Appendix

Table of Contents

A	Proof of Proposition 4	13	
B	Proof of Proposition 7	14	
С	2 Proof of Theorem 12		
D	Proof of Proposition 15		
Е	Proof of Theorem 19	17	
F	Proofs of Section 5 Results F.1 Proof of Corollary 16	19 19 20 20 21	
G	Technical Lemmas	21	

A Proof of Proposition 4

We recall Proposition 4

Proposition 4. Let f be (μ, d) -convex. Suppose \hat{x} minimizes f over S and \tilde{x} minimizes f over star (\hat{x}, S) . Then, for any $x \in S$,

$$f(x) - f(\tilde{x}) \ge \mu \left(\frac{1}{3}d(x, \tilde{x})\right).$$

$$H_{2}$$

$$x \text{ (case 2)}$$

$$f_{\tilde{x}}$$

$$f_{\tilde{x}}$$

$$f_{\tilde{x}}$$

$$f_{\tilde{x}}$$

$$f_{\tilde{x}}$$

$$H_{1}$$

Figure 3: Illustration of Proposition 4.

x (case 1)

Proof. The proof relies on the observation that if $\lambda \mapsto z_{\lambda}$ is a line segment such that $z_0 \in \partial f_x$ (i.e. $f(z_0) = f(x)$), $z_1 \in \partial f_y$ (i.e. $f(z_1) = f(y)$), and $z_{\lambda} \in f_x \setminus f_y^{\circ}$ (i.e. $f(x) \ge f(z_{\lambda}) \ge f(y)$) for $\lambda \in [0, 1]$, then

 $f(x) - f(y) = f(z_0) - f(z_1) \ge \mu(d(z_0, z_1)).$

This is seen by repeating the proof of Lemma 3: since $z_{\lambda} \notin f_{y}^{\circ}$ we must have $(f(z_{\lambda}) - f(z_{1}))/\lambda \ge 0$. Plugging in $z_{\lambda} = z_{0} + \lambda(z_{1} - z_{0})$ and taking the limit infimum as $\lambda \downarrow 0$ gives $0 \le \langle \nabla f | z_{1}, z_{0} - z_{1} \rangle$. By (μ, d) -convexity of f, then,

$$f(z_1) - f(z_0) \ge f(z_1) - f(z_0) - \langle \nabla f |_{z_1}, z_0 - z_1 \rangle \ge \mu(d(z_1, z_0)).$$

Finally, if k such segments z_{λ} form a path from x to y, then at least one of them must have $d(z_1, z_0) \ge \frac{1}{k} d(x, y)$. This is due to the triangle inequality for d.

We now restrict our attention to the plane P containing (x, \hat{x}, \tilde{x}) . Let C be the minimal cone containing $f_{\tilde{x}}$ with vertex at \hat{x} . We note that, by optimality of \tilde{x} , no point $x \in S$ can lie in the interior of C.

Then $C \cap P$ is complementary to the union of two half-planes H_1 and H_2 with boundary lines ℓ_1 and ℓ_2 , respectively. These lines intersect ∂f_x at two respective points, s_1 and s_2 , and are tangent to $f_{\tilde{x}}$ at two respective points, $t_1 \equiv \tilde{x}$ and t_2 . Finally, $f_x \supseteq f_{\hat{x}}$ by optimality of \hat{x} . This is depicted in Figure 3 above.

There are two cases to consider. In the first case, $x \in H_1$. Then the line segment connecting \tilde{x} and x is contained entirely in $D = f_x \setminus f_{\tilde{x}}^{\circ}$. By the preceding discussion,

 $f(x) - f(\tilde{x}) \ge \mu(d(x, \tilde{x})) \ge \mu\left(\frac{1}{3}d(x, \tilde{x})\right).$

In the second case $x \in H_2 \setminus H_1$. In this case, the segment from \tilde{x} to s_1 along ℓ_1 lies entirely in D. Similarly, the segments from s_1 to t_2 and from t_2 to x are line segments contained in D. Each of these three segments connects $\partial f_{\tilde{x}}$ to ∂f_x , and they together form a path from \tilde{x} to x. By the preceding discussion, $f(x) = f(\tilde{x}) > x(1 d(x, \tilde{x}))$

$$f(x) - f(\hat{x}) \ge \mu\left(\frac{1}{3}d(x,\hat{x})\right).$$

This completes the proof.

B Proof of Proposition 7

We recall Proposition 7:

Proposition 7. Let \mathcal{F} be a model class, ψ a (μ, d) -convex loss, and f^* the population minimizer of the ψ -risk. Then, the star estimator \tilde{f} satisfies the excess risk bound

$$\mathbb{E}\Psi(\mathcal{E}(\tilde{f})) \le \mathbb{E}\Psi\left(\sup_{f \in \mathcal{F}'} \left\{ \frac{1}{n} \sum_{i=1}^{n} 2\varepsilon_i'(\psi_i(f^*) - \psi_i(f)) - (1 + \varepsilon_i')\mu(\frac{1}{3}d(f_i, f_i^*)) \right\} \right)$$
(10)

where the ε'_i are i.i.d. symmetric Rademacher random variables, $\mathcal{F}' = \bigcup_{\lambda \in [0,1]} \lambda \mathcal{F} + (1-\lambda) \mathcal{F}$, and $\Psi : \mathbb{R} \to \mathbb{R}$ is any increasing, convex function.

Proof. We'll work forwards from (9), which says that

$$\mathcal{E}(\tilde{f}) = \mathbb{E}\psi(\tilde{f}_i) - \mathbb{E}\psi(f^*)_i \le \sup_{f \in \mathcal{F}'} \left\{ (\mathbb{E}_n - \mathbb{E})(\psi(f_i^*) - \psi(f_i)) - \mathbb{E}_n \mu(d(f_i, f_i^*)/3) \right\}$$

Using the notation $\Delta_i(f) = \psi(f_i^*) - \psi(f)_i$, $\nu_i(f) = \frac{1}{2}\mu(\frac{1}{3}d(f_i, f_i^*))$, we can rewrite this as

$$\mathcal{E}(\tilde{f}) \le \sup_{f \in \mathcal{F}'} \left\{ \frac{1}{n} \sum_{i=1}^n (1 - \mathbb{E}) \Delta_i(f) - 2\nu_i(f) \right\}.$$

Adding and subtracting $\mathbb{E}\nu_i(f)$ gives

$$= \sup_{f \in \mathcal{F}'} \left\{ \frac{1}{n} \sum_{i=1}^n (1 - \mathbb{E}) (\Delta_i(f) - \nu_i(f)) - (1 + \mathbb{E}) \nu_i(f) \right\}.$$

By applying $\mathbb{E}\Psi$ to both sides and applying Lemma G1 (a symmetrization result along the lines of Liang et al. (2015)) with $A = \Delta$, $B = \nu$, and $T = \mathcal{F}$, we get

$$\leq \mathbb{E}\Psi\left(2\sup_{f\in\mathcal{F}'}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}'(\Delta_{i}(f)-\nu_{i}(f))-\nu_{i}(f)\right\}\right)$$
$$=\mathbb{E}\Psi\left(\sup_{f\in\mathcal{F}'}\left\{\frac{1}{n}\sum_{i=1}^{n}2\varepsilon_{i}'(\psi(f^{*})_{i}-\psi(f)_{i}-\frac{1}{2}\mu(\frac{1}{3}d(f_{i},f_{i}^{*})))-\mu(\frac{1}{3}d(f_{i},f_{i}^{*}))\right\}\right),$$

where we plugged in the definition of Δ_i and ν_i . This completes the proof.

