
A Useful Facts

Proposition A.1 (Lemma 2.11, [6]). For any µ, µ̃ ∈ R and σ, σ̃ > 0 with |µ̃ − µ| ≤ ασ and
|σ̃ − σ| ≤ ασ where α ∈ [0, 2/3], the Gaussians N (µ, σ2) and N (µ̃, σ̃2) statisfy

dTV

(
N (µ, σ2),N (µ̃, σ̃2)

)
≤ α.

Proposition A.2 (Lemma 3.3.7, [57]). For i ∈ [d] let pi and qi be distributions over the same domain
Z. Then

dTV

(
d∏
i=1

pi,

d∏
i=1

qi

)
≤

d∑
i=1

dTV (pi, qi) .

Definition A.3 (α-net). Let (X, d) be a metric space. A set N ⊆ X is an α-net for X under the
metric d if for all x ∈ X , there exists y ∈ N such that d(x, y) ≤ α.
Proposition A.4. For any α ∈ (0, 1] and k ≥ 2, there exists an α-net of ∆k under the `∞-norm of
size at most (3/α)k.

Proof. We will give an algorithmic proof of this fact. Let r = d1/αe and fix x ∈ ∆k. Let
` =

∑k
i=1 rxi − brxic. Note that

∑k
i=1 rxi = r and rxi − brxic ∈ [0, 1) so ` is an integer in the

interval [0, r − 1]. Now define x̂

x̂i =

{
brxic+1

r i ≤ `
brxic
r i > `

.

Clearly, ‖x− x̂‖∞ ≤ 1/r ≤ α. It remains to check that x̂ ∈ ∆k. Indeed,

k∑
i=1

x̂i =

k∑
i=1

brxic
r

+
`

r
=

k∑
i=1

brxic
r

+

k∑
i=1

rxi − brxic
r

= 1,

where in the second equality, we used the definition of `. Note that for each i, x̂i ∈
{0, 1/r, 2/r, . . . , 1} so this shows that

∆̂k = {(t1/r, . . . , tk/r) : t ∈ Zk≥0, ‖t‖1 = r},

is an α-net for ∆k of size (r + 1)k. To obtain the bound as asserted in the claim, note that
r + 1 = d1/αe+ 1 ≤ 1/α+ 2 ≤ 3/α for α ∈ (0, 1].

Lemma A.5 (Chernoff bound; see [62, Exercise 2.3.6]). Let X1, . . . , Xn be independent Bernoulli
random variables. Let Sn =

∑n
i=1Xi and µ = Sn. Then for any δ ∈ (0, 1] and some absolute

constant c > 0
P[|Sn − µ| ≥ δµ] ≤ 2e−cµδ

2

.

B Locally Small Covers for Mixtures

To formally state and prove the impossibility result, we first introduce some useful definitions and
results.
Definition B.1 (TV ball). The total variation ball of radius γ ∈ (0, 1), centered at a distribution g
with respect to a set of distributions F , written B (γ, g,F), is the following subset of F:

B (γ, g,F) := {f ∈ F : dTV(g,F) ≤ γ} .

In this paper we consider coverings and packings of sets of distributions with respect to the total
variation distance.
Definition B.2 (γ-covers and γ-packings). For any γ ∈ (0, 1) a γ-cover of a set of distributions
F is a set of distributions Cγ , such that for every f ∈ F , there exists some f̂ ∈ Cγ such that
dTV(f, f̂) ≤ γ.

A γ-packing of a set of distributions F is a set of distributions Pγ ⊆ F , such that for every pair of
distributions f, f ′ ∈ Pγ , we have that dTV(f, f ′) ≥ γ.
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Definition B.3 (γ-covering and γ-packing number). For any γ ∈ (0, 1), the γ-covering number
of a set of distributions F , N(F , γ) := min{n ∈ N : ∃Cγ s.t. |Cγ | = n}, is the size of the
smallest possible γ-covering of F . Similarly, the γ-packing number of a set of distributions F ,
M(F , γ) := max{n ∈ N : ∃Pγ s.t. |Pγ | = n}, is the size of the largest subset of F that forms a
packing for F .

The following Proposition follows directly from a well known relationship between packings and
covers of metric spaces (see [62, Lemma 4.2.8]).

Proposition B.4. For a set of distributions F with γ-covering number M(F , γ) and γ-packing
number N(F , γ), the following holds:

M(F , 2γ) ≤ N(F , γ) ≤M(F , γ).

We now formally define what it means for a set of distributions to be “locally small”.

Definition B.5 (γ-locally small). Fix some γ ∈ (0, 1). We say a set of distributions F is γ-locally
small if

sup
f∈F
|B (γ, f,F) | ≤ k,

for some k ∈ N. If no such k exists, we say F is not γ-locally small.

Proposition B.6. For every γ ∈ (0, 1), any (γ/2)-cover for 2-mix(G) is not γ-locally small.

