
Invertible Tabular GANs: Killing Two Birds with One
Stone for Tabular Data Synthesis

Jaehoon Lee
Yonsei University

ljh5694@yonsei.ac.kr

Jihyeon Hyeong
Yonsei University

jiji.hyeong@yonsei.ac.kr

Jinsung Jeon
Yonsei University

Jjsjjs0902@yonsei.ac.kr

Noseong Park
Yonsei University

noseong@yonsei.ac.kr

Jihoon Cho
Samsung SDS

jihoon1.cho@samsung.com

Abstract

Tabular data synthesis has received wide attention in the literature. This is because
available data is often limited, incomplete, or cannot be obtained easily, and data
privacy is becoming increasingly important. In this work, we present a generalized
GAN framework for tabular synthesis, which combines the adversarial training of
GANs and the negative log-density regularization of invertible neural networks.
The proposed framework can be used for two distinctive objectives. First, we can
further improve the synthesis quality, by decreasing the negative log-density of real
records in the process of adversarial training. On the other hand, by increasing the
negative log-density of real records, realistic fake records can be synthesized in
a way that they are not too much close to real records and reduce the chance of
potential information leakage. We conduct experiments with real-world datasets
for classification, regression, and privacy attacks. In general, the proposed method
demonstrates the best synthesis quality (in terms of task-oriented evaluation metrics,
e.g., F1) when decreasing the negative log-density during the adversarial training. If
increasing the negative log-density, our experimental results show that the distance
between real and fake records increases, enhancing robustness against privacy
attacks.

1 Introduction

Generative models, such as generative adversarial networks (GANs) and variational autoencoders
(VAEs), have proliferated over the past several years [24, 15, 31, 2, 18, 1, 16]. GANs are one of the
most successful models among generative models, and tabular data synthesis is one of the many GAN
applications [7, 4, 28, 27, 21, 38].

However, tabular data synthesis is challenging due to the following two problems: i) Tabular data
frequently contains sensitive information. ii) It is required to share tabular data with people, some of
whom are trustworthy while others are not. Therefore, generating fake records as similar as possible
to real ones, which is commonly accepted to enhance the synthesis quality, is not always preferred in
tabular data synthesis, e.g., sharing with unverified people [27, 5].

In [5], it was revealed that one can effectively extract privacy-related information from a pre-trained
GAN model if its log-densities are high enough. To this end, we propose a generalized framework,
called invertible tabular GAN (IT-GAN), where we integrate the adversarial training of GANs and
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(a) IT-GAN (b) IT-GAN(Q) (c) IT-GAN(L)

Figure 1: Synthesis examples with IT-GAN’s variations for Census, a binary classification dataset.
We use t-SNE [37] to project each real/fake record onto a 2-dim space. (a) The synthesis only with
the adversarial training shows a reasonable synthesis outcome. (b) The synthesis with the adversarial
training and decreasing the negative log-density shows a better similarity between the distributions of
the blue (real) and the red (fake) points than that of (a). (c) The synthesis with the adversarial training
and increasing the negative log-density improves the privacy protection, i.e., it is not likely that the
blue points are correctly inferred from the red points. Refer to Appendix B for additional figures.

the negative log-density training of invertible neural networks. In our framework, we can improve1 or
sacrifice the negative log-density during the adversarial training to trade off between synthesis quality
and privacy protection (cf. Figure 1).

Our generator based on neural ordinary differential equations (NODEs [6]) is invertible and enables
the proposed training concept. For NODEs, there exists an efficient unbiased estimation technique
of their Jacobian-determinants [6, 16]. By using the unbiased Hutchinson estimator, therefore, we
can efficiently estimate the negative log-density. After that, this negative log-density can be used for
the following two opposite objectives: i) decreasing the negative log-density to further increase the
synthesis quality (cf. IT-GAN(Q) in Figure 1), or ii) increasing the negative log-density to synthesize
realistic fake records that are not too much similar to real records (cf. IT-GAN(L) in Figure 1). In
particular, the second objective to make the log-density worse after little sacrificing the synthesis
quality is closely related to the information leakage issue of tabular data.

