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Abstract

Features extracted from deep layers of classification networks are widely used as
image descriptors. Here, we exploit an unexplored property of these features: their
internal dissimilarity. While small image patches are known to have similar statis-
tics across image scales, it turns out that the internal distribution of deep features
varies distinctively between scales. We show how this deep self dissimilarity (DSD)
property can be used as a powerful visual fingerprint. Particularly, we illustrate
that full-reference and no-reference image quality measures derived from DSD are
highly correlated with human preference. In addition, incorporating DSD as a loss
function in training of image restoration networks, leads to results that are at least
as photo-realistic as those obtained by GAN based methods, while not requiring
adversarial training.

1 Introduction

Features extracted from deep layers of classification networks are widely used as powerful image
descriptors. These features are known to capture high level semantics [44] as well as low-level textural
cues [14, 31] and are thus exploited in numerous applications, including image enhancement [24, 18,
10, 47], synthesis [52, 44, 5, 19], and editing [15, 2, 25], both in the form of per-element similarity
measures (e.g. the perceptual loss [15, 18] and LPIPS [51]) and for comparing internal image
distributions (e.g. the style loss [15], contextual loss [32], and projected distribution loss [10]).

In this paper, we propose to exploit a surprisingly dominant property of deep features: the dissimilarity
between their internal distributions at different image scales. As opposed to small patches in pixel
space, which are known to exhibit similar characteristics across scales [53, 16], here we show that
deep features tend to vary significantly for different scales of the same image. A glimpse into this
phenomenon is provided in Fig. 1 for the VGG-19 network [46]. As can be seen, the network often
outputs completely different classification results for the same image at different resolutions. We
show that this behavior is also characteristic of earlier stages within the network, and can therefore
serve as a powerful image fingerprint.

A naive approach to account for this phenomenon would be to aggregate deep feature descriptors
from multiple image scales. For example, to measure discrepancy between two images, one could
accumulate deep feature distribution distances, measured separately at different scales, as schemati-
cally illustrated in Fig. 5 (middle) for the case of two scales. However, here we propose a different
approach, which as we show, is far more powerful as a visual fingerprint. Specifically, we present
the deep self-dissimilarity (DSD) image descriptor, which captures differences between internal
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Figure 1: Class variations between scales. The semantics captured by an image classifier (VGG-19
in this case [46]), strongly depends on the image resolution. This phenomenon also occurs at earlier
classification layers; the deep features tend to vary significantly when changing the input’s resolution.
We show how these dissimilarities can serve to construct full-reference and no-reference image
quality measures, as well as loss functions for image restoration.

feature distributions at different scales of an image. As we show, this descriptor can serve both
as a full reference image fidelity metric (i.e. by comparing the DSD’s of two images) and as a
no-reference measure (quantifying the “naturalness” of an image according to its DSD). In both
cases, our metrics are highly correlated with human perception, as we verify on user-annotated image
quality assessment datasets. Furthermore, we demonstrate the effectiveness of DSD as a loss function
for image restoration tasks. Our approach leads to high perceptual quality reconstructions that are at
least comparable to GAN-based methods, while completely avoiding adversarial training.

2 Related work

Deep features for similarity measures. Using deep features of a pre-trained classification network
for measuring fidelity between images, was first introduced in the context of network inversion and
visualization [29, 45, 50]. This idea was quickly adopted as a perceptual similarity in tasks such as
texture synthesis [14], style transfer [15, 18], super resolution [18, 24, 24], image inpainting [27] and
more. Non-local (distribution based) variants of this per-element perceptual loss were also proposed.
These include the style loss [15], the contextual loss [32], and the projected distribution loss [10].
These approaches compare between the internal deep-feature distributions of two inputs, at a single
resolution. Here, we show that there is a more powerful way to use deep features: comparing their
between-scale self-dissimilarities.

Internal recurrence and self-similarity Small image patches tend to recur within natural images,
both in the same scale [8, 9, 6, 12], and across different scales [16]. Cross-scale recurrence has been
used as a prior for various tasks, including super resolution [16, 13], denoising [54, 37], dehazing [4],
blind deblurring [34, 3], and blind super resolution [33]. In this work we show that as opposed to
image patches, deep features do not exhibit strong similarities across scales, implying that deep
self-similarities cannot serve as a prior e.g. for restoration tasks. Nonetheless, we show that the deep
self dissimilarity pattern of an image is meaningful, and can therefore serve as a powerful fingerprint.