C Proof of Theorem 12

We recall Theorem 12:

Theorem 12. Let ψ be an η -exp-concave loss function taking values in [0, m]. Then the star estimator in \mathcal{F} satisfies the excess risk bound

$$\mathbb{E}\Psi(\mathcal{E}(\tilde{f})) \le \mathbb{E}\Psi\left(\sup_{f,g\in\mathcal{F}'}\left\{\frac{1}{n}\sum_{i=1}^{n}4\varepsilon_i'(\psi_i(f)-\psi_i(g)) - \frac{\eta(\psi_i(f)-\psi(g_i))^2}{18m\eta\vee 36}\right\}\right).$$
 (15)

where Ψ is any increasing, convex function and $\mathcal{F}' = \bigcup_{\lambda \in [0,1]} \lambda \mathcal{F} + (1-\lambda) \mathcal{F}$. Alternatively, when ψ is *p*-uniformly convex with modulus α and $\|\psi\|_{\text{lip}}$ -Lipschitz, we have

$$\mathbb{E}\Psi(\mathcal{E}(\tilde{f})) \le \mathbb{E}\Psi\left(\sup_{f,g\in\mathcal{F}'}\left\{\frac{1}{n}\sum_{i=1}^{n}4\|\psi\|_{\mathrm{lip}}\left(f_{i}-g_{i}\right)\varepsilon_{i}'-\frac{\alpha|f_{i}-g_{i}|^{p}}{3^{p}}\right\}\right).$$
(16)

Proof. We'll work forwards from (10), which says that

$$\mathbb{E}\Psi(\mathcal{E}(\tilde{f})) \leq \mathbb{E}\Psi\left(\sup_{f\in\mathcal{F}'}\left\{\frac{1}{n}\sum_{i=1}^{n}2\varepsilon_{i}'(\psi(f^{*})_{i}-\psi(f)_{i}-\frac{1}{2}\mu(\frac{1}{3}d(f_{i},f_{i}^{*})))-\mu(\frac{1}{3}d(f_{i},f_{i}^{*}))\right\}\right)$$
$$\leq \mathbb{E}\Psi\left(\sup_{f,g\in\mathcal{F}'}\left\{\frac{1}{n}\sum_{i=1}^{n}2\varepsilon_{i}'(\psi(g)_{i}-\psi(f)_{i}-\frac{1}{2}\mu(\frac{1}{3}d(f_{i},g_{i})))-\mu(\frac{1}{3}d(f_{i},g_{i}))\right\}\right),$$

where the second step enlarges the domain in the supremum. For (15), we plug in the definition of the offset from Proposition 11

$$\mu(\frac{1}{3}d(x,y)) = \frac{|\psi(x) - \psi(y)|^2}{18m \vee 36/\eta}$$

Under the condition that ψ takes values in [0, m], we have that

$$|\psi(x) - \psi(y)|^2 \le 2m|\psi(x) - \psi(y)| \le (2m \lor 4/\eta)|\psi(x) - \psi(y)|.$$

It follows that we can apply our "contraction lemma" for offset processes, Lemma G2, with the contractions

$$\begin{split} |\psi(x) - \psi(y) - \frac{1}{2}\mu(\frac{1}{3}d(x,y))| \\ &\leq |\psi(x) - \psi(y)| + |\frac{1}{2}\mu(\frac{1}{3}d(x,y))| \\ &\leq |\psi(x) - \psi(y)| + \frac{(m \vee 2/\eta)|\psi(x) - \psi(y)|}{18m \vee 36/\eta} \leq \frac{19}{18}|\psi(x) - \psi(y)|. \end{split}$$

For (16), we first require the following lemma.

Lemma C1. Let $\psi : \mathbb{R} \to \mathbb{R}$ be (μ, d) -convex and $\|\psi\|_{\text{lip}}$ -Lipschitz with respect to d(x, y) = |x - y|. Let $r \ge 0$ be the largest constant such that $\mu(cx) \le c^r \mu(x)$ for $c \le 1$ which is non-negative by monotonicity of μ . Then

$$\mu(\frac{1}{3}|x-y|) \le (\frac{2}{3})' \|\psi\|_{\text{lip}} |x-y|.$$

Applying the lemma with r = p, we simply apply the contractions

$$|\psi(x) - \psi(y) - \frac{1}{2}\mu(\frac{1}{3}d(x,y))| \le |\psi(x) - \psi(y)| + \frac{1}{2}\mu(\frac{1}{3}d(x,y)) \le (1 + 2^{p-1}/3^p) \|\psi\|_{\text{lip}} |x - y|$$

using Lemma G2, and then plug in

$$\mu(\frac{1}{3}d(x,y)) = \frac{\alpha|x-y|^p}{3^p},$$

from the definition of *p*-uniform convexity.

Proof of Lemma C1. Let z be the minimizer of ψ over [x, y]. By Lemma 3 we have $\psi(x) - \psi(z) > \mu(|x - z|), \qquad \psi(y) - \psi(z) > \mu(|y - z|).$

Since
$$|x - y| = |x - z| + |y - z|$$
 because $z \in [x, y]$, we have
 $\mu(\frac{1}{3}|x - y|) \le \mu(\frac{1}{3}(|x - z| + |y - z|)).$

By monotonicity of μ , this is

$$\leq \mu(\frac{2}{3}(|x-z| \lor |y-z|)) \\ \leq (\frac{2}{3})^r \{\mu(|x-z|) \lor \mu(|y-z|)\}.$$
Using (25), we have

$$\leq (\frac{2}{3})^r |\psi(x) - \psi(z)| \lor (\frac{2}{3})^r |\psi(y) - \psi(z)| \\ \leq (\frac{2}{3})^r ||\psi||_{\text{lip}} |x-z| \lor (\frac{2}{3})^r ||\psi||_{\text{lip}} |y-z| \\ \leq (\frac{2}{3})^r ||\psi||_{\text{lip}} |x-y|,$$
where in the last step we again used that

$$|x-y| = |x-z| + |y-z| \ge |x-z| \lor |y-z|$$

where in the last st

$$|x - y| = |x - z| + |y - z| \ge |x - z| \lor |y - z|$$

by our choice of z. This completes the proof.

`

(25)

Proof of Proposition 15 D

We recall Proposition 15.

Proposition 15. If ψ is a self-concordant loss and \hat{f} is the empirical risk minimizer in a convex class *F*, then

$$\mathbb{E}\Psi(\mathcal{E}(\tilde{f})) \leq \mathbb{E}\Psi\left(\sup_{f \in \mathcal{F}'} \left\{ \frac{1}{n} \sum_{i=1}^{n} 4(\psi_i(f) - \psi(f_i^*))\varepsilon_i' - \omega\left(\|f_i - f_i^*\|_{\psi, f_i^*}\right) \right\} \right), \quad (18)$$

for $\omega(z) = z - \log(1+z)$, $||z||_{\psi,w} \doteq \sqrt{z^2 \psi''(w)}$, and $(\varepsilon'_i)_{i=1}^n$ are independent, symmetric Rademacher random variables and Ψ is any increasing, convex function.

