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Abstract

For many reinforcement learning (RL) applications, specifying a reward is difficult.
This paper considers an RL setting where the agent obtains information about the
reward only by querying an expert that can, for example, evaluate individual states
or provide binary preferences over trajectories. From such expensive feedback,
we aim to learn a model of the reward that allows standard RL algorithms to
achieve high expected returns with as few expert queries as possible. To this
end, we propose Information Directed Reward Learning (IDRL), which uses a
Bayesian model of the reward and selects queries that maximize the information
gain about the difference in return between plausibly optimal policies. In contrast to
prior active reward learning methods designed for specific types of queries, IDRL
naturally accommodates different query types. Moreover, it achieves similar
or better performance with significantly fewer queries by shifting the focus from
reducing the reward approximation error to improving the policy induced by
the reward model. We support our findings with extensive evaluations in multiple
environments and with different query types.

1 Introduction

Reinforcement learning (RL; Sutton and Barto, 2018) casts the problem of learning to perform
complex tasks by interacting with an environment as an optimization problem where the learning
agent aims to maximize its expected cumulative reward. Despite the remarkable successes of
RL (e.g., Mnih et al., 2015; Silver et al., 2016), specifying reward functions that capture complex
tasks is still an open problem. A promising approach is to learn a reward function from human
feedback (e.g., Christiano et al., 2017). However, since human feedback is expensive, active reward
learning aims to minimize the number of queries. Prior work often focuses on approximating
the reward function uniformly well. However, this may not be aligned with the original goal
of RL: finding an optimal policy, as Figure 1 shows. Moreover, prior work is often tailored to
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T = 4

π1 π2
Ĝ(π1) = r̂( ) + r̂( )

Ĝ(π2) = r̂( ) + r̂( )

Ĝ(π1)− Ĝ(π2) = r̂( )− r̂( )

argmax
q∈{ , , , }

I(Ĝ(π1)− Ĝ(π2), (q, ŷ))︸ ︷︷ ︸
IDRL objective

= { , }

Figure 1: The robot wants to collect food for a human. It can only move 4 timesteps in the gridworld,
cannot pass through the black walls, and collecting more food is always better. The robot does not know
the human’s preferences, but it can ask for food ratings. Common active learning methods aim to learn
the reward uniformly well, and would query all items similarly often. In contrast, IDRL considers only
the two plausibly optimal policies π1 and π2. Since both policies collect the cherry, and do not collect the
pear, the robot only needs to learn about the apple and the corn. IDRL can solve the task with 2 queries instead of 4.

specific types of queries, such as comparisons of two trajectories (e.g., Sadigh et al., 2017) or
numerical evaluations of trajectories (e.g., Daniel et al., 2015), limiting its applicability.
Contributions. We propose Information Directed Reward Learning (IDRL), a general active reward
learning approach for learning a model of the reward function from expensive feedback with the
goal of finding a good policy rather than uniformly reducing the model’s error. IDRL can use arbitrary
Bayesian reward models and arbitrary types of queries (Section 4), making it more general than
existing methods. We describe an exact and efficient implementation of IDRL using Gaussian
process (GP) reward models (Section 5) and different types of queries, and an approximation of IDRL
that uses a deep neural network reward model and a state-of-the-art policy gradient algorithm to learn
from comparison queries (Section 6). We evaluate IDRL extensively in simulated environments
(Section 7), including a driving task and high-dimensional continuous control tasks in the MuJoCo
simulator, and show that both implementations significantly outperform prior methods.