Proof. Fix some γ ∈ (0, 1). Let f = N (0, 1) and define g(µ) := (1− γ)N (0, 1) + γN (µ, 1) (note
that f = g(0)). We will show that the following two statements hold for every µ, µ′ ∈ R:

1. dTV(g(µ), g(µ′)) ≤ γ, and

2. If |µ− µ′| ≥ C for a sufficiently large constant C, dTV(g(µ), g(µ′)) ≥ γ/2.

Consider the set of distributions F = {g(µ) : µ ∈ {C, 2C, . . . }} for some large positive constant C.
For every g, g′ ∈ F , it follows from claim 1 that g, g′ ∈ B (γ, f, 2-mix(G)) and from claim 2 that
dTV(g, g′) ≥ γ/2 for sufficiently large C. Thus, the (γ/2)-packing number of B (γ, f, 2-mix(G))
is unbounded, and by Proposition B.4, the (γ/2)-covering number of B (γ, f, 2-mix(G)) is also
unbounded. This implies that every (γ/2)-cover for 2-mix(G) is not γ-locally small by definition.

It remains to prove the two claims above. From the definition of the TV distance we have

dTV(g(µ), g(µ′)) =
1

2
‖(1− γ)N (0, 1) + γN (µ, 1)− (1− γ)N (0, 1)− γN (µ′, 1)‖1

=
γ

2
‖N (µ, 1)−N (µ′, 1)‖1

= γdTV(N (µ, 1),N (µ′, 1)). (1)

Using the trivial upper bound on the TV distance between any two distributions, we have from Eq. (1)
that dTV(g(µ), g(µ′)) ≤ γ, which proves the first claim. If |µ − µ′| ≥ C for sufficiently large C,
it follows from Gaussian tail bounds that dTV(N (µ, 1),N (µ′, 1)) = 1− exp(−Ω(C2)). Thus, by
choosing C to be sufficiently large, it follows from Eq. (1) that dTV(g(µ), g(µ′)) ≥ γ/2.

C Omitted Proofs from Section 3

In this Appendix, we prove Theorem 3.1 which we restate here for convenience.

Theorem 3.1. Let k ∈ N and ε, δ ∈ (0, 1). If F is (ε/2, δ)-DP L-list-decodable with mLIST samples
then there is an (ε, δ)-DP PAC learner for k-mix(F) where the number of samples used is

m(α, β, ε, δ) =

mLIST

(
α

18
,
β

2k
, 1− α

18k
,
ε

2
, δ

)
+O

(
k log(Lk/α) + log(1/β)

α2
+
k log(Lk/α) + log(1/β)

αε

)
.
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Algorithm 2 shows how a list-decodable learner can be used as a subroutine for learning mixture
distributions. In the algorithm, we also make use of a subroutine for private hypothesis selection [4,
17]. In hypothesis selection, an algorithm is given i.i.d. sample access to some unknown distribution
as well as a list of distributions to pick from. The goal of the algorithm is to output a distribution in
the list that is close to the unknown distribution.

Lemma C.1 ([4, Theorem 27]). Let n ∈ N. There exist an (ε/2)-DP algorithm PHS(ε, α, β,F , D)
with the following property: for every ε, α, β ∈ (0, 1), and every set of distributions F =
{f1, . . . , fM}, when PHS is given ε, α, β,F , and a dataset D of n i.i.d. samples from an unknown
(arbitrary) distribution g as input, it outputs a distribution fj ∈ F such that

dTV (g, fj) ≤ 3 · dTV (g,F) + α/2,

with probability no less than 1− β/2 so long as

n = Ω

(
log(M/β)

α2
+

log(M/β)

αε

)
.

Algorithm 2: Learn-Mixture(α, β, ε, δ, k,D).
Input :Parameters α, β, ε, δ > 0, k ∈ N and dataset D of n i.i.d. samples generated g.
Output :mixture ĝ =

∑n
i=1 ŵif̂i.

1 Split D into D1, D2 where |D1| = n1, |D2| = n−n1 // n1 = mList

(
ε
2 , δ,

α
18 ,

β
2k , 1−

α
18k

)
.

2 F̂ = {f̂1, . . . , f̂L} ← ALIST(α/18, β/2k, 1− α/18k, ε/2, δ,D1) //
(
ε
2 , δ
)
-DP

L-list-decodable learner.
3 Set ∆̂k as (18k/α)-net of ∆k from Proposition A.4
4 Set K = {

∑k
i=1 ŵif̂i : ŵ ∈ ∆̂k, f̂i ∈ F̂}

5 ĝ ← PHS(ε/2, α, β/2,K, D2)

6 Return ĝ

Proof of Theorem 3.1. We begin by briefly showing that Algorithm 2 satisfies (ε, δ)-DP before
arguing about its utility.

Privacy. We first prove that Algorithm 2 is (ε, δ)-DP. Step 2 of the algorithm satisfies (ε/2, δ)-DP
by the fact that AList is an (ε/2, δ)-DP L-list-decodable learner. Steps 3 and 4 maintain (ε/2, δ)-
DP by post processing (Lemma 2.9). Finally, step 5 satisfies (ε/2)-DP by Lemma C.1. By basic
composition (Lemma 2.8) the entire algorithm is (ε, δ)-DP.

Utility. We now proceed to show that Algorithm 2 PAC learns k-mix(F). In step 2 of Algorithm 2,
we use the (ε/2, δ)-DP L-list-decodable learner to obtain a set of distributions F̂ of size at most L.
Note that for any mixture component fj , g is a (1− wj)-corrupted distribution of fj since

g = wjfj +
∑
i 6=j wifi = wjfj + (1− wj)

∑
i6=j

wifi
1−wj

= wjfj + (1− wj)h,

where h =
∑
i 6=j

wifi
1−wj

.

Let N = {i ∈ [k] : wi ≥ α/18k} denote the set of non-negligible components. We first show that
for any non-negligible component i ∈ N , there exists f̂ ∈ F̂ that is close to fi.