3 The Self-Dissimilarity Between Deep Features at Different Scales

3.1 Deep self-dissimilarity

We characterize deep feature distributions through their second-order statistics. More concretely,
we make use of Gram matrices of the channel activations (which are proportional to the empirical
covariance of the channels),

[G`(x)]i,j =
1

WH

∑
k

[φi`(x)]k [φ
j
`(x)]k. (1)

Here [φi`(x)]k is the activation at spatial position k within the i-th channel of the `-th layer of a
network φ that is fed with the image x at its input. W and H are the width and height of the this map.
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Figure 2: Dissimilarity of image patches and deep features. We compare the dissimilarities
between images (blue & red) to the self -dissimilarity within images (green), both for deep features (a),
and for small image patches (b). In contrast to image patches and shallow network layers, the large
average self-dissimilarity levels (green) in deep network layers (right columns in (a)) are comparable
to the cross-image dissimilarities (blue & red) in those layers. This shows that internal feature
distributions in deep layers are not similar across image scales.

We define the deep self-dissimilarity (DSD) of an image x as the difference between the `-th Gram
matrices corresponding to two image scales, x and x↓α,

DSD`α(x) = G`(x)−G`(x↓α). (2)

In other words, DSD`α(x) is a matrix whose (i, j)-th entry measures the extent to which channels i
and j of the `-th layer are more correlated when feeding x to the network, than when feeding x↓α.
We often choose the scaling factor α to be 2 or 4. We sometimes omit the α and ` subscripts for
brevity.

3.2 Dissimilarity in RGB space vs. feature space

The strong tendency of small image patches (in pixel space) to recur across different scales of an
image [53] is manifested in the similarity between distributions of patches across different image
scales. If that was the case also for deep features, then DSD would always equal (approximately) the
zero matrix, and thus would not constitute a unique fingerprint for images. However, as we show
bellow, deep features behave very differently from small image patches in this respect.

We perform a comparison between deep feature self-dissimilarities and pixel-space self-dissimilarities
for α = 4. For the latter, we replace the deep feature Gram matrices by pixel-space patch Gram
matrices,

[GRGB(x)]i,j =
1

WH

∑
k

[xi]k [x
j ]k, (3)

where [xi]k is the i-th pixel in a column-stacked n × n patch, centered at the k-th pixel of the
image x. W and H here correspond to the width and height of the image. For both deep features
and pixel-space patches, we depict in Fig. 2: (i) the average `1 distance between G`(x) and G`(x↓4)
over random images x sampled from ImageNet [42] (green bars), (ii) the average `1 distance between
G`(x) and G`(y) over random image pairs (x, y) from ImageNet (blue bars), and (iii) the average `1
distance between G`(x) and G`(y) over random image pairs (x, y) sampled from the same class in
ImageNet (red bars). Distances are computed for several VGG layers ` and several patch sizes n.

As can be seen, the self -dissimilarity values (green) computed over image patches and shallow net-
work layers are significantly lower than their cross-image counterparts (blue and red), in accordance
with the well known cross-scale patch recurrence phenomenon in natural images. However, when it
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Figure 3: Visualising DSD. Images from the ImageNet validation set corresponding to lowest (top)
and highest (bottom) DSD values. We observe that natural images with the lowest DSD tend to
contain large smooth regions, whereas images with the largest DSD contain high frequency textures.

comes to deeper network layers (Fig. 2a), the average Gram dissimilarities between different scales of
the same image are roughly as large as their cross-image counterparts, suggesting that deep features
do not exhibit self similarity like pixel-space patches.

This conclusion is also supported by Fig. 6. Here, we optimized the RGB values of an image x so as
to minimize ‖DSD`4(x)‖1 for layer ` = ReLU31. As can be seen in the right image, too many (5K)
gradient descent steps result in the image exhibiting unnatural artifacts. This illustrates again that
natural images are in fact not characterized by small DSD values.