However, this invertible generator has one limitation – the dimensionality of hidden layers cannot be
changed. To overcome this limitation, we propose a joint architecture of an autoencoder (AE) and a
GAN. The motivation behind the proposed joint architecture is twofold: i) The role of the AE is to
create a hidden representation space, on which the generator and the discriminator work. The hidden
representation space has the same dimensionality as that of the latent input vector of the generator.
Therefore, the input and output sizes are the same in our generator, which meets the invariant
dimensionality requirement of NODEs. ii) Separating the labor between the AE and the generator
can improve the training process. In general, tabular data contains a large number of columns, which
makes the synthesis more difficult. In our joint architecture, the generator shares its task with the AE;
it does not directly synthesize fake records but fake hidden representations. The decoder (recovery
network) of the AE converts them into human-readable fake records. Therefore, our final training
consists of the GAN training, the AE training, and the negative log-density regularization.

We conduct experiments with 6 real-world tabular datasets and compare our method with 9 baseline
methods. In many evaluation cases, our methods outperform all other baselines. Our contributions
can be summarized as below:

1. We propose a general framework where we can trade-off between synthesis quality and
information leakage.

2. To this end, we combine the adversarial training of GANs and the negative log-density
training of invertible neural networks.

3. We conduct thorough experiments with 6 real-world tabular datasets and our methods
outperform existing methods in almost all cases.

1It is well known that VAEs generate blurred samples but achieve a better log-density than GANs. Therefore,
there exists a room to improve the log-density of fake samples by GANs.
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2 Related Work

We introduce various tabular data synthesis methods and invertible neural networks. In particular, we
review the invertible characteristic of NODEs.

2.1 Table Data Synthesis

LetX1:N be a tabular data which consists of N columns. Each column ofX1:N is either discrete or
continuous numerical. Let x be a record ofX1:N . The goal of tabular data synthesis is i) to learn a
density p̂(x) that best approximates the data distribution p(x) and ii) to generate a fake tabular data
X̂1:N . For simplicity without loss of generality, we assume |X1:N | = |X̂1:N |, i.e., the real and fake
tabular data have the same number of records.

This take can be accomplished by various approaches, e.g., VAEs, GANs, and so forth, to name a
few. We introduce a couple of seminal models in this field. Tabular data synthesis, which generates a
realistic synthetic table by modeling a joint probability distribution of columns in a table, encompasses
many different methods depending on the types of data. For instance, Bayesian networks [3, 42] and
decision trees [30] are used to generate discrete variables. A recursive modeling of tables using the
Gaussian copula is used to generate continuous variables [29]. A differentially private algorithm for
decomposition is used to synthesize spatial data [9, 41]. However, some constraints that these models
have such as the type of distributions and computational problems have hampered high-fidelity data
synthesis.

In recent years, several data generation methods based on GANs have been introduced to synthesize
tabular data, which mostly handle continuous/discrete numerical records. RGAN [13] generates
continuous time-series healthcare records while MedGAN [7], CorrGAN [28] generate discrete discrete
records. EhrGAN [4] generates plausible labeled records using semi-supervised learning to augment
limited training data. PATE-GAN [21] generates synthetic data without endangering the privacy of
original data. TableGAN [27] improved tabular data synthesis using convolutional neural networks to
maximize the prediction accuracy on the label column. TGAN [38] is one of the most recent conditional
GAN-based models. It suggested a couple of important directions toward high-fidelity tabular data
synthesis, e.g., a preprocessing mechanism to convert each record into a form suitable for GANs.

2.2 Invertible Neural Networks and Neural Ordinary Differential Equations

Invertible neural networks are typically bijective. Owing to this property and the change of variable
theorem, we can efficiently calculate the exact log-density of data sample x as follows:

log px(x) = log pz(z)− log det
∣∣∂f(z)

∂z

∣∣, (1)

where f : Rdim(z) → Rdim(x) is an invertible function, and z ∼ pz(z). ∂f(z)∂z is the Jacobian of f ,
which is the most computationally demanding part to calculate — it has a cubic time complexity.
Therefore, invertible neural networks typically restrict the Jacobian matrix definition into a form that
can be efficiently calculated [31, 36, 25, 26, 10, 11]. However, FFJORD [16] recently proposed a
NODE-based invertible architecture where we can use any form of Jacobian and we also rely on this
technique.