2 Related work

Reward Learning for RL. Several works aim to directly learn policies rather than reward functions
from expert feedback in the form of numerical evaluations (Knox and Stone, 2009; MacGlashan
et al., 2017) or comparisons (Regan and Boutilier, 2009; Fürnkranz et al., 2012), and some work
also explores active query selection (Akrour et al., 2012; Wilson et al., 2012). However, learning
policies directly from feedback has several downsides: it is difficult to combine different types
of feedback, and policies tend to generalize poorly between environments. Ng and Russell (2000)
argue that reward functions are a more robust representation of desired behavior than policies.
Inverse reinforcement learning (IRL) aims to learn a reward model from expert demonstrations
(Abbeel and Ng, 2004). Reward models can also be learned from comparisons of two or more
different behaviors (Wirth et al., 2017), or other kinds of feedback (Jeon et al., 2020). While
reward models can successfully learn hard-to-specify control and game-playing tasks (Christiano
et al., 2017; Ibarz et al., 2018), most work uses simple heuristics to select queries to make. In
contrast, active reward learning aims to select the most informative queries in a principled way.
Active reward learning. For linear reward functions, Sadigh et al. (2017) ask the expert to compare
trajectories synthesized to maximize the volume removed from a hypothesis space. Bıyık et al. (2020b)
argue that maximizing information gain leads to better sample efficiency and queries that are easier to
answer than volume removal. Bıyık et al. (2020a) generalize maximizing information gain to
non-linear reward functions using a GP model. We also use an information gain objective to
select queries; however, our approach focuses on finding an optimal policy instead of uniformly
reducing the error of the reward model. With a similar motivation, Wilde et al. (2020) aim to
capture how informative a query is for distinguishing policies. However, their method is limited
to comparisons between potentially optimal policies. Daniel et al. (2015) also introduce an acquisition
function to measure how informative a query is for learning a good policy. However, their setting
is restricted to observing the cumulative reward of a trajectory, and their acquisition function is
computationally expensive. Table 1 gives an overview of how our method compares to this prior work.
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Non-linear
Rewards

Single-state
Queries

Trajectory
Queries

Numerical
Queries

Comparison
Queries

Considers
Env. Dynamics

Sadigh et al. (2017) 7 7 3 7 3 7
Bıyık et al. (2020b) 7 71 3 71 3 7
Bıyık et al. (2020a) 3 71 3 71 3 7
Daniel et al. (2015) 3 71 3 3 71 3
Wilde et al. (2020) 7 7 3 7 3 3

IDRL (ours) 3 3 3 3 3 3

1 The original authors do not consider this setting, but we provide an extension to their method in Section 7 and Appendix D.

Table 1: In contrast to most prior work on active reward learning for RL, IDRL can handle non-linear reward
functions and different query types, in particular numerical evaluations and comparisons of individual states and
(partial) trajectories. Further, IDRL takes the environment dynamics into account to achieve better sample
efficiency (cf. Figure 1).

Bayesian optimization. Bayesian optimization (BO) aims to maximize an expensive-to-evaluate
function by learning a Bayesian model of the function and selecting informative queries (Mockus et al.,
1978). We face a related but significantly harder problem: we aim to find an optimal policy in RL but
only indirectly obtain information about the value of policies. Our problem has striking connections
to variants of the multi-armed bandit problem (Bubeck and Cesa-Bianchi, 2012), in particular
partial monitoring problems (Rustichini, 1999) and transductive linear bandits (Fiez et al., 2019). We
explore this connection in detail in Appendix C.

3 Background and problem setting

Markov decision process. Markov decision processes (MDPs; Puterman, 2014) model sequential
decision-making problems in dynamical systems. An MDP (S,A, P, r, p0, γ) consists of a state space
S , an action space A, a transition function P , a reward function r, an initial state distribution p0, and
a discount factor γ ∈ [0, 1). In an MDP, the agent starts in state s0 ∼ p0(s) and, when taking
action at, transitions from state st to state st+1 with probability P (st+1|st, at). The agent affects
the environment through actions determined by a policy π(at|st), indicating the probability of
taking action at in state st. The agent’s goal is to find a policy π that maximizes the expected
discounted return G(π) = EP,π,p0 [