3.3 Visualizing DSD

What does the DSD fingerprint capture, then? We answer this question through several visualizations.
Fig. 3 presents the images from the ImageNet validations set, which have the lowest and the highest
DSD values layer at ` = ReLU31. As can be seen, images with higher DSD values (bottom row)
typically contain finer details and textures, compared to low DSD value images (top row). This makes
sense, as computing DSD involves downsampling the image, which results in erasing fine image
details. This significantly changes the Gram matrix computed over deep features corresponding to the
downsampled image, which in turn increases the difference between the two Gram matrices, computed
in (2). Examining the statistics of DSD values across different classes in the ImageNet dataset reveals
similar behaviour. For example the class “sandbar” has an average DSD of 2.1 · 10−3 ± 0.83 · 10−3,
while the average DSD of the class “window screen” is 13.5 · 10−3 ± 11.0 · 10−3.

Next, we visualize the effect of modifying a specific content image xc such that its DSD fingerprint is
as similar as possible to that of a reference image xr. We do this once by minimizing ‖DSD2(xc)−
DSD2(xr)‖1 and once by minimizing ‖DSD2(xc ↓2) − DSD2(xr ↓2)‖1. Namely, we try to match
the images’ deep self-dissimilarities between scales 1 and 0.5, and between scales 0.5 and 0.25.
Here DSD2 is calculated by aggregating the DSD matrices corresponding to VGG layers ` ∈
{ReLU21,ReLU22,ReLU31}. For comparison, we perform the same experiment, but with the style
losses ‖G(xc) − G(xr)‖1, ‖G(xc ↓2) − G(xr ↓2)‖1, and ‖G(xc ↓4) − G(xr ↓4)‖1. The latter
experiment can be thought of as a style pyramid, whereas the former as a style-differences pyramid
(in analogy to the Gaussian and Laplacian pyramids). The results of the two experiments are
presented in Fig. 4. As can be seen, while style dissimilarity (upper row) can be minimized by
merely augmenting vague patterns from the reference image, matching the DSD fingerprints (bottom
row) requires adding sharper, more detailed visual structures. This suggests that the DSD loss is a
more intricate fingerprint, and can serve as a better loss for image quality assessment and for image
restoration.
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Figure 4: The effect of changing the DSD of an image. To visualize what the DSD fingerprint
captures, we modify the content image to have a similar fingerprint to that of the reference image
(bottom row). We do this for two pairs of scales (between full res. and α = 2, and between α = 2
and α = 4). For comparison, we also perform the same experiment using the style loss for the three
scales (top row). As can be seen, matching DSD fingerprints requires modifying finer details.

3.4 DSD as a full-reference measure

The DSD can be used to define a full-reference distortion measure simply by computing the `1
distance between the DSD’s of the two images we wish to compare,

LDSDα(x, y) = ‖DSDα(x)− DSDα(y)‖1. (4)

This distance quantifies the extent to which the differences between the deep feature distributions at
different scales of x are similar to those of y (see Fig. 5, right pane).

We evaluate this measure in a perceptual image quality assessment task. We use the PieAPP
dataset [40], which contains 4800 pairs of images, where one image is the reference and the other
is a distorted version of that reference. The dataset includes a variety of distortions, along with
scores for their distortion level obtained from human ranking. We compare LDSD with several other
full-reference measures that are based on deep network features: the perceptual loss ‖φ(x)− φ(y)‖1,
the style loss ‖G(x)−G(y)‖1, and the projected distribution loss (PDL) [10]. To isolate the effect
of using multiple image scales in DSD, we also add a comparison to a multi-scale variant of the style
loss, ‖G(x)−G(y)‖1 + ‖G(x↓2)−G(y↓2)‖1 (see schematic illustration in Fig. 5). Note that none
of these metrics were specifically designed for (or even fine-tuned on) the PieAPP dataset.

We measured the correlation between each metric and the human preferences. Specifically, for every
two distorted versions xa, xb of the same reference image xr, the PieAPP dataset [40] provides the
probability that a human rater would prefer version xa over version xb. We calculated the Pearson
correlation between these probabilities and the loss differences L(xb, xr)−L(xa, xr), for each of the
full-reference losses L(·, ·) we examined1. Table 1 presents the results for several different layers ` of
the VGG network. Correlation with the LPIPS measure [51], which uses a different network, is also
reported. Note that DSD values computed using the deeper network layers (two right columns) have
the highest correlation with human evaluation scores, compared to all other measures. This illustrates
that the DSD fingerprint can be used as an effective perceptual distortion measure.