Proof. Combining the self-concordance inequality Lemma 14 with Lemmas 3 and 5 immediately gives us

$$\mathcal{E}(\hat{f}) = \mathbb{E}\psi(\hat{f}) - \mathbb{E}\psi(f^*) \ge \mathbb{E}\omega(\|\hat{f} - f^*\|_{\psi, f^*})$$
(26)

for the empirical risk minimizer \hat{f} in a convex class. Since \hat{f} is the risk minimizer, we also have $\mathbb{E}_n \psi(f^*) - \mathbb{E}_n \psi(\hat{f}) \ge 0$. Adding these two and rearranging, we have

$$\begin{split} \mathcal{E}(\hat{f}) &\leq 2\mathcal{E}(\hat{f}) - \mathbb{E}\omega(\|\hat{f} - f^*\|_{\psi, f^*}) \\ &\leq 2(\mathbb{E} - \mathbb{E}_n)\psi(\hat{f}) - 2(\mathbb{E} - \mathbb{E}_n)\psi(f^*) - \mathbb{E}\omega(\|\hat{f} - f^*\|_{\psi, f^*}) \\ &\leq 2\sup_{f \in \mathcal{F}} \left\{ (\mathbb{E} - \mathbb{E}_n)\psi(\hat{f}) - (\mathbb{E} - \mathbb{E}_n)\psi(f^*) - \frac{1}{2}\mathbb{E}\omega(\|f - f^*\|_{\psi, f^*}) \right\} \end{split}$$

Applying $\mathbb{E}\Psi$ on both sides gives

$$\mathbb{E}\Psi(\mathcal{E}(\hat{f})) \leq \mathbb{E}\Psi\left(2\sup_{f\in\mathcal{F}}\left\{(\mathbb{E}-\mathbb{E}_n)\psi(\hat{f}) - (\mathbb{E}-\mathbb{E}_n)\psi(f^*) - \frac{1}{2}\mathbb{E}\omega(\|f-f^*\|_{\psi,f^*})\right\}\right)$$
$$= \mathbb{E}\Psi\left(2\sup_{f\in\mathcal{F}}\left\{(\mathbb{E}-\mathbb{E}_n)(\psi(\hat{f}) - \psi(f^*)) - \frac{1}{4}(\mathbb{E}+\mathbb{E})\omega(\|f-f^*\|_{\psi,f^*})\right\}\right)$$

By Jensen's inequality, this is

1

$$\leq \mathbb{E}\Psi\left(2\sup_{f\in\mathcal{F}}\left\{(\mathbb{E}-\mathbb{E}_n)(\psi(\hat{f})-\psi(f^*))-\frac{1}{4}(1+\mathbb{E})\omega(\|f-f^*\|_{\psi,f^*})\right\}\right).$$

The proof is then complete after applying Lemma G1 with $A(f) = 2(\psi(f) - \psi(f^*)), T = \mathcal{F}$, and $B(f) = \frac{1}{2}\omega(\|f - f^*\|_{\psi, f^*}).$ П

E Proof of Theorem 19

We recall Theorem 19.

Theorem 19. Let ψ be an η -exp-concave loss taking values in [0, m]. Then, with probability at least $1 - 9e^{-z}$, the star estimator \tilde{f} applied to (ψ, \mathcal{F}) satisfies

$$\mathcal{E}(\tilde{f}) \le \inf_{0 \le \alpha \le \gamma} \left\{ 4\alpha + \frac{10}{\sqrt{n}} \int_{\alpha}^{\gamma} \sqrt{H_2(s)} \, ds + \frac{2H_2(\gamma)}{cn} + \frac{\gamma\sqrt{8\pi}}{\sqrt{n}} + \left(\frac{2}{cn} + \frac{\gamma\sqrt{8}}{\sqrt{n}}\right) z \right\}, \quad (23)$$

where $H_2(s) \doteq H_2(s, \psi \circ \mathcal{F}')$ and $c = 36^{-1}(1/m \wedge \eta/2)$.

Proof. We work forwards from (15), which tells us

$$\mathbb{E}\Psi(\mathcal{E}(\tilde{f})) \le \mathbb{E}\Psi\left(\sup_{t\in T} \left\{Z_t - cZ_t^2\right\}\right),\,$$

where we define Z, t, T, and c according to

$$Z_t = \frac{1}{n} \sum_{i=1}^n 4\varepsilon_i' t(X_i, Y_i) = \frac{1}{n} \sum_{i=1}^n 4\varepsilon_i' (\psi(f(X_i), Y_i) - \psi(g(X_i), Y_i)),$$

$$t = \psi(f(X_i), Y_i) - \psi(g(X_i), Y_i),$$

$$T = \psi \circ \mathcal{F}' - \psi \circ \mathcal{F}',$$

$$c = \frac{1}{36} \left(\frac{1}{m} \lor \frac{\eta}{2}\right).$$

Let V be a covering of T at resolution γ in $L^2(\mathbb{P}_n)$ that is chosen to include 0, so that $\#V \leq \exp(2H_2(\gamma))$ almost surely by construction of T and definition of $H_2(-)$. Then we can choose $\pi: T \to V$ with the properties that (1) $\|t - \pi(t)\|_{2,\mathbb{P}} \leq \gamma$ uniformly over $t \in T$, and (2) $\pi(t) = 0$ if $\|t\|_{2,\mathbb{P}} < \gamma$.

The proof will proceed in three lemmas which will be stated below and proved subsequently. The first lemma shows that $\sup_{t \in T} \{Z_t - cZ_t^2\}$ can be controlled in terms of (i) the local complexity of $(Z_t)_{t \in T}$ at scale γ and (ii) the offset complexity of a finite approximation to $(Z_t)_{t \in T}$ at resolution γ . The second and third lemmas develop high-probability bounds for these two terms.

Lemma E1 (from Liang et al. (2015, Lemma 6)). It holds almost surely that

$$\sup_{t \in T} \left\{ Z_t - cZ_t^2 \right\} \le \sup_{t \in T} \left\{ Z_t - Z_{\pi(t)} \right\} + \sup_{v \in V} \left\{ Z_v - (c/4)Z_v^2 \right\}.$$
(27)

Lemma E2.

$$\mathbb{P}\left(\sup_{t\in T}\left\{Z_t - Z_{\pi(t)}\right\} \ge 4\alpha + \frac{10}{\sqrt{n}}\int_{\alpha}^{\gamma}\sqrt{2H_2(s)}\,ds + \gamma\sqrt{\frac{8\pi}{n}} + x\right) \le 2e^{-nx^2/(8\gamma^2)}$$
(28)

Lemma E3.

$$\mathbb{P}\left(\sup_{v\in V}\left\{Z_v - (c/4)Z_v^2\right\} > \frac{4H_2(\gamma) + 2x}{cn}\right) \le e^{-x}.$$
(29)

Applying a union bound to the event in (28) with $x = z\gamma\sqrt{8}$, the event in (29) with z = x, and the complement of the event (27), we obtain that with probability at least $1 - 3e^{-z}$

$$\sup_{t\in T} \left\{ Z_t - Z_{\pi(t)} \right\} \le 4\alpha + \frac{10}{\sqrt{n}} \int_{\alpha}^{\gamma} \sqrt{H_2(s)} \, ds + \frac{2H_2(\gamma)}{cn} + \frac{\gamma\sqrt{8\pi}}{\sqrt{n}} + \left(\frac{2}{cn} + \frac{\gamma\sqrt{8}}{\sqrt{n}}\right) z$$

Finally, since $\mathbb{E}\Psi(\mathcal{E}(\tilde{f})) \leq \mathbb{E}\Psi\left(\sup_{t \in T} \{Z_t - cZ_t^2\}\right)$ for all convex and increasing Ψ , we can apply the following.