∑∞
t=0 γ

trt], where rt is the reward obtained at time t.
Information gain. Intuitively, the information gain between two random variables measures
the amount of information that can be obtained about one of them by observing the other. Formally,
for two random variables X and Y with marginal distributions pX , pY and joint distribution p(X,Y ),
the information gain (or mutual information) is I(X,Y ) = DKL(p(X,Y )‖pX ·pY ), whereDKL(·‖·) is
the KL-divergence. Given a third random variable Z, conditional information gain is defined
as I(X;Y |Z = z) = DKL(p(X,Y )|Z=z‖pX|Z=z · pY |Z=z).
Problem setting. We focus on MDPs where the reward function is not readily available. Instead, the
agent can query an expert for information about the reward. In iteration i, the agent makes a query qi to
the expert, and receives a response yi. For example, qi could ask the expert to compare two
trajectories or judge a single trajectory, and yi could indicate which of the two trajectories is
better or provide the return of a single trajectory. We assume that the agent can interact with the
environment cheaply, but queries to the expert are expensive, and hence the agent has to find
a policy π that maximizes the expected return G(π) using as few queries as possible.

Our reward learning approach. We approach this problem by learning a model of the reward
function, i.e., a model that predicts the reward of a given state,2 and computing a policy that
maximizes the return induced by the model. Importantly, we want to learn a reward model such
that the induced optimal policy achieves a high return under the true reward function. Note that any RL
algorithm can be used to find the policy. Hence, the problem reduces to selecting a model for the
reward function and deciding which queries to make. Our key insight is that queries that help
most to find a good policy might differ from those that uniformly reduce the model’s uncertainty.

2Our approach is also applicable to reward functions that depend on state-action pairs or transitions. We focus
on state-dependent reward functions for simplicity of exposition.
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Algorithm 1 Information Directed Reward Learning (IDRL). The algorithm requires a set of candidate
queriesQc, a Bayesian model of the reward function, and an RL algorithm that returns a policy given a
reward function. Ĝ(π) is the belief about the expected return of policy π, induced by the reward model
P (r̂|D), and r̂ is the belief about the reward function.

1: D ← {}; Πc ← initialize candidate policies; initialize reward model with prior distribution P (r̂)
2: while not converged do
3: Select a query:
4: π1, π2 ∈ argmaxπ,π′∈Πc H(Ĝ(π)− Ĝ(π′)|D)

5: q∗ ∈ argmaxq∈Qc I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D)
6: Make query and update reward model:
7: y∗ ← Response to query q∗
8: P (r̂|D ∪ {(q∗, y∗)}) ∝ P (y∗|r̂,D, q∗)P (r̂|D) . Update belief about the reward
9: D ← D ∪ {(q∗, y∗)} . Add observation to dataset

10: Optionally update candidate policies Πc

11: end while
12: r̄ ← mean estimate of the reward model; π̄∗ ← RL(r̄)
13: return π̄∗

4 The Information Directed Reward Learning acquisition function

This section introduces Information Directed Reward Learning (IDRL) for a general Bayesian model of
the reward and discusses how to select queries qi, making no assumptions on their form nor on the
responses yi.

Reward model. To select informative queries, we need to quantify uncertainty; hence, we use
a Bayesian model of the reward function. From a Bayesian perspective, it is important to distinguish
between the agent’s belief about a quantity and its “actual” value that is unknown to us. We
denote the belief about the reward in state s with r̂(s) and its actual value with r(s).

Query selection. To select informative queries, we have to consider that the responses might
only give indirect information about the set of optimal policies. For example, assume the agent can
ask the expert to quantify the reward of individual states. These rewards provide information about the
expected return of a policy but may yield no information about the set of optimal policies. For example,
if a state is visited similarly often by every plausibly optimal policy, knowing its reward does not
help decide between the policies (e.g., the cherry in Figure 1). Therefore, any approach that
only aims to reduce the uncertainty of the reward model may waste expensive queries that do
not help find an optimal policy.

Intuitively, we want to instead select queries that help identify the optimal policy. In the language of
information theory, we want to maximize the information gain of a query about the identity of
the optimal policy. More formally, if D = {(q1, y1), . . . , (qt, yt)} is a dataset of past queries
and responses, let us denote with P (π̂∗|D) the agent’s belief about the optimal policy, induced by our
belief about the reward function r̂. Also, letQc be a set of candidate queries the agent can make. Then,
one way to formalize this intuition is to select queries q∗ ∈ argmaxq∈Qc I(π̂∗; (q, ŷ)|D), where
ŷ is the agent’s belief about the response it will get to query q, and I denotes the information
gain. Unfortunately, this objective has two undesirable properties. First, the agent has to keep
track of a distribution over all possible policies to compute it, which is intractable in general.
Second, reducing uncertainty about the optimal policy only matters as long as there are significant
differences in the return of plausibly optimal policies. For example, if the agent identifies a set
of plausibly optimal policies with similar returns, we care less about identifying exactly which
policy is optimal, compared to when such policies have very different returns.

