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Abstract

Associative memories in the brain receive and store patterns of activity registered
by the sensory neurons, and are able to retrieve them when necessary. Due to their
importance in human intelligence, computational models of associative memories
have been developed for several decades now. In this paper, we present a novel
neural model for realizing associative memories, which is based on a hierarchical
generative network that receives external stimuli via sensory neurons. It is trained
using predictive coding, an error-based learning algorithm inspired by information
processing in the cortex. To test the model’s capabilities, we perform multiple
retrieval experiments from both corrupted and incomplete data points. In an exten-
sive comparison, we show that this new model outperforms in retrieval accuracy
and robustness popular associative memory models, such as autoencoders trained
via backpropagation, and modern Hopfield networks. In particular, in completing
partial data points, our model achieves remarkable results on natural image datasets,
such as ImageNet, with a surprisingly high accuracy, even when only a tiny fraction
of pixels of the original images is presented. Our model provides a plausible
framework to study learning and retrieval of memories in the brain, as it closely
mimics the behavior of the hippocampus as a memory index and generative model.

1 Introduction

Throughout our lives, we learn a huge number of associations between concepts: the taste of a
particular food, the meaning of a gesture, or to stop when we see a red light. Every time we acquire
new information of this kind, it gets stored in our long-term memory, situated in distributed networks
of brain areas [1]. In particular, visual memories are stored in a hierarchical network of visual and
associative areas [2]. These regions learn progressively more abstract representations of visual stimuli,
so they participate in both perception and memory as each area memorizes relationships present in
their inputs [3]. Accordingly, early visual areas learn common regularities present in the stimuli [4],
while at the top of this hierarchy, associative areas (such as hippocampus, entorhinal cortex, and
perirhinal cortex) store the relationships between extracted features, which encode an entire stimulus
or episode [5]. The memory system of the brain is able to both recall complex memories [1, 6], and
use them to generate predictions to guide behavior [7]. Learning in these associative memories shapes
our understanding of the world around us and builds the foundations of human intelligence.

Building models that are able to store and retrieve information has been an important direction of
research in artificial intelligence. Particularly, such models include (auto)associative memories (AMs),
which allow for the storage of data points and their contents-based retrieval, i.e., for retrieving a stored
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Figure 1: Generative PCN with two layers.
Each line linking neurons denotes a pair of
connections (excitatory in the left direction,
and inhibitory in the right direction). Att = 0 ,
the value nodes of the output layer are �xed to
the vector representing the pixels of the �gure.
Then, during the learning phase, both weight
parameters and value nodes are updated.

data points from a corrupted or a partial variant ofs. One way to realize AMs is to store data points
as attractors, so that they can be easily recovered via an energy minimization process when presenting
their corrupted variants [8, 9]. Existing AMs include Hop�eld networks [8] and modern Hop�eld
networks (MHNs) [10]. The latter are one-shot learners, which are able to store exponentially many
memories, and to perfectly retrieve them. However, the retrieval process often fails when dealing with
complex data, such as natural images. Recent works have shown that overparametrized autoencoders
(AEs) are excellent AMs as well. Particularly, when training an AE to generate a speci�c points
whens itself is presented as an input, it gets stored as an attractor [11].

In this work, we present a novel AM model that is based on an energy-based generative approach.
This AM model differs from Hop�eld networks, as it is trained using predictive coding (PC), which
is a biologically plausible learning algorithm inspired by learning in the visual cortex [4]. The idea
that PC may naturally be related to AMs is inspired by recent works showing that the generative
neural architecture that connects the hippocampus to the neocortex is based on an error-driven
learning algorithm, which can be interpreted with a PC framework [6, 12]. From a machine learning
perspective, predictive coding networks (PCNs) are able to perform both supervised and unsupervised
tasks with a high accuracy [4, 13], and are completely equivalent to backpropagation when trained
with a speci�c algorithm [14–16]. We show that the new AM model is not only interesting from a
neuroscience perspective, but it also outperforms popular AM models when it comes to the storage
and retrieval of complex data points. Our results can be brie�y summarized as follows:

• We de�ne generative PCNs and empirically show that they store training data points as attractors
of their dynamics by demonstrating that they can restore original data points from corrupted
versions. In an extensive comparison of the new AM model against standard AEs, the new model
considerably outperforms AEs (in storage capacity, retrieval accuracy, and robustness) when tested
on neural networks of the same size.