Lemma E4 (Panchenko (2003, Lemma 1)). If $\mathbb{E}\Psi(X) \leq \mathbb{E}\Psi(Y)$ for all convex and increasing functions Ψ , then $\mathbb{P}(Y \geq t) \leq Ae^{-at} \implies \mathbb{P}(X \geq t) \leq Ae^{1-at}.$ Thus, we have

$$\mathcal{E}(\tilde{f}) \le 4\alpha + \frac{10}{\sqrt{n}} \int_{\alpha}^{\gamma} \sqrt{H_2(s)} \, ds + \frac{2H_2(\gamma)}{cn} + \frac{\gamma\sqrt{8\pi}}{\sqrt{n}} + \left(\frac{2}{cn} + \frac{\gamma\sqrt{8}}{\sqrt{n}}\right) z$$

with probability at least $1 - (3e)e^{-z}$. After noting that $0 \le \alpha \le \gamma$ is arbitrary and $3e \le 9$, the proof is complete.

Proof of Lemma E1. We have

$$\sup_{t \in T} \left\{ Z_t - cZ_t^2 \right\} = \sup_{t \in T} \left\{ (Z_t - Z_{\pi(t)}) + ((c/4)Z_{\pi(t)}^2 - cZ_t^2) - \left(cZ_t^2 + Z_{\pi(t)} - (c/4)Z_{\pi(t)}^2 \right) \right\}$$
$$\leq \sup_{t \in T} \left\{ Z_t - Z_{\pi(t)} \right\} + \sup_{v \in V} \left\{ Z_v - (c/4)Z_v^2 \right\},$$

provided we can show that the middle term $(c/4)Z_{\pi(t)}^2 - cZ_t^2$ is a.s. non-positive. To see this, note that either $||t||_{2,\mathbb{P}_n} < \gamma$, in which case by construction $\pi(t) = 0$ and $Z_{\pi(t)}^2 = 0$, so we are done, or else we have

$$\|\pi(t)\|_{2,\mathbb{P}_n} \le \|\pi(t) - t\|_{2,\mathbb{P}_n} + \|t\|_{2,\mathbb{P}_n} \le \|t\|_{2,\mathbb{P}_n} + \gamma \le 2 \|t\|_{2,\mathbb{P}_n},$$

so that $\|\pi(t)\|_{2,\mathbb{P}_n}^2 \leq 4 \|t\|_{2,\mathbb{P}_n}^2$. But, after plugging in the definition of Z_t , the middle term is precisely

$$\frac{16c}{n} \left(\frac{\|\pi(t)\|_{2,\mathbb{P}_n}^2}{4} - \|t\|_{2,\mathbb{P}_n}^2 \right),\,$$

so we are done.

Proof of Lemma E2. Keeping in mind that $||t - \pi(t)||_{2,\mathbb{P}_n} \leq \gamma$ and applying the chaining result in Srebro et al. (2010, Lemma A.3) gives us

$$\mathbb{E}_{\varepsilon} \sup_{t \in T} \left\{ Z_t - Z_{\pi(t)} \right\} \le 4\alpha + \frac{10}{\sqrt{n}} \int_{\alpha}^{\gamma} \sqrt{2H_2(s)} \, ds \tag{30}$$

almost surely with respect to the data, where we used that

$$\ln N(s, T, L^2(\mathbb{P}_n)) \le 2\ln N(s, \psi \circ \mathcal{F}', L^2(\mathbb{P}_n)) \le 2H_2(s)$$

by definition of T and the fact that $H_2(-)$ is an almost-sure bound on the logarithm of the $L^2(\mathbb{P}_n)$ covering numbers. It follows by applying Ledoux and Talagrand (1991, Theorem 4.7) with $\sigma^2(X) = \gamma^2/n$ that

$$\mathbb{P}_{\epsilon}\left(\sup_{t\in T}\left\{Z_t - Z_{\pi(t)}\right\} \ge M_{\epsilon} + x\right) \le 2e^{-nx^2/(8\gamma^2)},\tag{31}$$

where \mathbb{P}_{ε} denotes the probability with respect to the multipliers ε conditional upon the data and M_{ϵ} is a conditional median of $\sup_{t \in T} \{Z_t - Z_{\pi(t)}\}$. Finally, we can deduce the upper bound

$$\mathbb{E}_{\varepsilon} \sup_{t \in T} \left\{ Z_t - Z_{\pi(t)} \right\} - M_{\epsilon} \\
\leq \mathbb{E}_{\epsilon} \left[\left(\sup_{t \in T} \left\{ Z_t - Z_{\pi(t)} \right\} - M_{\epsilon} \right) \mathbb{1} \left\{ \sup_{t \in T} \left\{ Z_t - Z_{\pi(t)} \right\} > M_{\epsilon} \right\} \right] \\
= \int_0^\infty \mathbb{P}_{\epsilon} \left(\sup_{t \in T} \left\{ Z_t - Z_{\pi(t)} \right\} - M_{\epsilon} > t \right) dt \\
\leq \int_0^\infty 2e^{-nt^2/(8\gamma^2)} dt = \gamma \sqrt{\frac{8\pi}{n}}$$
(32)

Finally, putting together (30), (31) and (32) gives us

$$\mathbb{P}_{\epsilon}\left(\sup_{t\in T}\left\{Z_t - Z_{\pi(t)}\right\} \ge 4\alpha + \frac{10}{\sqrt{n}}\int_{\alpha}^{\gamma}\sqrt{2H_2(s)}\,ds + \gamma\sqrt{\frac{8\pi}{n}} + x\right) \le 2e^{-nx^2/(8\gamma^2)}.$$

Since this conditional bound holds almost surely with respect to the data, we immediately deduce (28). $\hfill \square$

Proof of Lemma E3. Working conditionally upon the data, we can compute by applying Markov's inequality that

$$\mathbb{P}_{\varepsilon}\left(\sup_{v\in V}\left\{Z_{v}-(c/4)Z_{v}^{2}\right\}>t\right)=\mathbb{P}_{\varepsilon}\left(\exp\left(rn\sup_{v\in V}\left\{Z_{v}-(c/4)Z_{v}^{2}\right\}\right)>e^{rnt}\right)$$
$$\leq \mathbb{E}_{\varepsilon}\exp\left(rn\sup_{v\in V}\left\{Z_{v}-(c/4)Z_{v}^{2}\right\}\right)e^{-rnt}.$$

We can further compute that

$$\mathbb{E}_{\varepsilon} \exp\left(rn \sup_{v \in V} \left\{ Z_v - (c/4) Z_v^2 \right\} \right) = \mathbb{E}_{\varepsilon} \sup_{v \in V} \exp\left(\sum_{i=1}^n r\varepsilon_i' v_i - (c/4) r v_i^2 \right)$$
$$\leq \sum_{v \in V} \mathbb{E}_{\varepsilon} \exp\left(\sum_{i=1}^n \frac{r^2 v_i^2}{2} - \frac{cr v_i^2}{4}\right),$$

by applying Hoeffding's lemma to each expectation with respect to the variables ε_i . Taking r = c/2, this is precisely #V. Thus, we have that

$$\mathbb{P}_{\varepsilon}\left(\sup_{v\in V}\left\{Z_{v}-(c/4)Z_{v}^{2}\right\}>t\right)\leq \exp\left(\ln(\#V)-\frac{cnt}{2}\right)$$

Since $\ln(\#V) \leq 2H_2(\gamma)$ almost surely, we can deduce the unconditional bound

$$\mathbb{P}\left(\sup_{v\in V}\left\{Z_v - (c/4)Z_v^2\right\} > t\right) \le \exp\left(2H_2(\gamma) - \frac{cnt}{2}\right)$$

Taking $t = (4H_2(\gamma) + 2x)/cn$ gives (29).