To address the first challenge, we obtain a finite set of candidate policies Πc that are plausibly
optimal according to our Bayesian reward model. To address the second challenge, we select
the most informative query for distinguishing policies in terms of their value.

Let us first discuss how to select queries, assuming a set of plausibly optimal policies Πc to be
available. We can exploit the fact that the belief about the reward function r̂ induces a belief
about the expected return of policy π ∈ Πc, denoted as Ĝ(π). Concretely, the expected return
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of a policy can be computed as the scalar product G(π) = 〈fπ, r〉, where fπ is a vector of the
(discounted) expected state-visitation frequencies of policy π and r is a vector of rewards of the
corresponding states. We can estimate fπ from trajectories sampled using policy π, and then
determine Ĝ(π) from r̂.

Given Ĝ(π), IDRL proceeds in two steps. It first selects two policies that maximize the model’s
uncertainty about the difference in their expected returns:

π1, π2 ∈ argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D), (1)

where H is the entropy of the belief conditioned on past queries. To gather information about
the distinction between π1 and π2, IDRL then selects queries that maximize the information gain
about the difference in expected return between π1 and π2:

q∗ ∈ argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D). (2)

Note that this is not the same as jointly maximizing the information gain about Ĝ(π1) and Ĝ(π2).
Equation (2) prefers queries that help to distinguish π1 and π2 over queries that help to determine the
exact value of Ĝ(π1) and Ĝ(π2). Assuming a set of optimal policies is contained in Πc, reducing
the uncertainty about the difference in returns within Πc will help to identify an optimal policy quickly.
In particular, if there is no remaining uncertainty about the differences in return, we can clearly identify
an optimal policy.

Let us now discuss how to obtain a set of candidate policies Πc. For IDRL to select informative queries,
Πc has to reflect the agent’s current belief about optimal policies. IDRL uses Thompson sampling (TS,
Thompson, 1933) as a flexible way to create Πc. We implement TS by repeatedly sampling a
reward function from the posterior reward model and finding an approximately optimal policy
for this sampled reward function. This approximates sampling from the posterior distribution
over optimal policies. Since TS is demanding, in our experiments, we investigate two effective
alternatives to alleviate its computational burden: (1) we update Πc in regular intervals, rather
than at every step, and (2) we start from the candidates computed in previous steps rather than
starting the policy optimization from scratch.

Algorithm 1 shows the full IDRL algorithm. In each iteration, IDRL identifies two plausibly optimal
policies with high uncertainty about their difference in return and then aims to reduce this uncertainty.
We can stop the algorithm after a fixed number of queries, or by checking a convergence criterion, and
return a policy π̄∗ that is optimized for the current reward model.

Note that IDRL is agnostic to how the candidate queriesQc are generated. Different applications might
require different approaches to generating Qc. In our experiments, for example, we consider:
using all possible queries in small environments, choosing states or trajectories to query from
rollouts of the currently optimal policy π̄∗, selecting queries from rollouts of the candidate policies,
and selecting queries from trajectories of a pre-defined explorations policy. Importantly, all of
these, and others, are compatible with IDRL.

5 An exact and efficient implementation of IDRL for GP reward models

Here, we describe one concrete implementation of IDRL using a Gaussian process (GP, Rasmussen and
Williams, 2006) reward model and linear query types. These choices allow us to compute equations (1)
and (2) exactly and efficiently.

Reward model. We model the reward function as a GP with (w.l.o.g.) a zero-mean prior distribution
r̂(s) ∼ GP(0, k(s, s′)) using a kernel k which measures the similarity of states.