3.5 DSD as a no-reference quality measure

The DSD fingerprint can also serve to define a no-reference image quality measure. Let us revisit
Fig. 6, in which we optimized an image x so as to minimize ‖DSD(x)‖1. Here, the original image
is a super-resolution result produced by the ESRGAN method [48]. As already mentioned, after
5K gradient descent steps the optimized image contains unnatural artifacts. However, note that an
interesting phenomenon occurs if we stop the optimization after only 500 steps. In that case, the
optimized image is sharper and more naturally looking than the original ESRGAN result. This

1The Pearson correlation measures the extent to which the loss difference is a monotonic function of the
preference probability.
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Figure 5: Deep self-dissimilarities as a full reference distortion measure. As opposed to the
standard style loss, which compares two images according to the distance between their Gram
matrices at a single image scale (leftmost), we wish to exploit the dissimilarity between different
image scales. A naive approach is to sum the style loss across scales (middle). However, we show
that comparing the self-dissimilarity of deep features between image scales (rightmost) is a much
more powerful metric.

Method ReLU21 ReLU31 ReLU41 ReLU51

Perceptual 0.448 0.449 0.461 0.630
PDL 0.622 0.636 0.620 0.661
Style 0.645 0.714 0.711 0.706
Multi-scale Style 0.645 0.698 0.709 0.714
LDSD2

(ours) 0.463 0.608 0.769 0.761
LDSD4

(ours) 0.570 0.667 0.607 0.600
LPIPS 0.641

Table 1: DSD as a full reference measure. We calculate the Pearson correlation between full-
reference image distortion measures and human evaluation scores using the PieAPP dataset [40]. As
can be seen, the DSD calculated on deep network layers achieves the highest correlation.

suggests that for this particular scene, there is a specific optimal ‖DSD(x)‖1 value, which is in
between that of the original image, and the 5K minimization result.

Following this observation, we propose to use DSD for computing a no-reference image quality
score. To asses the quality of a potentially degraded image y, we would like to measure the difference
between ‖DSDα(y)‖1 and ‖DSDα(x)‖1, where x is the degradation-free version of y. Obviously, in
the no-reference case we do not have access to x. One could conceive replacing ‖DSDα(x)‖1 by its
average value for natural images. The problem with this approach is that different natural images have
very different ‖DSDα(x)‖1 values, as evident from the histogram in Fig. 7. A different approach
would be to train a regression model to predict ‖DSDα(x)‖1 from y. However, we do not want to
restrict our measure to specific degradations, and thus would like to avoid using datasets of degraded
images for training. Our solution is to train a light-weight regression model ψ to predict ‖DSDα(x)‖1
from the downsampled clean input, x ↓α. At test time, we input to our model the downsampled
degraded image, y↓α, and use the model’s output as our estimate for ‖DSDα(x)‖1. The reasoning
behind this choice, is that for many types of degradations y↓α and x↓α are quite similar (e.g. noise,
blur, compression artifacts, etc.). We train the regression network ψ (we use a convolutional network
with 12 residual blocks [17]) on the BSD training set [30] containing 400 clean images, using the
mean square error loss. Our no-reference measure is therefore given by

QDSDα
(y) = |ψ(y↓α)− ‖DSDα(y)‖1 | . (5)
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DSD is too high (ESRGAN) DSD is too low (5K iterations) Optimal DSD (500 iterations) 

Figure 6: Optimal deep self-dissimilarity. We minimize ‖DSD4(x)‖1 starting from an output by
the ESRGAN [48] method (left), having ‖DSD4(x)‖1 = 6.3 · 10−3. The result (right) after 5K
iterations (with ‖DSD4(x)‖1 dropping to 1.2 · 10−3) contains undesired artifacts. However, stopping
the optimization earlier (after 500 steps, when ‖DSD4(x)‖1 = 2.2 · 10−3) yields a sharper and more
natural looking image (middle), compared to the original ESRGAN output.
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Figure 7: DSD distribution. His-
togram of ‖DSD2(x)‖1 calculated
over 200 natural images from the
PieAPP dataset [40]. DSD values
strongly vary across different images.

Method PCC
NIQE 0.223
Ma 0.284
BRISQUE 0.363
DSD2 0.330
DSD4 0.444

Table 2: DSD as a no-reference measure. We report
the Pearson correlation between human evaluation scores
from [40] and various no-reference metrics, including our
DSDα measure, with α = 2 and α = 4. As can be seen,
DSD4 significantly outperforms the other quality measures.

