
A Geometric interpretation of orthognal regularization

Figure 5: Geometric interpretation of the orthogonal regularization. Blue arrows indicate node feature
vectors hv of the latent space, and the orange area/point indicate possible range of graph feature
vector hG obtained by applying READOUT to hv .

We elaborate our motivation behind orthogonal regularization (15) proposed in Section 4.2.3. The
biggest motivation behind orthognoal regularization lies in understanding (8) and (12) that the node
featuresH becomes full rank matrix with good condition number. Figure 5 visually demonstrates the
geometric effect of attention-based READOUT and orthogonal regularization with two example node
features h1 and h2. Only one graph feature vector hG is possible from the combination of two node
features with conventional READOUT, while vectors within the range of the orange rhombus can
represent the whole graph feature with attention-based READOUT. With orthogonal regularization,
area of the range that the graph feature vector hG can represent become even larger, with lower
possibility of null subspace withinH . Accordingly, the subspace thatH can span can be rich enough.

B Detailed description of the dataset

Detailed description of the experiment datasets are summarized in Table 2. Baseline subtask for
serving as the control condition, such as Rest or Response, are listed as the last item in the Subtasks
column. An important fact about the HCP is that a large number data from twin subjects are included
within the dataset. While this fact has been largely ignored in previous GNN-fMRI studies of gender
classification using the HCP dataset, biological influence of shared genetic background on the FC can
be quite significant. We did not take this into account in this work to make a more straightforward
comparison with previous methods, but it should be noted as a limitation of this research that requires
careful consideration in related future studies.

Table 2: Description of the experiment datasets.

Dataset Task type Subtasks No. images Tmax C

HCP-Rest Resting-state Rest 1093 1200 2

HCP-Task

Working Memory Task, Rest 1087 405

7

Social Mental, Random, Rest 1053 274
Relational Task, Rest 1043 232
Motor (L,R).(Hand,Foot), Tongue, Rest 1085 284
Language Story, Math, Response 1051 316
Gambling Task, Rest 1082 253
Emotion Shape, Face, Rest 1049 176
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C Additional experiment results

C.1 Ablation study

Ablation study results are provided in Table 3. The results suggest that STAGIN shows degraded
performance by ablating the orthogonal regularization (Lortho), spatial attention (zspace), temporal
attention (Ztime), and timestamp encoding η(t), confirming the importance of each components of the
model. Gain of classification performance by applying spatio-temporal attention is not as significant
as by applying timestamp encoding, but the attention modules are still uncompensable in that they
provide neuroscientific explainability of the model. Extracting the ROI-Timeseries matrix P with
other widely used atlases including AAL, Destrieux, and Harvard-oxford are also experimented, and
confirmed that the Schaefer atlas with 400 ROIs show best classification performance.

Table 3: Ablation study results.

Atlas N Lortho zspace Ztime η(t) Accuracy (%) AUROC

Schaefer 400

3 3 3 3 88.20 ± 1.33 0.9296 ± 0.0187
7 3 3 3 87.46 ± 3.56 0.9213 ± 0.0242
7 7 3 3 86.55 ± 3.12 0.9260 ± 0.0216
7 7 7 3 85.64 ± 2.47 0.9272 ± 0.0104
7 7 7 7 82.34 ± 3.38 0.9005 ± 0.0256

AAL 116 3 3 3 3 85.36 ± 1.58 0.9216 ± 0.0116
Destrieux 150 3 3 3 3 85.73 ± 1.39 0.9235 ± 0.0126
Harvard-oxford 48 3 3 3 3 82.07 ± 1.11 0.9008 ± 0.0093

C.2 Hyperparameter experiments

Hyperparameter experiment results are provided in Table 4. The model tends to be robust to
hyperparameter changes, and showed even better HCP-Rest gender classification performance when
the edge threshold was set to 40% instead of 30% (bold numbers in Table 4).

Table 4: Hyperparameter experiment results.