In NODEs [6], let h(t) be a hidden vector at time (or layer) t in a neural network. NODEs solve the
following integral problem to calculate h(ti+1) from h(ti) [6]:

h(ti+1) = h(ti) +

∫ ti+1

ti

f(h(t), t;θf )dt, (2)

where f(h(t), t;θf ), which we call ODE function, is a neural network to approximate ḣ def
= dh(t)

dt .
To solve the integral problem, NODEs rely on ODE solvers, e.g., the explicit Euler method, the
Dormand–Prince method, and so forth [12]. h(ti) is easily reconstructed from h(ti+1) with a
reverse-time ODE as follows:

h(ti) = h(ti+1) +

∫ ti

ti+1

f(h(t), t;θf )dt. (3)
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Two other related papers are FlowGAN [17] and TimeGAN [39] although they do not synthesize
tabular data. FlowGAN combines the adversarial training with NICE [10] or RealNVP [11]. Grover
et al. showed in the paper that likelihood-based training does not show reliable synthesis for high-
dimensional space and they attempt to combine them [17]. TimeGAN also combines, given time-series
data, the adversarial training and the supervised likelihood training of predicting a next value from
past values. This supervised training is available because they deal with time-series data. In our case,
we combine the adversarial training and the negative log-density regularization of NODEs, which are
considered as more general than NICE and RealNVP [16].

3 Proposed Method

We propose a more advanced setting for tabular data synthesis than those of existing methods. Our
goal is to integrate the adversarial training of GANs and the log-density training of invertible neural
networks. Therefore, one can easily trade off between synthesis quality and privacy protection.

We describe our design in this section. The two key points in our design are that i) we use an invertible
neural network architecture to design our generator, and ii) we integrate an AE into our framework to
ii-a) enable the isometric architecture of the generator, i.e., the dimensions of hidden layers do not
vary, and ii-b) distribute the workload of the generator.

3.1 Overall Architecture

Invertible Generator

Discriminator

Real tabular
data

xreal Encoder Decoderhreal
xreal^

G hfakezN(0,1)

G-1zreal

y
hreal, Pr(hreal)^ ^

xfake

^

AE Log-densityGAN Synthesis

Figure 2: The overall architecture of IT-GAN. Each edge color means
a certain type of data path.

The overall architecture is
in Figure 2. Our archi-
tecture can be classified
into the following four data
paths: AE-path) The AE
data path, highlighted in
red, is related to an AE
model to generate, given
a real record xreal, a hid-
den representation hreal
and reconstruct x̂real. Log-
density-path) There are
two different data paths
related to the generator.
The log-density path, high-
lighted in blue, is related to
an invertible model to calcu-
late the log-density of the hidden representation hreal, i.e., log p̂g(hreal). Therefore, we can consider
it as the log-density of the real record xreal because the hidden representation is from the real record.
GAN-path) The second data path related to the generator, highlighted in orange, is for the adversarial
training. The discriminator reads hreal and hfake, which is generated by the generator from the
latent vector z, to distinguish them. Synthesis-path) The last data path, highlighted in green, is used
after finishing training our model. Using the generator and the decoder, we synthesize many fake
records.

3.2 Autoencoder

We describe our AE model in this subsection. Our AE model relies on the mode-specific normalization,
which i) fits a variational mixture of Gaussians for each continuous column of X1:N , ii) converts
each continuous element of j-th record xj,1:N ∈ X1:N into a one-hot vector denoting the specific
Gaussian that best matches the element and its scalar normalized value in the selected Gaussian.
If a column is discrete, we simply convert each value in the column into a one-hot vector. After
that we use the following encoder E : Rdim(x) → Rdim(h) and the decoder (recovery network)
R : Rdim(h) → Rdim(x):

hreal = FC1ne
(...φ(FC11(xreal)...), for the encoder, (4)

x̂real = FC2nr
(...φ(FC21(hreal)...), for the decoder, (5)
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where φ is a ReLU, FC11 is fully connected layer which takes the dim(x) size of input. Through
several fully connected layers, FC1ne makes the dim(h) size of output. We use θe to denote the
parameters of the encoder. Analogously, FC21 takes the dim(h) size of input, and after several FC
layers FC2nr

makes the size dim(x) of output. We use θr to denote the parameters of the decoder
(recovery network).