We compare our proposed measure to the leading existing no-reference image quality measures,
including the naturalness image quality evaluator (NIQE) [36], the blind/referenceless image spatial
quality evaluator (BRISQUE) [35] and the score proposed by Ma et al. [28]. Similarly to the full-
reference case, we compute the Pearson correlation between the human evaluation scores from [40]
and the evaluated scores, and present the results in Tab. 2. DSD4 significantly outperforms the
competitors in terms of correlation with human assessment.

4 Experiments

We use the DSD fingerprint for the tasks of single image super-resolution (SR) and motion debluring.
In both cases our goal is to recover a clean image x from its degraded observation y. To this end, we
train a restoration network on pairs of training examples {x, y} by minimizing the DSD-based full
reference loss term (4) between the restored image x̂ and its ground-truth counterpart x. We combine
our loss with two other popular loss terms, as common in restoration methods (e.g. [24, 48]),

L(x, x̂) = Lper(x, x̂) + λrec · Lrec(x, x̂) + λDSD · LDSD(x, x̂). (6)

Here Lrec(x, x̂) = ‖x − x̂‖1, Lper = ‖φ`(x̂) − φ`(x)‖1 is the perceptual loss computed over
layer Conv54 of VGG, and λrec, λDSD are weighting coefficients. For LDSD we use layers ` ∈
{ReLU21,ReLU22,ReLU31} (as in Sec. 3.3) and α = 2. We train our networks for 300K epochs
using the Adam optimizer with a batch size of 16 and an initial learning-rate of 2 · 10−4, which is
halved after 90K, 180K and 270K steps. See Supplementary Material (SM) for full training details.
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Figure 8: DSD for 4× super resolution. We compare our method to the state-of-the-art ESR-
GAN [48] and SANGAN [21]. As can be seen, our approach leads to sharper and more photo-realistic
images comparing to the GAN based methods, although we use no adversarial training.

4.1 Single Image Super Resolution

Here our goal is to predict a high-resolution (HR) image x from its low-resolution (LR) version y.
We focus on 4× SR, where the LR image corresponds to bicubic downsampling of the HR image.
Training is done over 800 LR-HR image pairs from the DIVK2K dataset [1]. Our SR network utilizes
the xSRResNet architecture [22] consisting of 10 residual blocks.

Figure 8 presents a qualitative comparison with ESRGAN [48] and SANGAN [21], two state-of-the-
art GAN-based methods that target perceptual quality. Note that although our method does not require
any adversarial training, it manages to restore finer image details, and to produce more realistic
textures. Please refer to the SM for many additional visual examples.

We next follow [7] and quantitatively evaluate the performance of our method by reporting perceptual
quality (calculated using NIQE [36], lower is better) and image distortion (using SSIM [49], higher
is better). In Fig. 9a we compare our model (red dot) with the leading SR methods EDSR [26],
VDSR [20], SRResNet [24], xSRResNet [22], Deng [11], ESRGAN [48], SRGAN [24], ENET [43]
and SinGAN [41] (black dots). We also compare variants of our model, trained by replacingLDSD with
other deep internal-distribution based losses (blue dots): the projected distribution loss (PDL) [10]
and the style loss (STY) [15]. Finally, we present results for our model trained using only Lrec and
Lper, or only Lrec (indicated by “per” and empty subscripts respectively). All scores are calculated
over the BSD100 test set [30]. As can be seen, our method is among the best in terms of perceptual
quality, while maintaining relatively low distortion. Note that achieving such perceptual quality has
been possible to date only with GAN based methods. Our method achieves such performance without
the need of adversarial training, which is known to be unstable and challenging in practice.