Query selection. We first show how to compute equations (1) and (2) if the posterior belief
about the reward function is Gaussian. Then, we discuss a family of practically relevant query
types that satisfy this assumption. We provide proofs for all results in Appendix A.
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Proposition 5.1. If r̂(s)|D is a GP, then P (Ĝ(π)− Ĝ(π′)|D) is Gaussian and:

argmax
π,π′∈Πc

H(Ĝ(π)− Ĝ(π′)|D) = argmax
π,π′∈Πc

Var[Ĝ(π)− Ĝ(π′)|D]

argmax
q∈Qc

I(Ĝ(π1)− Ĝ(π2); (q, ŷ)|D) = argmin
q∈Qc

Var[Ĝ(π1)− Ĝ(π2)|D ∪ {(q, ŷ)}]

We can compute both variances analytically, enabling exact implementation of equations (1) and (2).

Query types. To apply this result, we need r̂(s)|D to be a GP, which is not the case for general
observations (qi, yi). If the queries are individual states, i.e., qi = si and yi = r(si), the problem is
standard GP regression, and r̂(s)|D is a GP (Rasmussen and Williams, 2006). More generally,
a similar statement holds if the observations are linear combinations of rewards.

Definition 5.1. We call q = (S,C) a linear reward query, if it consists of states S = {s1, . . . , sN}
and linear weights C = {c1, . . . , cN}, and the response to query q is a linear combination of
rewards y =

∑N
j=1 cjr(sj) + ε, with Gaussian noise ε ∼ N (0, σ2

n).

Proposition 5.2. Let q be a linear reward query. If the prior belief about the reward r̂(s) is a
GP, then the posterior belief about the reward r̂(s)|(q, y) is also a GP.

Linear reward queries result in a particularly efficient implementation of IDRL. Of course, IDRL with a
GP model could be extended to non-linear observations using approximate inference. However, it
turns out that many commonly used query types can be modeled as linear reward queries, including the
return of trajectories or comparisons of trajectories (see Appendix B).

6 A scalable Deep RL approximation of IDRL

GP models provide a convenient way to implement IDRL exactly. But, can IDRL also be used if we can
not model the reward function as a GP? Moreover, can we scale it to large environments on the scale of
typical Deep RL applications?

To address these questions, we propose a second implementation of IDRL using a deep neural
network (DNN) reward model. To scale IDRL to large Deep RL scenarios, we integrate it into a policy
optimization algorithm, similar to Christiano et al. (2017).3 In our experiments, we focus on
comparison queries, but it is straightforward to extend the algorithm to other query types.
Reward model. To model the reward function, we use adaptive basis function regression with
DNNs, similar to Snoek et al. (2015). Concretely, we train a DNN from comparisons of short
clips of the agents behavior using the Bradley-Terry model and `2-regularization. We then treat
the learned representation as a basis function and the final layer of the DNN as a maximum a posteriori
(MAP) estimate of the parameters of a Bayesian logistic regression model. Finally, we approximate the
full posterior using a Laplace approximation.
Query selection. Because of the Laplace approximation, the posterior distribution of r̂(s)|D
is Gaussian, and we can compute equations (1) and (2) the same way we did for a GP reward model.
Query types. Similar to Christiano et al. (2017), we consider queries qi = (σ1

i , σ
2
i ) that compare

two segments of trajectories σ1
i and σ2

i , where the user responds with their preference yi ∈ {−1, 1}.
Candidate policies. In large environments, it is infeasible to train new policies from scratch
during the Thompson sampling step. To avoid this, we maintain a fixed set of policies that we
update regularly, instead of training new policies from scratch whenever we receive new samples.
Candidate queries. We generate candidate queries by rolling out the current policy optimized for
the mean estimate of the reward model, as well as the candidate policies and uniformly sampling pairs
of segments from the resulting trajectories.
Full algorithm. We use a policy gradient algorithm to train a policy for the current reward model,
and the candidate policies. Similar to Christiano et al. (2017), the agent queries comparisons following
a fixed schedule in which the number of samples is proportional to 1

T , where T is the number
of policy training steps, i.e., we provide more samples early during training and less later on.
For more details, including full pseudocode for the Deep RL algorithm, see Appendix E.3.