Hyperparameter Accuracy (%) AUROC

Edge threshold
20% 88.01 ± 2.81 0.9304 ± 0.0220
*30% 88.20 ± 1.33 0.9296 ± 0.0187
40% 89.02 ± 1.80 0.9408 ± 0.0110

Γ
25 (18s) 85.45 ± 3.51 0.9252 ± 0.0235
* 50 (36s) 88.20 ± 1.33 0.9296 ± 0.0187
75 (54s) 86.37 ± 1.87 0.9218 ± 0.0168

λ
1.0× 10−4 87.46 ± 2.56 0.9336 ± 0.0179
*1.0× 10−5 88.20 ± 1.33 0.9296 ± 0.0187
1.0× 10−6 88.10 ± 2.08 0.9347 ± 0.0194

* Asterisks indicate baseline experiment settings

C.3 Comparative experiment of spatial attention scoring

While the motivation may have been different, our attention-based READOUT functions share
methodological similarity with graph pooling methods, which score and rank each nodes within
the graph for the selection of important nodes. We experimented on replacing our attention-based
READOUT functions with some well-known graph pooling methods including TopKPooling [16],
SAGPooling [28], ASAPooling [38] from the PyTorch Geometric5 package [12] without dropping any
vertices for scoring the level of attention across the nodes. The results suggest that our attention-based

5https://pytorch-geometric.readthedocs.io/
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READOUT functions perform better and more stable, with lower computational overload for our
graph classification task.

Table 5: Comparison with pooling methods for scoring spatial attention.

Module Accuracy (%) AUROC

SERO (Ours) 88.20 ± 1.33 0.9296 ± 0.0187
TopKPooling [16] 77.02 ± 10.94 0.8203 ± 0.1123
SAGPooling [28] OOM OOM
ASAPooling [38] OOM OOM

We believe that the strength of our attention-based READOUT comes from taking the globally
pooled graph featureHΦmean as a prior, which may represent the whole graph property better than
a randomly initialized learnable vector (TopKPooling) or GNN aggregated close neighborhood
information (SAGPooling, ASAPooling).

D Additional attention analysis results

D.1 Temporal attention of HCP-Rest

Analysis of the HCP-Rest temporal attention of are further analyzed with (i) varying number of
clusters for k-means clustering, (ii) comparing with unattended average FC pattern in female and
male subjects, and (iii) statistical testing of cluster-by-gender attending frequency.

Figure 6: Clustering analysis of HCP-Rest temporally attended regions with (a) number of clusters
set to 5, and (b) number of clusters set to 3. (c) Plot of the unattended average FC matrix for female
and male subjects. Female subjects show slight hyperconnectivity in the DMN and hypoconnectivity
in the SMN when compared to male subjects.
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Table 6: Chi-square test of temporal at-
tending frequency

Layer χ2 p

1 668.583 <0.001
2 649.589 <0.001
3 433.615 <0.001
4 420.542 <0.001

Figure 6 (a) and (b) demonstrate the clustering analysis
result with number of cluster centroids set to 5 and 3,
respectively. It can be seen that the same pattern of DMN
hyperconnectivity and SMN hypoconnectivity is found
irrespective of the number of clusters. Figure 6 (c) show a
plot of average DMN and SMN connectivity in female and
male subjects, which have minimal difference between
the two genders. When the difference is computed by
subtracting average FC matrix of female subjects by that
of male subjects, a slight hyperconnectivity in DMN and
hypoconnectivity in SMN is present in the average pattern. This average pattern again confirms the
validity of our method by showing that our method can capture the small difference between the two
groups that is present in the dynamic FC graph, and exploit the captured information for classification.
Chi-square test on the difference of attending frequency between the cluster-by-gender resulted in
that the frequency of attended clusters are significantly different between female and male subjects
(Table 6).

D.2 Temporal and spatial attention analysis of all task types from HCP-Task

Temporal (Figure 7) and spatial (Figure 8) attention analysis results of task types other than working
memory are provided in this section. It can be seen from Figure 7 that the Transformer encoder of
STAGIN learns to temporally attend to the subtasks regardless of the task type, without any subtask
timing information provided during training.

Figure 7: Plot of the HCP-Task temporal attention Z(k)
time averaged across all subjects.
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Figure 8: Proportion of statistically significant regions within the 7 ICNs from the HCP-Task spatial
attention GLM. Each subtask is contrasted with the baseline subtask, i.e. rest or response.

E Brain plot of spatially attended regions from HCP-Rest and HCP-Task

Spatially attended regions of the HCP-Rest and HCP-Task experiments are visualized on a template
brain with respect to the 7 ICNs and the four STAGIN layers in Figure 9 and 10. Ratio of significant
regions between the two hemispheres and the 7 ICNs are also demonstrated as pie plots. Defining the
spatially attended regions follow the result of GLM statistical significance (p-FWE < 0.05) for the
HCP-Task, and the regions with top 5-percentile attention score for the HCP-Rest.
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Figure 9: Brain plot of top 5-percentile HCP-Rest spatial attention regions.
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Figure 10: Brain plot of statistically significant HCP-Task working memory spatial attention regions.
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