3.3 Generator

The key point in our generator design is to adopt an invertible neural network [16] for our own
purposes. Among various invertible architectures, we adopt and customize NODEs. The NODE-
based invertible models have the advantage that there are no restrictions on the form of Jacobian-
determinant. Other invertible models typically restrict their Jacobian-determinants to specific forms
that can be easily calculated. However, our NODE-based model does not have such restrictions.

Therefore, we could study about the generator architecture without any restrictions and finally use
the following architecture for our generator G : Rdim(z) → Rdim(h):

hfake = z(0) +

∫ 1

0

f(z(t), t;θg)dt,

f(z, t;θg) = f ′(z, t;θg)− z(t),

f ′(z, t;θg) = FK(· · ·σ(F1(z, t)) · · · ),
Fi(z, t) = (1− Mi(z, t))FC(i,1)(z) + Mi(z, t)FC(i,2)(z),

(6)

where σ is a non-linear activation, FC(1,1) and FC(1,2) are with (dim(z), M dim(z)), FC(K,1) and
FC(K,2) are with (M dim(z), dim(h)), and FC(i,1) and FC(i,2) are with (M dim(z), M dim(z)) if
1 < i < K. z(0) ∼ N (0,1) is a latent vector sampled from the unit Gaussian. Mi(z, t) : Rdim(z) →
[0, 1] is the mapping function which defines a proportion between FC(i,1) and FC(i,2). We use either t
or sigmoid(FCMi(z ⊕ t)) for Mi, where ⊕ means concatenation. In our case, dim(z) = dim(h). In
fact, this invariant dimensionality is one characteristic of many invertible neural networks. We use θg
to denote the parameters of the generator.

The integral problem can be solved by various ODE solvers. The log-probability log p(hfake) can be
calculated, by the unbiased Hutchinson estimator, as follows:

log p(hfake) = log p(z(0))− Ep(ε)
[ ∫ 1

0

εᵀ
∂f

∂z(t)
εdt
]
, (7)

where p(ε) is a standard Gaussian or Rademacher distribution [19]. The time complexity to calculate
the Hutchinson estimator is slightly larger than that of evaluating f since the vector-Jacobian product
εᵀ ∂f

∂z(t) has the same cost as that of evaluating f using the reverse-mode automatic differentiation.

One distinguished property of the generator is, given a real hidden vector hreal, that we can recon-
struct ĥreal by G(G−1(hreal)) and estimate its log-probability p̂(ĥreal), where hreal = ĥreal by
exactly solving Eq. (3) — note that G−1 is analytically defined from G and requires no training.

3.4 Discriminator

The discriminator D : Rdim(h) → R reads hreal and hfake to classify them. We use the following
architecture:

y = FC3nd
(...Φa(ηb(FC31(h)))...), (8)

where FC31 takes the size dim(h) of input, and after several FC layers FC3nd
makes the one

dimension output. ηb is a Leaky ReLU with b negative slope, and Φa is a dropout with a ratio of a.
We use θd to denote the parameters of the discriminator.

3.5 Training Algorithm

We describe how to train the proposed architecture. Since it consists of several modules and their loss
functions, we first separately describe them and then, the final training algorithm.
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Loss Functions. We introduce various loss functions we use to train our model. First, we use the
following AE loss to train the encoder and the decoder model:

LAE
def
= LReconstruct +

1

2
‖hreal‖2 + ‖hfake − ĥfake‖2, (9)

where LReconstruct is a typical reconstruction error loss. We note that we here want to learn a sparse
encoder with the L2 regularization term. hfake is a hidden vector generated by the generator G.
ĥfake is a reconstructed hidden vector by E(R(hfake)), where E and R mean the encoder and the
decoder, respectively. After some preliminary studies, we found that this loss definition provides
robust training in many cases. In particular, it further stabilizes the integrity of the autoencoder in
terms of the learned hidden representation space. To train the generator and the discriminator, we use
the WGAN-GP loss. Then, we propose to use the following regularizer to control the log-density,
which results in an adjustment of the real-fake distance:

Rdensity
def
= γE

[
− log p̂(E(x))

]
x∼pdata

, (10)

where E is the encoder, γ is a coefficient to emphasize the regularization, and the log-density
log p̂(E(x)) can be calculated with Eq. (7) during G(G−1(E(x))).