F Proofs of Section 5 Results

F.1 Proof of Corollary 16

We state Corollary 16.

Corollary 16 (cf. Mendelson (2002, Theorem 5.1)). Let $\psi(f, y) = |f - y|^p$ for p > 1 and let the class \mathcal{F} and response Y take values in [-B, B]. Then there exists a universal $C(p, B) = O(p2^pB^p)$ such that the star estimator \tilde{f} has excess ψ -risk bounded as

$$\mathbb{P}\left(\mathcal{E}(\tilde{f},\mathcal{F}) \ge \epsilon + \frac{C(p,B)(H_2(\epsilon/C_{p,B},\mathcal{F}) + \ln(1/\epsilon) + \ln(1/\rho))}{n}\right) \le \rho,\tag{20}$$

Proof. This follows as a result of the more general bound (19), which says that

$$\mathbb{P}\left(\mathcal{E}(\tilde{f}) \ge \epsilon + \left(36m \vee \frac{72}{\eta}\right) \left(\frac{H_2(\epsilon, \psi \circ \mathcal{F}') + \ln(1/\rho)}{n}\right)\right) \le \rho.$$

In order to deduce (20), we need to bound the quantities m, $1/\eta$, and $H_2(\psi \circ \mathcal{F}')$. For m, since $|f|, |y| \leq B$, it must hold that $|f - y|^p \leq 2^p B^p$. For η , we can compute that

$$(\psi')^2/\psi'' = \frac{p^2 z^{2p-2}}{p(p-1)z^{p-2}} \le \frac{pz^p}{p-1} \le \frac{p2^p B^p}{p-1}$$

for $z = |f - y| \le 2B$. Finally, we have $\|\psi\|_{\text{lip}} \le p2^p B^{p-1}$ by bounding the first derivative, so that we have the entropy estimates

$$H_2(\epsilon, \psi \circ \mathcal{F}') \le H_2\left(\frac{\epsilon}{p2^p B^{p-1}}, \mathcal{F}'\right) \le 2H_2\left(\frac{\epsilon}{p2^{p+1} B^{p-1}}, \mathcal{F}\right) + \ln\left(\frac{4B}{\epsilon}\right),$$

where the last step follows by applying Lemma G4 with $R \leq \sup_{f,y} |f - y| \leq 2B$.

F.2 Proof of Lemma 17

We recall Lemma 17.

Lemma 17 (Foster et al. (2018)). For all f and $\delta \in (0, 1/2]$, the excess risk relative to \mathcal{L}_{δ} satisfies $\mathcal{E}(f; \mathcal{L}_{\delta}) \leq \mathcal{E}(f; \mathcal{L}) + 2\delta$

Proof. We can compute that

$$\ln(f) - \ln((1-\delta)f + \delta) = \ln\left(\frac{f}{(1-\delta)f + \delta}\right) \le \ln\left(\frac{1}{1-\delta}\right) \le 2\delta,$$
(33)

since $0 \le -\ln(1-\delta) \le 2\delta$ for $0 \le \delta \le 1/2$. Consequently, for any g,

$$\begin{split} \mathcal{E}(g;\mathcal{L}_{\delta}) &= \mathbb{E}[-\ln g] - \inf_{f \in \mathcal{L}_{\delta}} \mathbb{E}[-\ln f] \\ &= \mathbb{E}[-\ln g] - \inf_{f \in \mathcal{L}} \mathbb{E}[-\ln f] + \inf_{f \in \mathcal{L}} \mathbb{E}[-\ln f] - \inf_{f \in \mathcal{L}_{\delta}} \mathbb{E}[-\ln f] \\ &= \mathcal{E}(g;\mathcal{L}) + \left(\inf_{f \in \mathcal{L}} \mathbb{E}[-\ln f] - \inf_{f \in \mathcal{L}_{\delta}} \mathbb{E}[-\ln f]\right) \end{split}$$

By separability of the two infima, this is the same as

$$= \mathcal{E}(g; \mathcal{L}) + \sup_{h \in \mathcal{L}_{\delta}} \inf_{f \in \mathcal{L}} \mathbb{E}[\ln h - \ln f].$$

By choosing $h = (1 - \delta)f + \delta$, the outer supremum may be bounded as

$$\geq \mathcal{E}(g; \mathcal{L}) + \inf_{f \in \mathcal{L}} \mathbb{E}[\ln((1-\delta)f + \delta) - \ln f]$$

$$\geq \mathcal{E}(g; \mathcal{L}) - 2\delta,$$

where the final step follows from negating (33).

F.3 Proof of Corollary 18

We recall Corollary 18.

Corollary 18. With probability at least
$$1 - \rho$$
, the star estimator f_{δ} in \mathcal{L}_{δ} satisfies

$$\mathcal{E}(\tilde{f}_{\delta};\mathcal{L}) \le \epsilon + 2\delta + C\ln(1/\delta) \left(\frac{H_2(\delta\epsilon,\mathcal{L}) + \ln(1/\epsilon\delta) + \ln(1/\rho)}{n}\right)$$
(21)

Let \mathcal{L} be the generalized linear model corresponding to

$$\mathcal{F}_{B} = \left\{ x \mapsto Wx \, \big| \, W \in \mathbb{R}^{k \times q}, \left\| W \right\|_{2 \to \infty} \le B \right\}$$

with A-Lipschitz, surjective link φ and features $X \in \mathbb{R}^q$ that satisfy $||X||_2 \leq R\sqrt{q}$. Then with probability at least $1 - \rho$

$$\mathcal{E}(\varphi^{\dagger} \circ \tilde{f}_{\delta}; \mathcal{F}_B) \leq \frac{\ln(n)}{n} \left\{ Ckq \ln(ABRn\sqrt{k}) + \ln(1/\rho) \right\}.$$
(22)

Proof. By Lemma 17, it suffices for (21) to show instead that

$$\mathbb{P}\left(\mathcal{E}(\tilde{f}_{\delta};\mathcal{L}_{\delta}) > \epsilon + C\ln(1/\delta)\left(\frac{H_2(\delta\epsilon,\mathcal{L}) + \ln(1/\epsilon\delta) + \ln(1/\rho)}{n}\right)\right) \le \rho$$

This in turn follows from the general inequality (19), which says in this context that

$$\mathbb{P}\left(\mathcal{E}(\tilde{f}_{\delta},\mathcal{L}_{\delta}) \geq \epsilon + \left(36m \vee \frac{72}{\eta}\right) \left(\frac{H_2(\epsilon, -\ln\circ\mathcal{L}_{\delta}') + \ln(1/\rho)}{n}\right)\right) \leq \rho$$