Claim C.2. If |D1| ≥ mLIST(α/18, β/2k, 1−α/18k, ε/2, δ) then dTV(fi, F̂) ≤ α/18 for all i ∈ N
with probability at least 1− β/2.

Proof. Fix i ∈ N . Note that 1−wi ≤ 1−α/18k so f ∈ H1−α/18k(fi). Since step 2 of Algorithm 2
makes use of a list-decodable learner, as long as |D1| ≥ mLIST(α/18, β/2k, 1− α/18k, ε/2, δ) we
have dTV(fi, F̂) ≤ α/18 with probability at least 1− β/2k. Since this is true for any fixed i ∈ N , a
union bound gives that dTV(fi, F̂) ≤ α/18 for all i ∈ N with probability at least 1− β/2.
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Steps 3 and 4 of Algorithm 2 constructs a candidate set K of mixture distributions using F̂ and a net
of the probability simplex ∆k. The next claim shows that as long as dTV(fi, F̂) is small for every
non-negligible i ∈ N , dTV(g,K) is small as well.

Claim C.3. If dTV(fi, F̂) ≤ α/18 for every i ∈ N , then dTV(g,K) ≤ α/6. In addition, |K| ≤(
54Lk
α

)k
.

Proof. Step 3 constructs a set ∆̂k which is an (18k/α)-net of the probability simplex ∆k in the
`∞-norm. By the hypothesis of the claim, for each i ∈ N , there exists f̂i ∈ F̂ such that dTV(fi, f̂i) ≤
α/18. Recall that g =

∑
i∈[k] wifi. Let ŵ ∈ ∆̂k such that ‖ŵ − w‖∞ ≤ α/18k. Now let g̃ =∑

i∈[k] ŵif̂i. Note that g̃ ∈ K. Moreover, a straightforward calculation shows that dTV(g, g̃) ≤ α/6
(see Proposition C.4 for the detailed calculations). This proves that dTV(g,K) ≤ α/6.

Lastly, to bound |K| we have |K| ≤ |F̂|k · |∆̂k|. Note that |F̂ | ≤ L since it is the output of an
L-list-decodable learner and |∆̂k| ≤ (54k/α)k by Proposition A.4. This implies the claimed bound
on |K|.

The only remaining step is to select a good hypothesis from K. This is achieved using the private
hypothesis selection algorithm from Lemma C.1 which guarantees that step 5 of Algorithm 2 returns
ĝ satisfying dTV(g, ĝ) ≤ 3 · dTV(g,K) + α/2 with probability 1− β/2 as long as

|D2| = Ω

(
log(|K|/β)

α2
+

log(|K|/β)

αε

)
= Ω

(
k log(Lk/α) + log(1/β)

α2
+
k log(Lk/α) + log(1/β)

αε

)
.

(2)
Combining this with Claim C.2, Claim C.3, and a union bound, we have that with probability 1− β,

dTV(g, ĝ) ≤ 3 · dTV(g,K) + α/2 ≤ α,

where the first inequality follows from private hypothesis selection and the second inequality follows
from Claim C.2 and Claim C.3.

Finally, the claimed sample complexity bound follows from the samples required to construct F̂
(which follows from Claim C.2) and the samples required for private hypothesis selection which is
given in Eq. (2).

Proposition C.4. Let α ∈ (0, 1) and k ∈ N. Let g =
∑k
i=1 wifi and ĝ =

∑k
i=1 ŵif̂i be two mixture

distributions that satisfy

1. ‖w − ŵ‖∞ ≤ α/k; and

2. dTV(fi, f̂i) ≤ α for i ∈ [k] such that wi ≥ α/k.

Then dTV(ĝ, g) ≤ 3α.

Proof. Let N = {i ∈ [k] : wi ≥ α/k}. We have that

dTV(ĝ, g) =
1

2

∥∥∥∥∥
k∑
i=1

ŵif̂i −
k∑
i=1

wifi

∥∥∥∥∥
1

=
1

2

∥∥∥∥∥
k∑
i=1

ŵi(f̂i − fi) +

k∑
i=1

(ŵi − wi)fi

∥∥∥∥∥
1

≤ 1

2

∥∥∥∥∥
k∑
i=1

ŵi(f̂i − fi)

∥∥∥∥∥
1

+
1

2

∥∥∥∥∥
k∑
i=1

(ŵi − wi)fi

∥∥∥∥∥
1

≤ 1

2

∥∥∥∥∥∥
∑
i 6∈N

ŵi(f̂i − fi)

∥∥∥∥∥∥
1

+
1

2

∥∥∥∥∥∑
i∈N

ŵi(f̂i − fi)

∥∥∥∥∥
1

+
1

2

∥∥∥∥∥
k∑
i=1

(ŵi − wi)fi

∥∥∥∥∥
1
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≤ 1

2

∑
i 6∈N

ŵi

∥∥∥f̂i − fi∥∥∥
1

+
1

2

∑
i∈N

ŵi

∥∥∥f̂i − fi∥∥∥
1

+
1

2

k∑
i=1

|ŵi − wi|
∥∥∥f̂i∥∥∥

1

≤
∑
i6∈N

α

k
· 1 +

∑
i∈N

ŵi · α+

k∑
i=1

α

k
· 1

≤ α+ α+ α = 3α.

