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1 Broader Impact1

Vision-Language Pre-training (VLP) serves for a lot of downstream vision-language tasks like2

visual question answering, visual reasoning, visual entailment. By extensive experiments, we show3

the importance of inter-modality interaction and achieve competitive performance by applying4

Transformer for visual embedding. Our study can benefit future researches from providing a view of5

designing model for VLP. By revealing the fusion mechanism of multi-modality, our work may also6

benefit other multi-modal tasks besides vision-language task.7

At the same time, Vision-Language Pre-training may learn biased or offensive content from unsuper-8

vised image-text pairs. This may cause improper understanding of images. More work is needed to9

automatically filter data for pre-training.10

2 Image-Text Retrieval11

In this paper we focus on tasks related to visual relation understanding and inter-modal reasoning:12

Visual Question Answering (VQA), natural language for visual reasoning (NLVR), and fine-grained13

visual reasoning (Visual Entailment). We also show results on Image-Text Retrieval task. Image-text14

retrieval aims to retrieve the most relevant text from candidate images, or vice versa. Image-text15

retrieval includes two sub-tasks of image-to-text retrieval (TR) and text-to-image retrieval (IR). We16

follow the same practice as SOHO [4] to conduct image-text retrieval for fair comparisons. During17

training, we construct image-text pairs in a mini-batch by sampling aligned pairs from ground-truth18

annotations, and unaligned pairs from other captions within the mini-batch. To predict whether an19

image-text pair is aligned or not, we use the joint embedding representation of the [CLS] token from20

Transformers to perform binary classification. Since the binary classification objective of image-text21

retrieval model is consistent with the image-text matching (ITM) task in pre-training stage, we22

initialize the task-specific head from the pre-trained ITM head for better initialization. We adopt23

AdamW optimizer with a learning rate of 5e-5. The mini-batch size is set to 32. We train 10 epochs24

until convergence and decay the learning rate by half at 5th epoch empirically.25

Experiment results on Flickr30k [12] are shown in Table 1. Our model outperforms ViLT and SOHO26

under all metrics on Flickr30k. The promising results of our model on image-text retrieval indicate27

the advantage of our fully Transformer architecture for learning cross-modal alignment.28

3 Dataset Statistics29

We summarizes the statistics of all our pre-training and downstream tasks in Table 2.30
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Table 1: Evaluation of image-to-text retrieval (TR) and text-to-image retrieval (IR) on Flickr30K
dataset. "-" indicates the detail is not reported.

Method VSE++[2] SCAN[8] ViLBERT[11] Unicoder-VL[9] UNITER[1] ViLT[6] SOHO[4] Ours

TR
R@1 52.9 67.4 - 86.2 85.9 83.7 86.5 87.0
R@5 80.5 90.3 - 96.3 97.1 97.2 98.1 98.4
R@10 87.2 95.8 - 99.0 98.8 98.1 99.3 99.5

IR
R@1 39.6 48.6 58.2 71.5 72.5 62.2 72.5 73.5
R@5 70.1 77.7 84.9 90.9 92.4 87.6 92.7 93.1
R@10 79.5 85.2 91.5 94.9 96.1 93.2 96.1 96.4

Table 2: Statistics of different tasks. Notation “*” denotes Karpathy split [5]. Notation “-” denotes
not applicable.

Task Dataset Train Split Test Split Metric

Pre-training VG [7] train - -
MSOCO [10] train+restval* - -

Image-Text Retrieval Flickr30K [12] train test* Recall@1,5,10
Visual Question Answering VQA2.0 [3] train+val test-dev/test-std VQA-score [3]

Visual Reasoning NLVR2 [13] train dev/test-P Top-1 Accuracy
Visual Entailment SNLI-VE [14] train val/test Top-1 Accuracy
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