Since \mathcal{L}'_{δ} takes values in $[\delta, 1]$, the log loss takes values in $[0, \ln(1/\delta)]$, so we choose $m = \ln(1/\delta)$. Since the log loss is 1-exp-concave, we choose $\eta = 1$. Finally, the log loss in this domain is $(1/\delta)$ -Lipschitz, so we have the estimates

$$H_2(\epsilon, -\ln\circ\mathcal{L}'_{\delta}) \le H_2(\delta\epsilon, \mathcal{L}'_{\delta}) \le 2H_2(\delta\epsilon/2, \mathcal{L}_{\delta}) + \ln(2\ln(1/\delta)/\delta\epsilon),$$

where the last step follows from Lemma G4 with $R = \ln(1/\delta)$. Finally, use that $H_2(-, \mathcal{L}_{\delta}) \leq H_2(-, \mathcal{L})$ since \mathcal{L}_{δ} is the image of \mathcal{L} under a pointwise contraction, and simplify (for example absorbing $\ln \ln(1/\delta) \leq \ln(1/\delta)$) into the constant C). For (18), we plug in the covering estimates

$$H_2(\delta\epsilon, \mathcal{L}) \le H_2\left(\frac{\delta\epsilon}{A}, \mathcal{F}_B\right) \le \ln\left(\frac{ABR\sqrt{k}}{\epsilon\delta}\right)^{kd} = kd\ln\left(\frac{ABR\sqrt{k}}{\delta\epsilon}\right)$$

for \mathcal{F}_B , which are standard. Finally, we take $\epsilon = \delta = 1/n$ and simplify.

F.4 Proof of Corollary 20

We recall Corollary 20.

Corollary 20. Consider a generalized linear model with A-Lipschitz loss $f \mapsto -\ln \langle \varphi(f), y \rangle$. Suppose the entropy numbers $H_2(\epsilon; \mathcal{F})$ are of order ϵ^{-q} . Then, the regularized star estimator $\varphi^{\dagger} \circ \tilde{f}_{\delta}$ with $\delta = 1/n$ satisfies the rates appearing on the left.

On the other hand, for an arbitrary class \mathcal{L} taking values in [0,1] subject to the log loss, the regularized star estimator $\tilde{f}'_{\delta'}$ —for appropriately chosen δ' —attains the rates appearing on the right. Here, the symbol \leq_{ρ} denotes an upper bound that holds with probability $1 - \rho$, hiding universal constants and a multiplicative factor $\ln(1/\rho)$.

$$\mathcal{E}(\varphi^{\dagger} \circ \tilde{f}_{\delta}) \lesssim_{\rho} \begin{cases} A^{q} n^{-2/(2+q)} \ln(n) & q < 2\\ A^{q} n^{-1/2} \ln(n) & q = 2\\ A^{q} n^{-1/q} & q > 2 \end{cases} \qquad \mathcal{E}(\tilde{f}_{\delta'}) \lesssim_{\rho} \begin{cases} n^{-1/(1+3q/2)} & q < 2\\ n^{-1/4} \ln(n) & q = 2\\ n^{-1/(2q)} & q > 2 \end{cases}$$
(24)

Proof. These bounds are all derived by applying Theorem 19 under different assumptions on the entropy function. In particular combining (23) with Lemma 17—using the fact that the log loss over \mathcal{L}_{δ} takes values in $[0, \ln(1/\delta)]$ and is 1-exp-concave—gives us that with probability $1 - \rho$,

$$\mathcal{E}(\tilde{f}) \lesssim_{\rho} 2\delta + \inf_{0 \le \alpha \le \gamma} \left\{ 4\alpha + \frac{10}{\sqrt{n}} \int_{\alpha}^{\gamma} \sqrt{H_2(s)} \, ds + \frac{H_2(\gamma) \ln(1/\delta)}{n} + \frac{\gamma}{\sqrt{n}} \right\},$$

where the symbol \leq_{ρ} hides universal constants and a multiplicative factor $\ln(1/\rho)$.

For the left-hand side results, the entropy numbers scale as $(A/\epsilon)^q$; choosing $\delta = \frac{1}{n}$, we get

$$\frac{2}{n} + 4\alpha + \frac{10A^{q/2}}{\sqrt{n}} \int_{\alpha}^{\gamma} s^{-q/2} \, ds + \frac{\gamma^{-q}A^q \ln n}{n} + \frac{\gamma}{\sqrt{n}}$$

For the q < 2 case we take $\alpha = 0$ and $\gamma = n^{-1/(2+q)}$. For the case q = 2 we take $\alpha = 1/n$ and $\gamma = 1$. For the case q > 2 we take $\alpha = n^{-1/q}$ and $\gamma = 1$. For the right-hand side results, the entropy numbers scale as $(1/\delta\epsilon)^q$, giving us the bound

$$2\delta + 4\alpha + \frac{12\delta^{-q/2}}{\sqrt{n}} \int_{\alpha}^{\gamma} s^{-q/2} \, ds + \frac{\gamma^{-q}\delta^{-q}}{n} + \frac{\gamma}{\sqrt{n}}.$$

For q < 2, we take $\alpha = 0$, $\delta = n^{-1/(1+3q/2)}$, and $\gamma = n^{-1/(2+3q)}$. For q = 2 we take $\delta = n^{-1/4}$, $\alpha = 1/n$, and $\gamma = 1$. For q > 2 we take $\delta = \alpha = n^{-1/2p}$ and $\gamma = 1$.

G Technical Lemmas

Lemma G1 (Offset symmetrization). For every increasing and convex function Ψ ,

$$\mathbb{E}\Psi\left(\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\left(1-\mathbb{E}\right)A_{i}(t)-(1+\mathbb{E})B_{i}(t)\right\}\right)\leq\mathbb{E}\Psi\left(2\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}^{\prime}A_{i}(t)-B_{i}(t)\right\}\right).$$

Proof. Noting that $\mathbb{E}A_i(t) = \mathbb{E}A'_i(t)$ and $\mathbb{E}B_i(t) = \mathbb{E}B'_i(t)$, where A'_i (respectively, B_i) is an independent copy of A_i (resp. B'_i), and finally moving the expectations outside by applying Jensen's inequality to the convex function $\Psi(\sup_{t\in T}(-))$, we have

$$\mathbb{E}\Psi\left(\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\left(1-\mathbb{E}\right)A_{i}(t)-(1+\mathbb{E})B_{i}(t)\right\}\right)$$
$$\leq \mathbb{E}\Psi\left(\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}A_{i}(t)-A_{i}'(t)-B_{i}(t)-B_{i}'(t)\right\}\right).$$