Note that in the second-to-last inequality, we used that for i /∈ N , ŵi ≤ α/k and the trivial bound
‖f̂i − fi‖1 ≤ 2 while for i ∈ N , we have ‖f̂i − fi‖1 ≤ α.

D Omitted Results from Section 4

D.1 Proofs of Claim 4.3, Claim 4.4, and Corollary 4.5

Proof of Claim 4.3. First, observe that for a bin Bi = ((i− 0.5)σ̃, (i+ 0.5)σ̃] and X ∼ g′, we have
(recalling Definition 2.4), pi = PX∼g′ [X ∈ Bi] ≥ (1− γ)PX∼g[X ∈ Bi]. A fairly straightforward
calculation (see Proposition D.5) gives that PX∼g[X ∈ Bj ] ≥ 1/3 so that pj ≥ (1− γ)/3.

A standard Chernoff bound (Lemma A.5) implies that |pj − pj | < pj/2 with probability at least
1−β/2 provided n ≥ C log(1/β)/(1−γ) for some constant C > 0. As pj ≥ (1−γ)/3 this implies
pj > (1− γ)/6.

Proof of Claim 4.4. The first assertion directly follows from Lemma 4.1 with η = (1 − γ)/24. In
the event that |pi − p̃i| ≤ (1− γ)/24, we now show that |H| ≤ 12/(1− γ). Note that it suffices to
argue that if i ∈ H then pi > (1− γ)/12. Since

∑
i∈N pi = 1, this implies that |H| ≤ 12/(1− γ).

Indeed, we argue the contrapositive. If pi ≤ (1 − γ)/12 then p̃i ≤ pi + (1 − γ)/24 ≤ (1 − γ)/8
and, hence, i /∈ H .

Proof of Corollary 4.5. The algorithm is simple; we run Univariate-Mean-Decoder(ε, δ, β, γ, σ,D)

and obtain the set M̃ . Let M̂ be an ασ-net of the set of intervals {[µ̃− σ, µ̃+ σ] : µ̃ ∈ M̃} of size
|M̃ | · (2 · d1/2αe+ 1), i.e.

M̂ = {µ̃+ 2jασ : µ̃ ∈ M̃, j ∈ {0,±1, . . . ,±d1/2αe}.

We then return F̂ = {N (µ̂, σ2) : µ̂ ∈ M̂}. Finally, Lemma 4.2 and post-processing (Lemma 2.9)
imply that the algorithm is (ε, δ)-DP while Lemma 4.2 and Proposition A.1 imply the accuracy
guarantee.4

D.2 Proof of Lemma 4.7

The algorithm for estimating the variance is given in Algorithm 3. The rest of this subsection makes
reference to that algorithm.

Let g = N (µ, σ2) and g′ ∈ Hγ(g). Let X,X ′ ∼ g′ and let Y = |X −X ′|/
√

2. For an integer i, let
pi = P[Y ∈ Bi] where Bi = (2i, 2i+1]. Let j be the (unique) integer such that σ ∈ (2j , 2j+1].

Claim D.1. If n = Ω(log(1/β)/(1− γ)2) then pj > (1− γ)2/6 with probability 1− β/2.

Proof. Since, X,X ′ ∼ g′ and Y = |X −X ′|/
√

2, a straightforward calculation shows that pj ≥
(1− γ)2/4 (see Proposition D.6 and Proposition D.7 for details).

Next, a standard Chernoff bound (Lemma A.5) implies that |pj − pj | < pj/3 with probability at least
1 − β/2 provided n ≥ C log(1/β)/(1 − γ)2 for some constant C > 0. As pj ≥ (1 − γ)2/4 this
implies pj > (1− γ)2/6.

4Note that we can only use Proposition A.1 for target α as large as 2/3. For any target α > 2/3, we can
simply run the algorithm with α = 2/3.
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Algorithm 3: Univariate-Variance-Decoder(β, γ, ε, δ,D).
Input :Parameters ε, β, γ ∈ (0, 1), δ ∈ (0, 1/n), and a dataset D
Output :Set of approximate standard deviations Ṽ = {σ̃1, . . . , σ̃L}.

1 Yk ← |(X2k −X2k−1)/
√

2| for k ∈ [n]. // Xis from Dataset D = {X1, . . . , X2n}
2 D′ ← {Y1, . . . , Yn}.
3 Partition R>0 into bins B = {Bi}i∈Z where Bi = (2i, 2i+1].
4 {p̃i}i∈Z ← Stable-Histogram(ε, δ, (1− γ)2/24, β/2, D′,B).
5 H ← {i : p̃i > (1− γ)2/8}
6 If |H| > 12/(1− γ)2 fail and return Ṽ = ∅
7 Ṽ ← {2i+1 : i ∈ H}.
8 Return Ṽ

Claim D.2. If n = Ω(log(1/βδ)/(1− γ)2ε) then with probability 1− β/2, we have (i) |pi − p̃i| ≤
(1− γ)2/24 for all i ∈ N and (ii) |H| = |{i ∈ N : p̃i > (1− γ)2/8}| ≤ 12/(1− γ)2.

Proof. The first assertion directly follows from Lemma 4.1 with η = (1− γ)2/24. In the event that
|pi − p̃i| ≤ (1− γ)2/24, we now show that |H| ≤ 12/(1− γ)2. Note that it suffices to argue that
if i ∈ H then pi > (1− γ)2/12. Since

∑
i∈N pi = 1, this implies that |H| ≤ 12/(1− γ)2. Indeed,

we argue the contrapositive. If pi ≤ (1− γ)2/12 then p̃i ≤ pi + (1− γ)2/24 ≤ (1− γ)2/12 and,
hence, i /∈ H .

