC
ResNet18 48.85 49.12
ResNet34 48.89 49.92

Table 7: The effect of two kinds of pairwise consistency
and side loss from CAM module. “CPC”, “IPC” are
short for the category-level and instance-level pairwise
consistency, respectively.

Side CPC IPC ResNet
18 34 50

X - - 48.75 48.76 49.52
X X - 49.12 49.92 50.43
X - X 49.65 50.36 50.85
X X X 49.70 50.72 50.92

Baselines 48.21 48.52 49.66
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ShuffleNetV2 ResNet18 ResNet34 ResNet50 DenseNet121

Figure 3: Comparison with the baseline. The focus area is computed with the convolution maps from
last convolution layer. “Green”, “Red” and “Blue” boxes correspond to the baseline and the proposed
method with CAM module inserted into stage3 and stage4 separately.

Pairwise consistency is the key factor of the propose method, and motivated by the specific properties
of scenes. Firstly, we want to discuss the value of the consistency idea. Li et al. [17] proposed a
different loss (attention mining loss) to minimize the prediction value of the modified image at the
ground truth. Table 6 shows the results from the attention mining loss and the category-level pairwise
consistency loss. We can see that our proposed consistency loss outperforms the attention mining
loss, especially on ResNet34. It infers that the consistency target provides a stronger driving force for
the model, and is a better way to explore more region information for scenes.

Beyond the category-level pairwise consistency (CPC), we also introduce the instance-level pairwise
consistency (IPC) as a more powerful tool. As shown in Table 7, It can be observed that IPC
significantly outperforms CPC on various CNNs. It is not surprising because IPC provides a clearer
and more precise guidance by investigating the category-relevance information from the prediction
distribution. Finally, we combine these two losses to produce a slightly better and robust model.

5.3 Analyses of the focus area

Figure 4: Comparisons of dif-
ferent loss items. The results
are evaluated with ResNet34
backbone.

Figure 3 shows the distribution of coverage ratio of the focus area
from our proposed method with CAM module in stage3 (red box)
and stage4 (blue box), and the baseline (green box). The evaluation
results are based on Places365 validation dataset and the feature
maps from last convolution layer of CNNs trained on Places365-
small dataset. It is clearly shown that the proposed method could
change the distribution of coverage ratio of the focus area, and force
the model to have large focus area on more images, especially when
CAM module is inserted into stage4. In terms of the mean and
median, the proposed method present significantly larger values than
the baseline, except ResNet50 with CAM in stage3 that shows a
small difference. It can be attributed to the complex influence factors
under the training process including the focus area. In other words,
the proposed method may need to find a balance of the enhancement
of region exploration, the limitation of network architectures, and
even the effects of various losses.

In addition, we also present a detailed comparison of different items
in our final loss (described in equation 3) by investigating their ef-
fects on the distribution of the focus area in Figure 4. Benefiting from the stronger consistency
constraint, instance-level pairwise consistency loss indicates a better driving force of region ex-
ploration, compared to category-level pairwise consistency loss. All loss items show the superior
results of the focus area to the baseline, which demonstrate the working mechanism of erasing idea
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and our pairwise consistency learning method. Unfortunately, there does not seem to be a linear
association between the differences in the mean or median of the distribution of different methods
and the corresponding classification performances.

6 Conclusion

In this work, we propose to investigate the CNN classification model in terms of focus area. Two
variables, image datasets and training schemes, is considered when measuring the focus area, and
help to analyze the difference between various classification models. An interesting finding is that
the focus area in scene networks generally has a bigger size than that in object networks. Meanwhile,
the effect of training schemes on the focus area is also significant and inspired us to think the optimal
training methods on scene images. Based on this, we propose a new learning scheme and a tailored
loss to force CNN to activate more positions in the feature maps for improving scene classification.
Extensive experiments on large scale scene dataset, Places365, demonstrate the effectiveness of the
proposed method. Meanwhile, the worse performance on object dataset, ImageNet, indicates that our
method is specifically designed for scenes and captures their unique attributes. Some comparison
analyses also verify the ability of our method to enlarge the focus area.
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