Since $A_i - A'_i$ is symmetric, it is equal in distribution to $\varepsilon'_i(A_i - A'_i)$, where ε'_i is a symmetric Rademacher r.v. independent of (A, \hat{A}', B, B') , hence we can write

$$= \mathbb{E}\Psi\left(\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}'(A_{i}(t)-A_{i}'(t))-B_{i}(t)-B_{i}'(t)\right\}\right)$$
$$= \mathbb{E}\Psi\left(\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}'A_{i}(t)-B_{i}(t)+\frac{1}{n}\sum_{i=1}^{n}(-\varepsilon_{i}')A_{i}'(t)-B_{i}'(t)\right\}\right).$$
$$= \mathbb{E}\Psi\left(\sup_{t\in T}\left\{2\mathbb{E}_{\sigma}\left[\frac{\sigma}{n}\sum_{i=1}^{n}\varepsilon_{i}'A_{i}(t)-B_{i}(t)+\frac{1-\sigma}{n}\sum_{i=1}^{n}(-\varepsilon_{i}')A_{i}'(t)-B_{i}'(t)\right]\right\}\right),$$

where σ is an independent symmetric Bernoulli r.v. By a final application of Jensen's inequality and equality of the distributions of $(\sigma \varepsilon_i')_{i=1}^n$ and $((1 - \sigma)(-\varepsilon_i'))_{i=1}^n$, this is

$$\leq \mathbb{E}\Psi\left(2\sup_{t\in T}\left\{\frac{\sigma}{n}\sum_{i=1}^{n}\varepsilon_{i}'A_{i}(t)-B_{i}(t)+\frac{1-\sigma}{n}\sum_{i=1}^{n}(-\varepsilon_{i}')A_{i}'(t)-B_{i}'(t)\right\}\right),\$$

$$=\mathbb{E}\Psi\left(2\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}'A_{i}(t)-B_{i}(t)\right\}\right),\tag{34}$$
so what we aimed to show.

which is what we aimed to show.

Lemma G2 (Offset contraction). Suppose that $|A_i(s) - A_i(t)| \le |C_i(s) - C_i(t)|$ for all $s, t \in T$. *Then, for all increasing and convex* Ψ *, we have*

$$\mathbb{E}\Psi\left(2\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}^{\prime}A_{i}(t)-B_{i}(t)\right\}\right)\leq\mathbb{E}\Psi\left(2\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}^{\prime}C_{i}(t)-B_{i}(t)\right\}\right),$$
(35)

whenever the ε'_i are symmetric Rademacher variables that are independent of A, B and C.

Proof. To simplify notation, put

$$S_m(t) = \sum_{i=1}^m \varepsilon_i' A_i(t) - B_i(t).$$

Writing out the expectation with respect to ε'_n gives

$$\mathbb{E}\Psi\left(2\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}'A_{i}(t)-B_{i}(t)\right\}\right)$$

= $\mathbb{E}\Psi\left(\frac{1}{n}\sum_{j=1}^{2}\sup_{t\in T}\left\{(-1)^{j}A_{n}(t)+S_{n-1}(t)-B_{n}(t)\right\}\right)$
= $\mathbb{E}\Psi\left(\frac{1}{n}\sup_{s,t\in T}\left\{A_{n}(s)-A_{n}(t)+(S_{n-1}(s)-B_{n}(s))-(S_{n-1}(t)-B_{n}(t))\right\}\right)$

Applying our assumption that $|A_i(s) - A_i(t)| \le |C_i(s) - C_i(t)|$, this is

$$\leq \mathbb{E}\Psi\left(\frac{1}{n}\sup_{s,t\in T}\left\{|C_n(s) - C_n(t)| + (S_{n-1}(s) - B_n(s)) - (S_{n-1}(t) - B_n(t))\right\}\right)$$

Since the argument of the supremum is symmetric in (s, t), we can remove the absolute value, yielding

$$\leq \mathbb{E}\Psi\left(\frac{1}{n}\sup_{s,t\in T}\left\{C_n(s) - C_n(t) + (S_{n-1}(s) - B_n(s)) + (S_{n-1}(t) - B_n(t))\right\}\right).$$

Since the supremum is now separable in (s, t), we further have

$$= \mathbb{E}\Psi\left(\frac{1}{n}\sum_{j=1}^{2}\sup_{t\in T}\left\{(-1)^{j}C_{n}(t) - B_{n}(t) + S_{n-1}(t)\right\}\right)$$
$$= \mathbb{E}\Psi\left(\frac{2}{n}\sup_{t\in T}\left\{\varepsilon_{n}C_{n}(t) - B_{n}(t) + S_{n-1}(t)\right\}\right).$$

Applying these manipulations to each summand r from n - 1 down to 1 gives us

$$\leq \mathbb{E}\Psi\left(\sup_{t\in T}\left\{\frac{2}{n}\sum_{i=r}^{n}\varepsilon_{i}C_{i}(t)-B_{i}(t)+S_{r-1}(t)\right\}\right)$$
$$\leq \mathbb{E}\Psi\left(2\sup_{t\in T}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}C_{i}(t)-B_{i}(t)\right\}\right),$$

which is what we aimed to show.

Lemma G3 (Log margin computation). For $|z| \leq c$,

$$e^{-z} + z - 1 \ge \frac{z^2}{2c \lor 4}.$$

Proof. Note that $z - 1 \ge z/2 \ge z^2/(2c)$ for $z \ge 2$. So it suffices to check the inequality for z < 2. On the other hand, one can check by minimizing the left-hand side that

$$\frac{e^{-z}+z-1}{z^2} \geq \frac{1}{4}$$

for 0 < z < 2 (the derivative of the left-hand side is negative, and the inequality holds at z = 2). Finally, the inequality for $z \le 0$ follows by noting that

$$e^{-z} - 1 + z = \frac{z^2}{2} + \sum_{k=3}^{\infty} \frac{(-z)^k}{k!},$$

by the series expansion for e^{-z} and the remainder term must be non-negative for $z \leq 0$.

Lemma G4 (cf. Mendelson (2002, Lemma 4.5)). Put $\mathcal{F}' = \bigcup_{\lambda \in [0,1]} \lambda \mathcal{F} + (1-\lambda) \mathcal{F}$ and $R_{\mu} = \sup_{f \in \mathcal{F}} \|f\|_{L^{2}(\mu)}$. Let $N_{2}(\epsilon, S, \mu)$ denote the ϵ -covering number of the set S in $L^{2}(\mu)$. Then

$$N_2(\epsilon, \mathcal{F}', \mu) \le \left(\frac{2R_\mu}{\epsilon}\right) N_2(\epsilon/2, \mathcal{F}, \mu)^2.$$
(36)

Consequently, if $R = \sup_{\mu} R_{\mu}$ where the supremum is over probability measures,

$$H_2(\epsilon, \mathcal{F}') \le 2H_2(\epsilon/2, \mathcal{F}) + \ln\left(\frac{2R}{\epsilon}\right).$$
 (37)

Proof. Let S denote a minimal covering of \mathcal{F} in $L^2(\mu)$ at resolution $\epsilon/2$. Given some $(s,t) \in S^2$, let T(s,t) denote an $\epsilon/2$ covering of the line segment interpolating s and t. This line segment has length at most $2R_{\mu}$ in $L^2(\mu)$, hence $\#T(s,t) \leq \frac{2R_{\mu}}{\epsilon}$. We are therefore done if we can show that

$$\bigcup_{(s,t)\in S^2} T(s,t)$$

is an ϵ covering of \mathcal{F}' .