Given Claim D.1 and Claim D.2, we now prove Lemma 4.7.

Proof of Lemma 4.7. We briefly prove that the algorithm is private before proceeding to the other
assertions of the lemma.

Privacy. Line 4 is the only part of the algorithm that looks at the data and it is (ε, δ)-DP by
Lemma 4.1. The remainder of the algorithm can be viewed as post-processing (Lemma 2.9) so does
not affect the privacy.

Bound on |Ṽ |. For the bound on |Ṽ |, observe that if |H| > 12/(1− γ)2 then the algorithm fails
so |Ṽ | ≤ 12/(1− γ)2 deterministically.

Utility. Let g, g′, σ be as defined in the statement of the lemma. We now show that there exists
σ̃ ∈ Ṽ such that σ̃ ∈ [σ, 2σ). Let j be the unique integer such that σ ∈ (2j , 2j+1]. For the remainder
of the proof, we assume that n = Ω(log(1/βδ)/(1− γ)2ε).

Claim D.1 asserts that, with probability 1− β/2, we have pj > (1− γ)2/6. Claim D.2 asserts that,
with probability 1− β/2, p̃j ≥ pj − (1− γ)2/24 and that |H| ≤ 12/(1− γ)2. By a union bound,
with probability 1− β, we have that pj > (1− γ)2/8 and the algorithm does not fail. This implies
that j ∈ H so 2j+1 ∈ Ṽ and, by the choice of j, σ ≤ 2j+1 < 2σ. This completes the proof.

D.3 Proof of Lemma 4.8

The algorithm for estimating the variance is given in Algorithm 4. The rest of this subsection makes
reference to that algorithm.

Before we prove the lemma, we make a few simple observations. Fix g = N (µ, σ2) and g′ ∈ Hγ(g).
We assume that the algorithm receives D ∼ (g′)2n as input.

Claim D.3. If n1 = Ω(log(1/βδ)/(1− γ)2ε) then with probability 1− β/2, (i) there exists σ̃ ∈ Ṽ
such that σ̃ ∈ [σ, 2σ) and (ii) there exists σ̂ ∈ V̂ such that that |σ̂ − σ| ≤ ασ.

Proof. Lemma 4.7 directly implies that in line 4, with probability 1− β/2, there is some σ̃ ∈ Ṽ such
that σ̃ ∈ [σ, 2σ).
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Algorithm 4: Univariate-Gaussian-Decoder(α, β, γ, ε, δ,D).
Input :Parameters ε, α, β, γ ∈ (0, 1), δ ∈ (0, 1/n) and a dataset D
Output :Set of approximate means M̂ and variances V̂ .

1 Set T = 12/(1− γ)2

2 Set ε′ = ε/(2
√

6T log(2(T + 1)/δ)) and δ′ = δ/2(T + 1)

3 Split D into D1, D2 where |D1| = n1, |D2| = n2 = n− n1

// n1 = Θ(log(1/βδ)/(1− γ)2ε).
4 Ṽ ← Univariate-Variance-Decoder(β/2, γ, ε/2, δ/2, D1)

5 Initialize M̂ ← ∅
6 For σ̃i ∈ Ṽ do
7 M̃i = Univariate-Mean-Decoder(β/2, γ, ε′, δ′, σ̃i, D2)

8 M̂i ← {µ̃+ jασ̃i : µ̃ ∈ M̃i, j ∈ {0,±1,±2, . . . ,±d1/αe}
9 M̂ ← M̂ ∪ M̂i

10 C ← {log2(1 + α), 2 log2(1 + α), . . . , d1/ log2(1 + α)e · log2(1 + α)}
11 V̂ ← {σ̃ · 2c−1 : σ̃ ∈ Ṽ , c ∈ C}
12 Return M̂, V̂

For the final assertion, suppose that σ̃ ∈ [σ, 2σ). In particular, log2(2σ/σ̃) ∈ (0, 1]. Note that C is
log2(1 + α)-net of the interval [0, 1]. Hence, there exists some c ∈ C such that |c− log2(2σ/σ̃)| ≤
log2(1 + α). For such a value of c, we have (σ̃/σ) · 2c−1 ∈ [1/(1 + α), 1 + α], which upon
rearranging gives σ̃2c−1 ∈ [σ/(1 + α), σ(1 + α)]. As 1/(1 + α) ≥ 1 − α, this shows that
|σ̃2c−1 − σ| ≤ ασ. This completes the proof since σ̃2c−1 ∈ V̂ .

Claim D.4. Let ε′, δ′ be as defined in Algorithm 4. Suppose that there exists σ̃i ∈ Ṽ such that
σ̃i ∈ [σ, 2σ). If n2 = Ω(log(1/βδ′)/(1 − γ)ε′) then with probability 1 − β/2 there exists µ̂ ∈ M̂
such that |µ̂− µ| ≤ ασ.