To further investigate the contribution of the DSD loss, we perform quantitative evaluation of our
method when LDSD is replaced by other loss terms that measure distances between deep feature
distributions, including the contextual loss (CX) [32], projected distribution loss (PDL) [10], style
loss [15] and the multi-scale style loss (MSS) defined in Sec. 3.4. For each of these loss terms, we
adjust the value of λDSD so as to make the perceptual and feature distribution loss terms equal on
average. The results are presented in Tab. 3, which reports PSNR, LPIPS [51] and NIQE [36]. In
each experiment we calculate all losses using the same VGG layers (indicated at the top of each
column), as well as the same training procedure and network architecture (here we use a shallow
xSRResNet [22] with 5 residual blocks). In terms of perceptual quality (NIQE and LPIPS), the model
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Figure 9: Perception-distortion evaluation. We report perceptual quality (NIQE, lower is better)
and image distortion (SSIM, higher is better) for the tasks of (a) super-resolution and (b) motion
debluring. We compare our models (red), existing state-of-the-art algorithms (black) and variants of
our model trained by replacing LDSD with other deep feature distribution loss terms (blue). For SR,
our method is among the best in perceptual quality, while requiring no GAN training. For motion
debluring, our model improves over existing methods in perceptual quality by a large margin, while
maintaining a relatively low distortion.

Method ReLU21 ReLU22 ReLU31

CX 25.35 / 0.251 / 7.87 25.77 / 0.253 / 6.02 25.69 / 0.246 / 5.98
PDL 25.21 / 0.208 / 5.80 25.22 / 0.212 / 4.33 25.25 / 0.211 / 4.50
Style 24.93 / 0.197 / 3.64 24.84 / 0.188 / 3.73 24.66 / 0.190 / 4.20
MSS 24.77 / 0.197 / 3.86 24.72 / 0.190 / 4.01 24.87 / 0.196 / 3.87
DSD (Ours) 24.88 / 0.194 / 3.49 25.11 / 0.187 / 3.78 24.99 / 0.190 / 4.06

Table 3: Comparison with other feature distribution losses in 4× SR. PSNR / LPIPS / NIQE
scores for different loss functions utilizing different VGG layers. DSD based models (bottom row)
perform among the best in terms of perceptual quality (NIQE and LPIPS).

trained with our DSD loss (bottom row) is among the best for all examined activation layers. This
is also supported by Fig. 10, which shows a visual comparison between the methods. Our result
contains less grid artifacts compared to the other losses (exemplified here for layer ReLU22).

4.2 Single Image Motion Deblurring

Here we aim to recover a sharp, blur free image x from a blurry image y. We use the same loss
function, training protocol and architecture (xSRResNet [21] with 10 res-blocks) as in our SR
experiments. Training is done using the REDS dataset [39] consisting of 30, 000 image pairs {x, y}
from 300 different scenes. Figure 11 presents an example result of our motion deblurring, compared
with the state-of-the-art DeblurGAN-v2 [23] and a variant of our method trained with the style
loss [15] instead of LDSD. The result using the DSD loss is sharper and contains no ghosting artifacts.
Please see many more results in the SM.

This observation is further supported quantitatively. In Fig. 9b we report perceptual quality and
distortion (using the same measures as in Fig. 9a) over 100 random images from the REDS validation
set. We compare our method (red dot) with the state-of-the-art DeblurGAN-v2 and DeepDeblur2 [38]
(black dots), as well as with three variants of our method (blue dots) trained by replacing LDSD
with either the style loss (STY) [15], the multi-scale style loss (MSS) (from Sec. 3.4), and when
omitting LDSD and keeping only Lrec and Lper (denoted by a subscript “per”). Here as well, the
perception-distortion plot indicates that our DSD-based model obtains the best perceptual quality
(significantly better than most of the competition), while exhibiting low distortion.

2An official newer version available at: https://github.com/SeungjunNah/DeepDeblur-PyTorch
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Figure 10: Looking closer into the effect of DSD. Substituting LDSD with other loss terms that are
based on feature distributions results in undesired grid artifacts (middle images). These artifacts get
significantly reduced when using the DSD loss term (right).

DeblurGAN-v2 Style Ours Blurred 

Figure 11: DSD for motion debluring. We visually compare our result with DeblurGAN-v2 and
with a variant of our method where the DSD loss is replaced by the style loss. As can be seen, DSD
achieves better visual quality, leading to a sharper, more natural appearing result.

5 Conclusion

Deep features corresponding to different image scales exhibit meaningful dissimilarity. We prove this
to be a powerful image fingerprint, highly correlated with human preference in both full-reference
and no-reference image quality assessment, and leading to a GAN-like highly photo-realistic image
restoration (while avoiding unstable adversarial training). We believe that deep self-dissimilarity can
benefit additional image restoration and manipulation tasks.
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