3We provide a detailed comparison between our setup and Christiano et al. (2017) in Appendix E.3.
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7 Experiments

We empirically test IDRL in several environments, ranging from gridworlds to complex continuous
control tasks, and for several different query types, including numerical evaluations and comparisons
of trajectories. Our evaluation covers most scenarios existing in the literature and shows that
IDRL attains comparable or superior performance to methods designed for specific scenarios.

In all experiments, the agent’s queries are answered with simulated feedback based on an underlying
true reward function unknown to the agent. We usually evaluate the regret of a policy π trained
using the reward model, i.e., G(π∗) − G(π) for an optimal policy π∗. If we do not know π∗,
we approximate it with a policy trained on the true reward function.

We first validate that GP-based IDRL improves sample efficiency in simple gridworld environments for
numerical and comparison queries (Section 7.2). Next, we consider the most common setup in the
literature, that is, learning from comparisons of trajectories, and compare GP-based IDRL against
alternative approaches in a driving simulator, proposed in prior work (Section 7.3). Then, we
study another natural feedback type: ratings of clips of the agent’s behavior. In this setting, we
demonstrate how GP-based IDRL can be scaled up to bigger environments in the MuJoCo simulator
(Section 7.4). Finally, we further demonstrate scalability by considering the Deep RL implementation
of IDRL to learn standard MuJoCo tasks from comparisons of clips of trajectories, similar to Christiano
et al. (2017) (Section 7.5).

For each environment, we choose our setup to be close to prior work to promote a fair comparison.
This leads to some design choices, such as the RL solver or the query types, to differ between
environments. As a side effect, this highlights IDRL’s generality. Appendices D and E describe
the experimental setup in more detail, and we provide code to reproduce all experiments.4

7.1 Baselines

We consider five baselines: (i) Uniform sampling selects queries from Qc with equal probability. (ii)
Information gain on the reward (IGR) selects queries that maximize information gain about the reward
I((q, ŷ); r̂|D). For a GP model, this is equivalent to maximizing Var[ŷ|D, q]. Bıyık et al. (2020b)
use IGR to learn rewards from comparisons of trajectories; however, it can be extended to other
query types. (iii) Expected improvement on the reward (EIR) maximizes the improvement in
the value of a query compared to the best observation so far, in expectation, and is a common
acquisition function in BO (Mockus et al., 1978). EIR can not be applied to comparison queries.
(iv) Expected policy divergence (EPD) is an active reward learning method introduced by Daniel et al.
(2015), which makes queries that maximally change the current policy. Since EPD updates the policy
for each potential observation, it is prohibitively expensive for largeQc. While EPD was introduced to
query the return of trajectories, we extend it to other query types (cf. Appendix D). (v) Maximum regret
(MR) is an acquisition function proposed by Wilde et al. (2020). It assumes access to a set of candidate
reward functions and corresponding optimal policies. MR compares policies that perform well
according to one reward function but poorly according to a different one. It can only be used
with comparisons of full trajectories. We also tested expected volume removal (EVR, Sadigh
et al., 2017) for comparison queries; however, we found it to get stuck often, which confirms
the findings of Bıyık et al. (2020b). Note that IGR and EIR reduce uncertainty uniformly over
the state space, while EPD and MR consider the environment dynamics.

7.2 Can IDRL improve sample efficiency by considering the environment dynamics?

We first validate our hypothesis that IDRL improves sample efficiency in small toy environments. Here,
we highlight experiments in a set of Gridworlds similar to Figure 1. Appendix F presents two
additional toy environments that isolate specific reasons why IDRL outperforms the baselines.

Setup. We consider 10 × 10 Gridworlds with randomly placed walls and objects with different
rewards. The agent has to find the object with the largest reward. We consider queries about
the reward of individual states, i.e., qi = si ∈ S and yi = r(si), and comparison queries with
qi = (si1, si2) and yi ∈ {−1, 1}. The candidate queries Qc either consist of all states or all

4https://github.com/david-lindner/idrl
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pairs of states. We use GP-based IDRL, with a kernel that encodes which objects are the same,
and which are different. All experiments run for less than 1 hour on a single CPU.