Proof. The condition that there exists σ̃i ∈ Ṽ such that σ̃i ∈ [σ, 2σ) implies that one of the runs
of Univariate-Mean-Decoder on line 7 uses σ̃i ∈ [σ, 2σ). The guarantee of Lemma 4.2 shows
that with probability 1− β/2, there is some µ̃ ∈ M̃i satisfying |µ̃− µ| ≤ σ. Finally, on line 8, the
algorithm constructs M̂i which is a (ασ̃i/2)-net of the interval [µ̃ − σ̃i, µ̃ + σ̃i] ⊃ [µ̃ − σ, µ̃ + σ].
Hence, there exists µ̂ ∈ M̂i such that |µ̂ − µ| ≤ ασ̃/2 < ασ where the latter inequality used that
σ̃ < 2σ. Since M̂i ⊂ M̂ , this implies the claim.

Proof of Lemma 4.8. The list-decoding algorithm for univariate Gaussians is given in Algorithm 4.

Privacy. We first prove that the algorithm is (ε, δ)-DP. By Lemma 4.2, line 4 satisfies (ε/2, δ/2)-DP.
The loop on line 6 runs at most 12/(1− γ)2 times since |Ṽ | ≤ 12/(1− γ)2 (see Lemma 4.7). So,
by our choice of ε′, δ′ (line 2) and advanced composition (Lemma 2.8), all the iterations of line 7
collectively satisfy (ε/2, δ/2)-DP. No subsequent part of the algorithm accesses the data so by basic
composition (Lemma 2.8) and post processing (Lemma 2.9), the entire algorithm is (ε, δ)-DP.

Bound on |M̂ | and |V̂ |. We now prove the claimed upper bounds on the sizes of M̂ and V̂ . First,
we have |Ṽ | ≤ 12/(1−γ)2 by Lemma 4.7. Since |C| = d1/ log2(1 +α)e = dlog1+α(2)e, this gives
|V̂ | = |Ṽ | · |C| ≤ 12 ·dlog1+α(2)e/(1−γ)2. Next, we have that each |M̃i| ≤ 12/(1−γ) in Line 8 by
Lemma 4.2, so |M̂i| ≤ 12 ·(2 ·d1/αe+1)/(1−γ). Hence, |M̂ | ≤ |Ṽ | ·12 ·(2 ·d1/αe+1)/(1−γ) ≤
144 · (2 · d1/αe+ 1)/(1− γ)3.
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Existence of µ̂ and σ̂. Claim D.3 asserts that with probability 1− β/2, there is σ̃ ∈ Ṽ such that
σ̃ ∈ [σ, 2σ) and that there exists σ̂ ∈ V̂ such that |σ̂ − σ| ≤ ασ. The latter statement is the bound
that we asserted for σ̂ in the statement of the lemma.

Next, conditioning on the event that there exists σ̃ ∈ Ṽ such that σ̃ ∈ [σ, 2σ), Claim D.4 implies that
with probability 1− β/2, there is some µ̂ ∈ M̂ such that |µ̂− µ| ≤ ασ.

To conclude, taking a union bound shows that with probability 1 − β, there exists µ̂ ∈ M̂, σ̂ ∈ V̂
satisfying |µ̂− µ| ≤ ασ and |σ̂ − σ| ≤ ασ.

Sample complexity. Finally, we argue about the sample complexity. For Claim D.3, we needed
n1 = Ω(log(1/βδ)/(1−γ)2ε) samples and for Claim D.4, we needed n2 = Ω(log(1/βδ′)/(1−γ)ε′)
samples. Adding n1, n2 and plugging in the values for ε′, δ′ as defined in Algorithm 4 gives the
claimed bound on the number of samples required.

D.4 Proof of Corollary 4.9

Proof of Corollary 4.9. We run Univariate-Gaussian-Decoder(α, β, ε, δ, γ,D) and obtain the
sets M̂ and V̂ . We then output F̂ = {N (µ̂, σ̂) : µ̂ ∈ M̂, σ̂ ∈ V̂ }. The algorithm is (ε, δ)-DP
by the guarantee of Lemma 4.8 and post processing (Lemma 2.9). We have from the guarantee of
Lemma 4.8 that

|F̂ | = |M̂ | · |V̂ | ≤
(

1728

(1− γ)5

)
·
⌈
log1+α(2)

⌉
· (2 d1/αe+ 1).

Note that log1+α(2) = ln(2)
ln(1+α) ≤

2 ln(2)
α where the last inequality follows from the inequality

ln(1 + x) ≥ x/2 valid for x ∈ [0, 1]. This gives the claimed bound that L = |F̂ | = O
(

1
(1−γ)5α2

)
.

For any g ∈ G and g′ ∈ Hγ(g), given n samples from g′ as input, we have from the guarantee of
Lemma 4.8 and Proposition A.1 that the algorithm outputs F̂ satisfying dTV(g, F̂) ≤ α so long as

n = Ω

(
log(1/βδ)

(1− γ)2ε
+

log(1/(1− γ)βδ)
√

log(1/(1− γ)δ)

(1− γ)2ε

)
= Ω̃

(
log3/2(1/βδ)

(1− γ)2ε

)
.

This proves the corollary.

D.5 Useful facts

Proposition D.5. Fix some univariate Gaussian g = N (µ, σ2). Let σ̃ satisfy σ ≤ σ̃ < 2σ. Partition
R into disjoint bins {Bi}i∈N where Bi = ((i − 0.5)σ̃, (i + 0.5)σ̃] and let j = dµ/σ̃c, where d·c
denotes rounding to the nearest integer. It follows that:

1. PX∼g[X ∈ Bj ] ≥ 1/3,

2. µ ∈ [(j − 0.5)σ̃, (j + 0.5)σ̃].

Proof. We first prove item 1.