• The reconstruction of incomplete data points is a challenging task for AMs. Our model naturally
solves the task of reconstructing complex and colored images with a surprisingly high accuracy.
We also test our model on ImageNet, perfectly reconstructing single pictures even after removing
all but1=8 of the original image. We then show that, to increase the overall capacity and retrieval
robustness of the model, it suf�ces to add additional layers. We also compare our model against
MHNs, showing that it signi�cantly outperforms them in the aforementioned tasks.

2 Generative predictive coding networks

We now brie�y recall predictive coding networks (PCNs), and we introduce generative PCNs, which
are the underlying neural model for the novel AMs introduced in the subsequent section.

Deep neural networks have a multi-layer structure, where each layer is formed by a vector of
neurons [17]. While in standard deep learning the goal is to minimize the error on a speci�c layer,
PC de�nes an error in every layer of the network, minimized by gradient descent on a global energy
function [4]. Particularly, letM be a PCN withL � 1 fully connected layers of dimensionn, followed
by a fully connected layer of dimensiond. We call thed-dimensional layersensorylayer (indexed as
layer0), which biologically corresponds to sensory neurons (see Fig. 1). We call the most internal
layer (layerL) memory, which is equipped with ann-dimensional memory vectorb. Every layerl
contains value nodesx l

i;t , and every pair of consecutive layers is connected via weight matrices�� l ,
which represent the synaptic weights between neurons of different layers. The value nodes, the
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Algorithm 1: Learning to generate�s with IL
Require: x0 is �xed to s.
1: for t = 0 to T do
2: for each neuroni in each levell do
3: updatex l

i;t to minimizeE t via Eq.(3)
4: end for
5: end for;
6: update each� l +1

i;j andbi to minimizeE t via Eqs. (4) and (5).

weight matrices, and the memory vector are all trainable parameters of the model. The signal passed
from layerl + 1 to layerl , called prediction�� l

t , is computed as follows:

� l
i;t =

( P n l +1

j =1 � l +1
i;j f (x l +1

j;t ) if 0 � l < L
b if l = L ;

(1)

wheref is a non-linear activation function. To conclude, the difference between the value�x l
t and

their predictions�� l
t is theerror " l

i;t = x l
i;t � � l

i;t . We now describe how PCNs are trained. To do
this, we explain one iteration of a training algorithm, calledinference learning(IL), that is divided
into an inference phase and a weight update phase.

Inference:Only the value nodes of the network are updated, while both the weight parameters and the
memory vector are �xed. Particularly, the value nodes are modi�ed via gradient descent to minimize
the global error of the network, expressed by the following energy functionE t :

E t = 1
2

P
i;l (" l

i;t )2 : (2)

Assume that we train a generative PCN on a training point�s 2 Rd. To do this, the value nodes of the
sensory layer are �xed to the training point�s, and are never updated. Thus, the error on every neuron
of the sensory layer is equal to" 0

i;t = si � � 0
i;t . The process of minimizingE t by modifying allx l

i;t
leads to the following changes in the value nodes:

� x l
i;t =

(
 � (� " l

i;t + f 0(x l
i;t )

P n l � 1

k =1 " l � 1
k;t � l

k;i;t ) if 0< l � L
0 if l = 0 ;

(3)

where is theintegration step, which is a constant determining by how much the activity changes
in each iteration. The computations in Eqs.(1) and(3) are biologically plausible, as they have a
neural implementation that can be realized in a network with value nodesx l

i;t and error nodes" l
i;t

[4], as shown in Fig. 1. The inference phase works as follows: starting from a given con�guration of
the value nodes�x0, inference continuously upates the value nodes according to Eq.(3) until it has
converged. We call the con�guration of the value nodes at convergence�xT , whereT is the number of
steps needed to reach convergence (in practice, it is a �xed large number).

Weight Update:When the value nodes of the sensory layer are �xed to an input signal�s, inference
may not be suf�cient to reduce the total energy to zero. Hence, to further decrease the total error, a
singleweight updateis performed: both the weight matrices and the memory vector are updated by
gradient descent to minimize the same objective functionE t , and behave according to the following
equations, where� is the learning rate. Particularly, the derived update rule is the following:

� � l +1
i;j = � � � @ET =@�l +1

i;j = � � " l
i;T f (x l +1

j;T ); (4)

� bi = � � � @ET =@bi = � �" L
i;T : (5)

The phases of inference and weight update are iterated until the total energyE t reaches a minimum.
This algorithm learns a dataset by using only local computations, which minimize the same energy
function. Fig. 1 gives a graphical representation of generative PCNs, while the pseudocode is shown
in Alg. 1. Detailed derivations of Eqs. (3) and (5) are in the supplementary material (and in [13]).