Algorithm 1: How to train IT-GAN
Input: Training data Dtrain, Validating data

Dval, Maximum iteration number
max_iter, The training periods
periodD, periodG, periodL

1 Initialize θe, θr , θg , θd, and k ← 0;
2 while k < max_iter do
3 k ← k + 1;
4 Train θe and θr with LAE and LGAN ;
5 if k mod periodD = 0 then
6 Train θd with LGAN ;
7 end
8 if k mod periodG = 0 then
9 Train θg with LGAN ;

10 end
11 if k mod periodL = 0 then
12 Train θg with Rdensity;
13 end
14 Validate and update the best parameters,

θ∗e , θ∗r , θ∗g , and θ∗d , with Dval;
15 end
16 return θ∗e , θ∗r , θ∗g , and θ∗d ;

Training Algorithm. Algorithm 1 describes
our training method. There is a training data
Dtrain. We first train the encoder with the AE
and WGAN-GP losses and the decoder with the
AE loss (line 4). To learn a hidden vector space
that is suitable for the overall synthesis process,
we train the encoder with the WGAN-GP loss
to help the discriminator better distinguish real
and fake hidden vectors by learning a hidden
vector in favor of the discriminator. By doing
this, the AE and the GAN are integrated into a
single framework. Then we train the discrimi-
nator with the WGAN-GP loss every periodD
(line 6), the generator with the WGAN-GP loss
every periodG (line 9). After that, the generator
is trained one more time with the proposed den-
sity regularizer every periodL(line 12). Since
the discriminator and the generator rely on the
hidden vector created by the AE model, we then
train the encoder and the decoder every itera-
tion. The log-density regularization is also not
always used but every periodL iteration because
we found that a frequent log-density regularization negatively affects the entire training progress.
Using the validation data Dval and a task-oriented evaluation metric, we choose the best model. For
instance, we use the F-1/MSE score of a trained generator every epoch with the validating data —
an epoch consists of many iterations depending on the number of records in the training data and a
mini-batch size. If a recent model is better than the temporary best model, we update it.

On the Tractability of Training the Generator. The ODE version of the Cauchy–Kowalevski
theorem states that, given f = dh(t)

dt , there exists a unique solution of h if f is analytic (or locally
Lipschitz continuous). In other words, the ODE problem is well-posed if f is analytic [14]. In
our case, the function f in Eq. (6) uses various FC layers that are analytic and some non-linear
activations that may or may not be analytic. However, the hyperbolic tangent (tanh), which is
analytic, is mainly used in our experiments. This implies that there will be only one unique optimal
ODE for the generator, given a latent vector z. Because of i) the uniqueness of the solution and ii) our
relatively simpler definitions of f in comparison with other NODE applications, e.g., convolutional
layer followed by a ReLU in [6], we believe that our training method can find a good solution for the
generator.
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Table 1: Classification in Adult

Method F1 ROCAUC

Real 0.66±0.00 0.88±0.00
PrivBN 0.43±0.02 0.84±0.01
TVAE 0.62±0.01 0.84±0.01
TGAN 0.63±0.01 0.85±0.01

TableGAN 0.46±0.03 0.81±0.01
IT-GAN(Q) 0.64±0.01 0.86±0.00
IT-GAN(L) 0.64±0.01 0.85±0.01
IT-GAN 0.64±0.01 0.86±0.01

Table 2: Classification in Census

Method F1 ROCAUC

Real 0.47±0.01 0.90± 0.00
PrivBN 0.23±0.03 0.81±0.03
TVAE 0.44±0.01 0.86±0.01
TGAN 0.38±0.03 0.86±0.02