Reward of States Comparisons of States

5 10 15
number of queries

0

10

20

30

re
gr

et

60 120 180 240 300
number of queries

Figure 2: Regret of a policy trained in randomly
generated gridworlds as a function of the num-
ber of queries. The queries are either asking about
the reward of individual states, or comparisons be-
tween two states. The plot compares IDRL ( )
to EPD ( ), IGR ( ) and uniform sampling
( ). For numerical queries, we also compare
to EIR ( ), which is not applicable to com-
parisons. MR is not applicable to single-state
queries. The plots show mean and standard er-
ror over 30 random seeds.

Results. Figure 2 shows the regret of a policy
trained on the reward model after different numbers
of queries. IDRL finds better policies than the base-
lines with a limited number of queries because it
focuses on regions of the state space relevant for
finding the optimal policy. As shown in Figure 1, this
improves sample efficiency over methods that uni-
formly reduce uncertainty, such as IGR and EIR.
IDRL also outperforms EPD, because EPD’s goal
of selecting queries that maximally change the cur-
rent policy is also misaligned with the goal of finding
an optimal policy. We investigate EPD’s specific
failure modes in Appendix F.

7.3 Can IDRL learn from comparisons
of trajectories using a GP reward model?

Most prior work studies reward learning from compar-
isons of trajectories. To evaluate IDRL in this setting,
we consider the 2-dimensional, continuous Driver
environment by Sadigh et al. (2017).

Setup. In Driver, the agent controls a car on a high-
way with another car driving on a fixed trajectory
(cf. Figure 3a). For each experiment, we randomly
sample an underlying (linear) reward function to describe the desired driving behavior. We use code
by Sadigh et al. (2017) to simulate and solve the environment, but we adapt it to our setting.
In contrast to Sadigh et al. (2017), we do not synthesize queries. Instead, we sample a fixed set
of 200 reward functions from a Gaussian prior distribution. We then optimize a policy for each of these
reward functions, and, similarly to Wilde et al. (2020), consider all pairs of policies as potential queries.
Moreover, we assume a linear observation model (see Appendix B), whereas Sadigh et al. (2017) and
Wilde et al. (2020) choose different non-linear observation models. Each experiment runs for
less than 24 hours on a single CPU.

Results. Figure 3a shows the regret curves for the learned policy and the cosine similarity for the
learned reward function weights. IDRL outperforms the baselines and finds a better policy with
fewer queries. However, the difference to pure information gain is small in this simple environment.

7.4 Can IDRL with a GP model be scaled to bigger environments?

Swimmer-
Corridor

Ant-
Corridor

Uniform Sampling 11.8± 0.9 15± 1
IGR 13.3± 0.6 17.2± 0.5
EIR 12.0± 0.8 17.5± 0.8

IDRL (20 updates) 2.4 ± 0.8 2.2 ± 0.8
IDRL (4 updates) 2.8± 0.7 5± 1
IDRL (2 updates) 5.1± 0.6 8± 1
IDRL (1 update) 7.6± 0.8 12± 1

Table 2: Results comparing IDRL for dif-
ferent update frequencies of the candidate
policies in the Corridor environments. The
table shows the estimated regret of a policy
trained using 20 queries about the reward
function.

To demonstrate that GP-based IDRL scales to larger en-
vironments, we use the MuJoCo simulator (Todorov et al.,
2012), which provides challenging environments com-
monly used as benchmarks for RL. However, its stan-
dard locomotion tasks are very easy to learn for a GP
model because the reward is directly proportional to the
agent’s velocity in x-direction. Instead, we propose a
task where the reward function is harder to learn.

Setup. In our Corridor environments (Figure 3b),
a robot (Swimmer, or Ant) has to move forward
and stop at a goal position. The simulated ex-
pert rates trajectory clips according to a reward
function that is proportional to the velocity in the direction
of the goal. This reward function is linear in a
set of features of the state, as described in Appendix D.3.5.