3 Predictive coding for associative memories

So far, we have shown how PCNs can perform generative tasks. We now show how generative PCNs
can be used as associative memories, i.e., how the model stores the data points that it is trained on, and
how these data points can be retrieved when presenting corrupted versions to the network, returning
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Figure 2: Left: Representation of the functionF , used to retrieve stored images. It can be decomposed
into three steps: (1) The value nodes of the sensory layer are �xed to the pixels of the corrupted
imageF m (�c). (2) Inference runs forT operations (until convergence). (3) We setF m +1 (�c) to the
prediction of the sensory layer�� 0

T . Note that the weight parameters are never updated during the
above steps. We have omitted the error nodes for simplicity. Right: Representation of an AM, where
an image�s (photo of a dog) is stored as an attractor of the dynamics. A corrupted image that lies in a
speci�c neighborhood of�s converges to it when minimizing the total energy via running inference.

the most similar stored data point. Let�s be a training data point, andM be the PCN considered above,
already trained until convergence to generate�s. Moreover, assume thatM makes the total energy
converge tozeroat iterationT. At this point, the energy function de�ned on the value nodes has a
local minimum�x in which the value nodes of the sensory layer are equal to the entries of�s. Note
that �x is actually an attractor of the dynamics ofE t : when given a con�guration that is not a local
minimum, inference will update the value nodes until the total energy reaches a minimum. If this
con�guration lies in a speci�c neighborhood of�x, inference will converge to�x. So, given a dataset,
we obtain an AM of the dataset if all the training points are stored in the above way as attractors.

The above can be used to retrieve stored data points�s: given a corrupted version�c 2 Rd of �s, one can
retrieve�s as follows. First, we set the value nodes of the sensory layer to the corrupted points, i.e.,
�x0

t = �c for the whole process. Then, we run inference until convergence and save the prediction�� 0
T

of the sensory layer. If the original data point was stored as an attractor, we expect the prediction
�� 0

T to be a less corrupted version of it. LetF : Rd ! Rd be the function that sends�c to �� 0
T just

described, and summarized in Fig. 2. Many iterations of this function allow to retrieve the stored
data point. Hence, summarizing the above, training points are stored in the memory vector�bT and
the weight parameters, and what the algorithm does to retrieve them is simply the inference phase of
PCNs. Since visual memories are stored in hierarchical networks of brain areas, PC could be a highly
plausible algorithm to better understand how memory and prediction work in the brain.

To experimentally show that generative PCNs are AMs, we trained a2-layer network with ReLU
non-linearity on a subset of100images of Tiny ImageNet and CIFAR10. After training, we presented
the model with a corrupted variant (by adding Gaussian noise) of the training set. We then used
the PCNs to reconstruct the original images from the corrupted ones. The experimental results
con�rm that the model is able to retrieve the original image, given a corrupted one. The obtained
reconstructions for the Tiny Imagenet dataset (the most complex one, as each data point consists of
3 � 64 � 64 pixels) are shown in Fig. 4. We now provide a more comprehensive analysis, which
studies the capacity of generative PCNs when changing the number of data points and parameters.

Experiments:We trained2-layer PCNs with ReLU non-linearity and hidden dimensionn 2 f 512;
1024; 2048g on subsets of the aforementioned datasets of cardinalityN = f 100; 250; 500; 1000g.
Every model is trained until convergence, and all the images are retrieved as described in Section 3.
To provide a numerical evaluation, an image is considered recovered when the mean squared error
between the original image and the recovered image is less than0:005.

To compare our results against a standard baseline, we also trained3-layer autoencoders (AEs) with
the same hidden dimension on the same task, and compared the results. Note that the number of
parameters of a2-layer PCN is smaller than the one of a3-layer AE with the same hidden dimension.
This follows, as the additional layer (input layer, not needed in generative PCNs) almost doubles the
number of parameters in some cases. Further details about the experiments and used hyperparameters
are given in the supplementary material.
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