TableGAN 0.31±0.06 0.81±0.03
IT-GAN(Q) 0.45±0.01 0.89±0.00
IT-GAN(L) 0.46±0.01 0.88±0.01
IT-GAN 0.45±0.01 0.88±0.00

Table 3: Classification in Credit

Method Macro F1 Micro F1 ROCAUC

Real 0.48±0.01 0.61±0.00 0.67±0.00
Ind 0.27±0.01 0.44±0.01 0.51±0.01

PrivBN 0.32±0.02 0.51±0.01 0.60±0.00
TVAE 0.39±0.00 0.57±0.00 0.58±0.00
TGAN 0.40±0.00 0.55±0.01 0.59±0.00

MedGAN 0.37±0.02 0.51±0.03 0.56±0.01
IT-GAN(Q) 0.41±0.01 0.54±0.01 0.60±0.00
IT-GAN(L) 0.40±0.01 0.55±0.01 0.60±0.01
IT-GAN 0.40±0.00 0.54±0.01 0.59±0.01

Table 4: Classification in Cabs

Method Macro F1 Micro F1 ROCAUC

Real 0.65±0.00 0.68±0.00 0.78±0.00
PrivBN 0.64±0.00 0.67±0.00 0.77±0.00
TVAE 0.60±0.02 0.66±0.01 0.74±0.01
TGAN 0.64±0.00 0.67±0.00 0.76±0.00

VeeGAN 0.54±0.06 0.60±0.05 0.71±0.02
IT-GAN(Q) 0.66±0.00 0.69±0.00 0.79±0.01
IT-GAN(L) 0.66±0.01 0.68±0.01 0.79±0.00
IT-GAN 0.64±0.01 0.67±0.01 0.77±0.00

4 Experimental Evaluations

We introduce our experimental environments and results for tabular data synthesis. Experiments
were done in the following software and hardware environments: UBUNTU 18.04, PYTHON 3.7.7,
NUMPY 1.19.1, SCIPY 1.5.2, PYTORCH 1.8.1, CUDA 11.2, and NVIDIA Driver 417.22, i9 CPU,
and NVIDIA RTX TITAN.

4.1 Experimental Environments

4.1.1 Datasets

We test with various real-world tabular data, targeting binary/multi-class classification and regression.
Their statistics are summarized in Appendix A. The list of datasets is as follows: Adult [32] consists
of diverse demographic information in the U.S., extracted from the 1994 Census Survey, where we
predict two classes of high (>$50K) and low (≤$50K) income. Census [33] is similar to Adult but
it has different columns. Credit [40] is for bank loan status prediction. Cabs [34] is collected by an
Indian cab aggregator service company for predicting the types of customers. King [23] contains
house sale prices for King County in Seattle for the records between May 2014 and May 2015.
News [22] has a heterogeneous set of features about articles published by Mashable in a period of
two years, to predict the number of shares in social networks. Adult and Census are for binary
classification, and Credit and Cabs are for multi-class classification. The others are for regression.

4.1.2 Evaluation Methods

We generate fake tabular data and train multiple classification (SVM, DecisionTree, AdaBoost, and
MLP) or regression (Linear Regression and MLP) algorithms. We then evaluate them with testing
data and average their performance in terms of various evaluation metrics. This specific evaluation
method was proposed in [38] and we follow their evaluation protocol strictly. We execute these
procedures five times with five different seed numbers.

For our IT-GAN, we consider IT-GAN(Q) with a positive γ, which decreases the negative log-
density to improve the synthesis Quality, IT-GAN(L), which sacrifices the log-density to decrease the
information Leakage with a negative γ, and IT-GAN, which does not use the log-density regularization.
In our result tables, Real means that we use real tabular data to train a classification/regression model.
For other baselines, refer to Appendix C.