PX∼g[X ∈ Bj ] = Φ

(
(j + 0.5)σ̃

σ
− µ

σ

)
− Φ

(
(j − 0.5)σ̃

σ
− µ

σ

)
= Φ

(
jσ̃ − µ
σ

+
σ̃

2σ

)
− Φ

(
jσ̃ − µ
σ

− σ̃

2σ

)
:= f

(
jσ̃ − µ
σ

)
.

Notice that f(ξ) = Φ(ξ+ σ̃/2σ)−Φ(ξ− σ̃/2σ) is decreasing with |ξ|. Furthermore, by the definition
of j we have, ∣∣∣∣jσ̃ − µσ

∣∣∣∣ =
σ̃

σ

∣∣∣j′ − µ

σ̃

∣∣∣
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≤ σ̃

σ
· 1

2
=

σ̃

2σ
.

So,

PX∼g[X ∈ Bj ] = f

(
jσ̃ − µ
σ

)
≥ f

(
σ̃

2σ

)
= Φ

(
σ̃

σ

)
− Φ(0)

≥ Φ(1)− Φ(0) ≥ 1/3,

where the second last inequality follows from the fact that σ̃/σ ≥ 1 together with the monotonicity
of the c.d.f. and the last inequality follows from a direct calculation.

We now prove the second claim that µ ∈ [(j − 0.5)σ̃, (j + 0.5)σ̃)]. As we saw above, it follows that

1

σ
|jσ̃ − µ| ≤ σ̃

2σ
=⇒ µ ∈ [(j − 0.5)σ̃, (j + 0.5)σ̃].

Proposition D.6. Fix some univariate Gaussian g = N (0, σ2). Partition R>0 into disjoint bins
{Bi}i∈Z where Bi = (2i, 2i+1] and let j ∈ N satisfy 2j < σ ≤ 2j+1. It follows that:

PX∼g[|X| ∈ Bj ] ≥
1

4
.

Proof. Since 2j < σ ≤ 2j+1, we can write σ = 2j+c for some c ∈ (0, 1]. Let x = 2−c and notice
x ∈ [1/2, 1). We have the following:

PX∼g[|X| ∈ Bj ] = 2

(
Φ

(
2j+1

σ

)
− Φ

(
2j

σ

))
= 2

(
Φ
(
21−c)− Φ

(
2−c
))

= 2f(2−c), (3)

where we define f(x) = Φ(2x)− Φ(x). We now aim to lower bound f(x). By taking the derivative
of f(x) twice, we have that f ′′(x) =

√
(1/2π)(xexp(−x2/2) − 8xexp(−2x2)). By a simple

calculation, we have that f ′′(x) ≤ 0 when x ∈ [0, 2 ln 8/3] ⊃ [1/2, 1), so f(x) is concave when
x ∈ [1/2, 1). This implies that f(x) ≥ min{f(1/2), f(1)} for any x ∈ [1/2, 1), so from Eq. (3) we
have

PX∼g[|X| ∈ Bj ] ≥ 2 min {f(1/2), f(1)}

= 2 min

{
Φ (1)− Φ

(
1

2

)
,Φ (2)− Φ (1)

}
>

1

4
,

where the last inequality follows from a direct calculation.

Proposition D.7. Fix g = N (µ, σ2) and g′ ∈ Hγ(g). Let Z = (X1 −X2)/
√

2 where X1, X2 ∼ g′
i.i.d. Let Y ∼ N (0, σ2). Then for any measurable S ⊆ R

P[|Z| ∈ S] ≥ (1− γ)2 ·P[|Y | ∈ S].

Proof. We prove this via a coupling argument. Since g′ ∈ Hγ(g) we have g′ = (1− γ)g + γh for
some distribution h.

Let Y1, Y2 ∼ g i.i.d. so that Y = Y1−Y2√
2
∼ N (0, σ2). Also, let H1, H2 ∼ h i.i.d. Finally, let B1, B2

be independent Bernoulli random variables with parameter 1− γ, i.e. Bi = 1 with probability 1− γ
and Bi = 0 with probability γ.
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Now let Xi = Yi · Bi + Hi · (1 − Bi) and note that Xi ∼ g′. If B1 = B2 = 1 and |Y | ∈ S then
certainly |Z| = |X1 −X2|/

√
2 ∈ S. Hence,

P[|Z| ∈ S] ≥ P[{B1 = 1} ∩ {B2 = 1} ∩ {|Y | ∈ S}] = (1− γ)2P[|Y | ∈ S],

where the last equality uses the fact that B1, B2, Y are mutually independent random variables.

E Omitted Results from Section 5

Algorithm 5: Multivariate-Gaussian-Decoder(α, β, γ, ε, δ,D).
Input :Parameters ε, α, β, γ ∈ (0, 1), δ ∈ (0, 1/n), and a dataset D
Output :Set of distributions F̂ ⊂ Gd.

1 Initialize V̂j ← ∅, M̂j ← ∅ for j ∈ [d]

2 Set Di ← {Xi : X ∈ D} for i ∈ [d] // Split dataset by dimension.
3 For i ∈ [d] do
4 M̂i, V̂i ← Univariate-Gaussian-Decoder(α/d, β/d, γ, ε/d, δ/d,Di)

5 M̂ ← {(µ̂1, . . . , µ̂d) : µ̂i ∈ M̂i, i ∈ [d]}
6 Λ̂← {diag(σ̂2

1 , . . . , σ̂
2
d) : σ̂i ∈ V̂i, i ∈ [d]}

7 F̂ ←
{
N (µ̂, Σ̂) : µ̂ ∈ M̂, Σ̂ ∈ Λ̂

}
8 Return F̂

Proof of Lemma 5.2. The list-decoding algorithm for multivariate Gaussians is given by Algorithm 5.