To this end, let $f \in \mathcal{F}'$ be given. By definition, we may write $f = \lambda f_1 + (1 - \lambda)f_2$ for $f_1, f_2 \in \mathcal{F}$, and we can choose $s_1, s_2 \in S$ such that

$$||s_1 - f_1||_{L^2(\mu)}, ||s_2 - f_2||_{L^2(\mu)} \le \epsilon/2.$$

Due to convexity of the norm, we must have that

$$\|(\lambda s_1 + (1 - \lambda)s_2) - f\|_{L^2(\mu)} \le \epsilon/2.$$

By construction, there exists some $h \in T(s_1, s_2)$ such that

$$\|(\lambda s_1 + (1 - \lambda)s_2) - h\|_{L^2(\mu)} \le \epsilon/2.$$

Using the triangle inequality, we deduce $||f - h||_{L^2(\mu)} \le \epsilon$ and the proof of (36) is complete; (37) then follows by first taking logarithms, then taking the supremum over probability measures μ . \Box

References

- Jean-yves Audibert. Progressive mixture rules are deviation suboptimal. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, *Advances in Neural Information Processing Systems 20*, pages 41–48. Curran Associates, Inc., 2008.
- Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation. *The Annals of Statistics*, 37 (4):1591 1646, 2009. doi: 10.1214/08-AOS623. URL https://doi.org/10.1214/08-AOS623.
- Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local Rademacher complexities. *Annals of Statistics*, 33(4):1497–1537, August 2005. ISSN 0090-5364, 2168-8966. doi: 10.1214/00905360500000282.
- Peter L. Bartlett, Michael I. Jordan, and Jon D. Mcauliffe. Convexity, Classification, and Risk Bounds. *Journal of the American Statistical Association*, 101(473):138–156, 2006. ISSN 0162-1459.
- Blair Bilodeau, Dylan Foster, and Daniel Roy. Tight Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance. In *International Conference on Machine Learning*, pages 919–929. PMLR, November 2020.
- Bernd Carl, Ioanna Kyrezi, and Alain Pajor. Metric Entropy of Convex Hulls in Banach Spaces. *Journal of the London Mathematical Society*, 60(3):871–896, December 1999. ISSN 0024-6107. doi: 10.1112/S0024610799008005.
- Charles Chidume. Inequalities in Uniformly Convex Spaces. In Charles Chidume, editor, *Geometric Properties of Banach Spaces and Nonlinear Iterations*, Lecture Notes in Mathematics, pages 29–44. Springer, London, 2009. ISBN 978-1-84882-190-3. doi: 10.1007/978-1-84882-190-3_4.
- Dylan J. Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik Sridharan. Logistic Regression: The Importance of Being Improper. In *Conference On Learning Theory*, pages 167–208. PMLR, July 2018.
- Elad Hazan, Tomer Koren, and Kfir Y. Levy. Logistic regression: Tight bounds for stochastic and online optimization. In Maria Florina Balcan, Vitaly Feldman, and Csaba Szepesvári, editors, *Proceedings of the* 27th Conference on Learning Theory, volume 35 of Proceedings of Machine Learning Research, pages 197–209, Barcelona, Spain, June 2014. PMLR.
- Rémi Jézéquel, Pierre Gaillard, and Alessandro Rudi. Efficient improper learning for online logistic regression. In Jacob Abernethy and Shivani Agarwal, editors, *Proceedings of Thirty Third Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pages 2085–2108. PMLR, 09–12 Jul 2020. URL https://proceedings.mlr.press/v125/jezequel20a.html.
- A. Juditsky, P. Rigollet, and A. B. Tsybakov. Learning by mirror averaging. *Annals of Statistics*, 36(5): 2183–2206, October 2008. ISSN 0090-5364, 2168-8966. doi: 10.1214/07-AOS546.
- Vladimir Koltchinskii and Dmitriy Panchenko. Rademacher Processes and Bounding the Risk of Function Learning. In Evarist Giné, David M. Mason, and Jon A. Wellner, editors, *High Dimensional Probability II*, Progress in Probability, pages 443–457, Boston, MA, 2000. Birkhäuser. ISBN 978-1-4612-1358-1. doi: 10.1007/978-1-4612-1358-1_29.
- Michel Ledoux and Michel Talagrand. Rademacher Averages. In Michel Ledoux and Michel Talagrand, editors, *Probability in Banach Spaces: Isoperimetry and Processes*, Ergebnisse Der Mathematik Und Ihrer Grenzgebiete, pages 89–121. Springer, Berlin, Heidelberg, 1991. ISBN 978-3-642-20212-4. doi: 10.1007/978-3-642-20212-4_6.
- Tengyuan Liang, Alexander Rakhlin, and Karthik Sridharan. Learning with Square Loss: Localization through Offset Rademacher Complexity. In *Conference on Learning Theory*, pages 1260–1285, June 2015.
- Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and Alessandro Rudi. Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance. In *Conference on Learning Theory*, pages 2294–2340. PMLR, June 2019.
- Nishant Mehta. Fast rates with high probability in exp-concave statistical learning. In *Artificial Intelligence and Statistics*, pages 1085–1093. PMLR, April 2017.
- S. Mendelson. Improving the sample complexity using global data. *IEEE Transactions on Information Theory*, 48(7):1977–1991, July 2002. ISSN 0018-9448. doi: 10.1109/TIT.2002.1013137.
- Jaouad Mourtada and Stéphane Gaïffas. An improper estimator with optimal excess risk in misspecified density estimation and logistic regression. *arXiv:1912.10784 [math, stat]*, 2020.
- Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing Company, Incorporated, first edition, 2014. ISBN 1-4613-4691-6.
- Dmitry Panchenko. Symmetrization approach to concentration inequalities for empirical processes. Annals of Probability, 31(4):2068–2081, October 2003. ISSN 0091-1798, 2168-894X. doi: 10.1214/aop/1068646378.
- Alexander Rakhlin and Karthik Sridharan. Online Non-Parametric Regression. In *Conference on Learning Theory*, pages 1232–1264, May 2014.

- Alexander Rakhlin and Karthik Sridharan. Online Nonparametric Regression with General Loss Functions. *arXiv:1501.06598 [cs, math, stat]*, January 2015. Comment: arXiv admin note: substantial text overlap with arXiv:1402.2594.
- Alexander Rakhlin, Karthik Sridharan, and Alexandre B. Tsybakov. Empirical entropy, minimax regret and minimax risk. *Bernoulli*, 23(2):789–824, May 2017. ISSN 1350-7265. doi: 10.3150/14-BEJ679.
- Philippe Rigollet. Kullback–Leibler aggregation and misspecified generalized linear models. *Annals of Statistics*, 40(2):639–665, April 2012. ISSN 0090-5364, 2168-8966. doi: 10.1214/11-AOS961.
- Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, *Advances in Neural Information Processing Systems*, volume 23, pages 2199–2207. Curran Associates, Inc., 2010.
- Alexander B. Tsybakov. Optimal aggregation of classifiers in statistical learning. *Annals of Statistics*, 32(1): 135–166, February 2004. ISSN 0090-5364, 2168-8966. doi: 10.1214/aos/1079120131.
- Alexandre B. Tsybakov. Optimal Rates of Aggregation. In Bernhard Schölkopf and Manfred K. Warmuth, editors, *Learning Theory and Kernel Machines*, Lecture Notes in Computer Science, pages 303–313, Berlin, Heidelberg, 2003. Springer. ISBN 978-3-540-45167-9. doi: 10.1007/978-3-540-45167-9_23.
- Tim van Erven, Peter D. Grünwald, Nishant A. Mehta, Mark D. Reid, and Robert C. Williamson. Fast Rates in Statistical and Online Learning. *Journal of Machine Learning Research*, 16(54):1793–1861, 2015. ISSN 1533-7928.