We do not report some baselines in our result tables to save spaces if their results are significantly
worse than others. We refer to Appendix E for their full result tables.
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Table 5: Regression in King

Method R2 Ex. Var. MSE MAE

Real 0.50±0.11 0.61±0.02 0.14±0.03 0.30±0.03
TVAE 0.44±0.01 0.52±0.04 0.16±0.00 0.32±0.01
TGAN 0.43±0.01 0.60±0.00 0.16±0.00 0.32±0.00

TableGAN 0.41±0.02 0.46±0.03 0.17±0.01 0.33±0.01
VeeGAN 0.25±0.15 0.32±0.14 0.21±0.04 0.37±0.03

IT-GAN(Q) 0.59±0.00 0.60±0.00 0.12±0.00 0.28±0.00
IT-GAN(L) 0.53±0.01 0.56±0.01 0.13±0.00 0.29±0.00
IT-GAN 0.59±0.01 0.60±0.01 0.12±0.00 0.27±0.00

Table 6: Regression in News (Ex. Var. means
explained variance.)

Method R2 Ex.Var MSE MAE

Real 0.15±0.01 0.15±0.00 0.69± 0.00 0.63±0.01
TVAE -0.09±0.03 0.03±0.04 0.88±0.03 0.67±0.01
TGAN 0.06±0.02 0.07±0.01 0.76±0.01 0.66±0.02

IT-GAN(Q) 0.09±0.01 0.09±0.01 0.74±0.01 0.65±0.01
IT-GAN(L) 0.03±0.03 0.06±0.02 0.78±0.03 0.65±0.01
IT-GAN 0.09±0.02 0.10±0.01 0.74±0.01 0.64±0.00

4.1.3 Hyperparameters

We consider the following ranges of the hyperparameters: the numbers of layers in the encoder and
the decoder, ne and nr, are in {2, 3}. The number of layers nd of Eq. (8) is in {2, 3}. Dropout ratio
a is in {0, 0.5}, and the leaky relu slope b is in {0, 0.2}. The non-linear activation σ is tanh; the
multiplication factor M of Eq. (6) is in {1, 1.5}; the number of layers K of Eq. (6) is in {3}; the
coefficient γ is in {-0.1, -0.014, -0.012, -0.01, 0, 0.01, 0.014, 0.05, 0.1}; the training periods, denoted
periodD, periodG, periodL in Algorithm 1, are in {1, 3, 5, 6}; the dimensionality of hidden vector
dim(h) is in {32, 64, 128}; the mini-batch size is in {2000}. We use the training/validating method
in Algorithm 1. For baselines, we consider the recommended set of hyperparameters in their papers
or in their respected GitHub repositories. Refer to Appendix D for the best hyperparameter sets.

4.2 Experimental Results

In the result tables, the best (resp. second best) results are highlighted in boldface (resp. with
underline). If same average, a smaller std. dev. wins. In 17 out of the 18 cases (# datasets × #
task-oriented evaluation metrics), one of our methods shows the best performance in Adult.

Binary Classification. We describe the experimental results of Adult and Census in Tables 1 and 2.
They are binary classification datasets. In general, many methods show reasonable evaluation scores
except Ind, Uniform, and VeeGAN. While TGAN and TVAE show reasonable performance in terms of
F1 and ROCAUC for Adult, our method IT-GAN(Q) shows the best performance overall. Among
those baselines, TGAN shows good performance.

For Census, TVAE still works well. Whereas TGAN shows good performance for Adult, it does not
show reasonable performance in Census. Our method outperforms them. In general, IT-GAN(Q) is
the best in Census.

Multi-class Classification. Credit and Cabs are multi-class classification datasets, for which it
is challenging to synthesize. For Credit in Table 3, IT-GAN(Q) shows the best performance in
terms of Macro F1 and ROCAUC, and TVAE shows the best Micro F1 score. This is caused by the
class imbalance problem where the minor class occupies a portion of 9%. TVAE doesn’t create any
records for it and achieves the best Micro F1 score. Therefore, IT-GAN(Q) is the best in Credit. In
Figure 4 in Appendix B, IT-GAN(L) actively synthesizes fake records that are not overlapped with
real records, which results in sub-optimal outcomes.

For Cabs in Table 4, IT-GAN(Q) shows the best scores in terms of Micro/Macro F1. Interestingly,
IT-GAN(L) has the second best scores. From this, we can know that the sacrifice caused by increasing
the negative log-density is not too much in this dataset.