Privacy. We first prove the algorithm is (ε, δ)-DP. By the guarantee of Lemma 4.8, each run of
line 4 in the loop is (ε/d, δ/d)-DP. No subsequent part of the algorithm accesses the data, so by post
processing (Lemma 2.9) and basic composition (Lemma 2.8) the entire algorithm is (ε, δ)-DP.

Bound on |F̂ |. We now prove the claimed upper bound on the size of F̂ . By the guarantee of
Lemma 4.8, each M̂i and V̂i obtained on line 4 satisfy |M̂i| ≤ 144 · (2 · dd/αe+ 1)/(1− γ)3 and
|V̂i| ≤ 12 · dlog1+α/d(2)e/(1− γ)2. This immediately gives us

|F̃ | = |M̂ |·|Λ̂| =

(
d∏
i=1

|M̂i|

)
·

(
d∏
i=1

|V̂i|

)
≤
((

1728

(1− γ)5

)
·
⌈
log1+α/d(2)

⌉
· (2 · dd/αe+ 1)

)d
.

To get the bound on L = |F̂ | as stated in the lemma, we use the fact that log1+α/d(2) = ln(2)
ln(1+α/d) ≤

2 ln(2)
α/d , where the inequality uses the fact that ln(1 + x) ≥ x/2 for x ∈ [0, 1].

Utility and sample complexity. We now prove that the algorithm is a list-decodable learner. Fix
some g =

∏d
i=1N (µi, σ

2
i ) ∈ Gd and g′ ∈ Hγ(g). By our choice of parameters and the guarantee of

Lemma 4.8, a single run of algorithm Univariate-Gaussian-Decoder on line 4 outputs lists M̂i

and V̂i such that there exist µ̂i ∈ M̂i and σ̂i ∈ V̂i satisfying |µ̂i−µi| ≤ ασi/d and |σ̂i−σi| ≤ ασi/d
with probability at least 1− β/d so long as

n = Ω

(
d log(d/βδ)

(1− γ)2ε
+
d log(d/(1− γ)βδ)

√
log(d/(1− γ)δ)

(1− γ)2ε

)
.

By a union bound, we have with probability no less than 1− β that for all i ∈ [d], |µ̂i − µi| ≤ ασi/d
and |σ̂i−σi| ≤ ασi/d. By a standard argument, this implies that with probability at least 1−β there
is some ĝ ∈ F̂ such that dTV(ĝ, g) ≤ α (see Proposition A.1 and Proposition A.2).
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F Learning Mixtures of Gaussians with Known Covariance

In this section, we prove the following result, which is a formal version of Theorem 1.2. Let Gd1 be
the class of Gaussians with identity covariance matrix.
Theorem F.1. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP PAC learner for k-mix

(
Gd1
)

that uses

m(α, β, ε, δ) = Õ

(
kd log(1/β)

α2
+
kd+ log(1/βδ)

αε

)
samples.

Note that the theorem also implies the case where the covariance matrix Σ is an arbitrary but known
covariance matrix. Indeed, given samples X1, . . . , Xm, one can apply the algorithm of Theorem F.1
to Σ−1/2X1, . . . ,Σ

−1/2Xm instead.

The proof of Theorem F.1 follows from Theorem 3.1 and Corollary F.2, which is a corollary of
Lemma 4.2.
Corollary F.2. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP L-list-decodable learner
for Gd1 where L = O(d/(1− γ)α)d, and the number of samples used is

mLIST(α, β, γ, ε, δ) = O

(
d log(d/βδ)

(1− γ)ε

)
.

Proof. For each i ∈ [d] let Di = {Xi : X ∈ D} be the dataset consisting of the ith coordinate
of each element in D. We run Univariate-Mean-Decoder(ε/d, δ/d, β/d, γ, σ,Di) to obtain the
set M̃i. Let M̂i be an α/d-net of the set of intervals {[µ̃i − 1, µ̃i + 1] : µ̃i ∈ M̃i} of size
|M̃i| · (2 · dd/2αe+ 1), i.e.

M̂i = {µ̃i + 2jα/d : µ̃i ∈ M̃i, j ∈ {0,±1, . . . ,±dd/2αe}.

Let M̂ = {(µ̂1, . . . , µ̂d) : µ̂i ∈ M̂i}. We then return F̂ = {N (µ̂, I) : µ̂ ∈ M̂}. Finally,
Lemma 4.2 (with a union bound over the d coordinates), basic composition (Lemma 2.8), and post-
processing (Lemma 2.9) imply that the algorithm is (ε, δ)-DP while Lemma 4.2, Proposition A.2,
and Proposition A.1 imply the accuracy guarantee.

25


	Useful Facts
	Locally Small Covers for Mixtures
	Omitted Proofs from Section 3
	Omitted Results from Section 4
	Proofs of Claim 4.3, Claim 4.4, and Corollary 4.5
	Proof of Lemma 4.7
	Proof of Lemma 4.8
	Proof of Corollary 4.9
	Useful facts

	Omitted Results from Section 5
	Learning Mixtures of Gaussians with Known Covariance