Regression. King and News are regression datasets. Many methods show poor qualities in these
datasets and tasks, and we removed them from Tables 5 and 6. In particular, all methods except TGAN,
IT-GAN and its variations show negative scores for R2 in News. Only our methods show reliable
syntheses in all metrics. For King, our method and TGAN show good performance, but IT-GAN(Q)
outperforms all baselines for almost all metrics.

Privacy Attack. In [5], a full black-box privacy attack method to GANs has been proposed. We
implemented their method to attack our method and measure the attack success score in terms of
ROCAUC. In Table 7, we report the full black-box attack success scores for our method only. Refer
to Appendix G for more detailed results. In most of the cases, IT-GAN(L) shows the lowest attack
success score. This specific IT-GAN(L) is the one we used to report the performance in other tables.
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Figure 3: The p.d.f. of the real-fake distance

Table 7: ROCAUC of the full black box attack success. Lower values are more robust to attacks. If
same average, lower std. dev. wins.

Model Adult Census Credit Cabs King News
IT-GAN(Q) 0.612±0.008 0.833±0.011 0.710±0.012 0.659±0.016 0.761±0.025 0.791±0.003
IT-GAN(L) 0.599±0.016 0.741±0.027 0.656±0.027 0.630±0.011 0.703±0.032 0.783±0.010
IT-GAN 0.618±0.003 0.816±0.019 0.688±0.058 0.654±0.033 0.742±0.003 0.788±0.007

Table 8: Sensitivity in News

dim(h) R2 Ex.Var MSE MAE

32 0.00 0.01 0.80 0.67
64 0.03 0.05 0.78 0.66

128 0.06 0.07 0.76 0.65

Table 9: Sensitivity in News

γ R2 Ex.Var MSE MAE

-0.0105 0.05 0.07 0.77 0.66
-0.0100 0.06 0.07 0.76 0.65
0.0000 0.07 0.10 0.75 0.64
0.0100 0.10 0.11 0.73 0.64
0.0500 0.10 0.10 0.73 0.65

Table 10: Sensitivity of full black
box attack w.r.t. γ in News

γ FBB ROCAUC

-0.012 0.762
-0.011 0.752
0.000 0.784
0.050 0.787
0.100 0.792

Note that IT-GAN(L) shows good performance for classification and regression while having the
lowest attack success score.

Ablation Study on Negative Log-Density. We compare IT-GAN and its variations. IT-GAN(Q)
outperforms IT-GAN in Adult, Census, Credit, Cabs, and King. According to these, we can
conclude that decreasing the negative log-density improves task-oriented evaluation metrics.

In Figure 3, we show the density function of the real-fake distance in various datasets whereas their
mean values are shown in other experimental result tables. IT-GAN(L) effectively regularizes the
distance. IT-GAN(Q) shows more similar distributions than IT-GAN. Therefore, we can know that
controlling the negative log-density works as intended. The visualization in Figure 1 also proves it.

Sensitivity Analyses. By changing the two key hyperparameters dim(h) and γ in our methods, we
also conduct sensitivity analyses. We test IT-GAN(L) with various settings for dim(h). In general,
dim(h) = 128 produces the best result as shown in Table 8. With IT-GAN in Table 9, we variate γ,
and γ = 0.01 produces many good outcomes. In Table 10, γ = −0.011 is robust to the full black-box
attack. We refer to Appendix F for other tables.

5 Conclusions

We tackled the problem of synthesizing tabular data with the adversarial training of GANs and the
negative log-density regularization of invertible neural networks. Our experimental results show
that the proposed methods work well in most cases and the negative log-density regularization can
adjust the trade-off between the synthesis quality and the robustness to the privacy attack. However,
we found that some datasets are challenging to synthesize, i.e., all generative models show lower
performance than Real in some multi-class and/or imbalanced datasets, e.g., Census and Credit.
In addition, the best performing method varies from one dataset/task to another, and there still exists
a room to improve qualities for them.

Societal Impacts & Limitations Our research will foster more actively sharing and releasing tabular
data. One can use our method to synthesize fake data but it is unclear how the adversary can benefit
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from our research. At the same time, however, there exists a room to improve the quality of tabular
data synthesis. It is still under-explored whether fake tabular data can be used for general machine
learning tasks (although we showed that they can be used for classification and regression).
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