8



Legend:
Uniform Sampling Expected Improvement (EI) Information Gain on Reward (IGR)
Expected Policy Divergence (EPD) Maximum Regret IDRL (ours)
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(a) Driver (comparison of trajectories)
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(b) Swimmer-Corridor (evaluation of trajectory clips)

Figure 3: Results in the (a) Driver and (b)
Swimmer-Corridor environments (shown
on the left). We show the regret of a policy
trained on the reward model compared to
a policy trained on the true reward func-
tion as a function of the number of queries
(middle plot). We report the cosine sim-
ilarity between the learned and the true
reward function (right plot). The plots
show mean and standard error over 30 ran-
dom seeds. IDRL finds significantly better
policies, while not necessarily learning an
overall more accurate model of the reward
function. A similar plot for Ant-Corridor
can be found in Appendix F.

We use augmented random search (Mania et al., 2018) as RL algorithm. For the Swimmer-Corridor we
learn a linear policy, and for the Ant-Corridor we learn a hierarchical policy on top of pre-trained poli-
cies moving in four different directions. To generate candidate queries, we use a fixed,
noisy exploration policy that moves along the whole corridor. Unfortunately, EPD is too
expensive to evaluate in this environment and MR is not suited to this kind of queries.

Results. Figure 3b shows that IDRL needs significantly fewer queries to find a good policy than any
of the baselines. IDRL adapts its queries to the policies that the current reward model induces:
it initially samples clips in which the robot moves close to its starting position and shifts its focus to
other regions as the reward model improves, and the learned policy starts to move. In contrast,
the baselines make queries in the whole reachable space similarly often, and, therefore, waste
queries in regions that are not directly relevant for improving the policy.

The computationally most expensive part of this implementation of IDRL is updating the
candidate policies in each iteration. Updating them less often reduces the computational cost
at the expense of potentially reducing the sample efficiency. Table 2 studies this trade-
off and shows that IDRL outperforms the baselines even when the policies are updated
only once at the beginning of training. In this extreme case, we reduce IDRL’s runtime
from about 40 hours to about 20 hours in Swimmer-Corridor, and from about 40 hours
to about 10 hours in Ant-Corridor. This shows the benefits are larger when solving the RL problem is
more expensive. Nonetheless, the baseline algorithms are still faster, and run for only 2−3 hours. This
is because they do not require the additional inference steps necessary to optimize Equation (2). These
results indicate that IDRL using full Thompson sampling to generate candidate policies can trade-off
computational cost and sample efficiency, which allows it to be applied to large environments.

7.5 Can IDRL be scaled to a Deep RL setting?

Finally, we consider the Deep RL implementation of IDRL from Section 6, using the Soft Actor-Critic
algorithm (SAC; Haarnoja et al., 2018). We test it on standard MuJoCo locomotion tasks, which
are harder to learn with a DNN than with a GP model because the former encodes less prior
information.

Setup. We consider a suite of standard tasks in MuJoCo implemented in OpenAI Gym (Brockman
et al., 2016): HalfCheetah-v3, Walker2d-v3, Hopper-v3, Ant-v3, Swimmer-v3, InvertedPendulum-v2,
InvertedDoublePendulum-v2, Reacher-v2. Similar to Christiano et al. (2017), we modify some
environments to remove the termination conditions. Our environments differ slightly from Christiano
et al., for the details see Appendix E.3. Our evaluation metric is a normalized score, averaged over
all environments. A score of 0 corresponds to a random policy and a score of 100 is the performance of
a policy trained on the true reward function. We provide results for the individual environments in
Appendix F. Since IDRL tracks the candidate policies, it generates the candidate queries rolling
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out the currently optimal policy and the candidate policies. However, the baselines do not have
access to the candidate policies, and therefore consider a smaller set of potential queries. For a
fair comparison, we perform an ablation where IDRL does not consider the candidate policies
to generate candidate queries. Since IDRL maintains 3 (additional) candidate policies, it is roughly
4 times slower (about 80 hours on a single GPU) than the baselines (about 20 hours on a single GPU).
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Figure 4: Normalized score of policies learned
from 1400 (synthetic) comparisons of clips of the
agent’s behavior, averaged over all MuJoCo en-
vironments (higher is better). We show the mean
and standard error of the score averaged over 5
random seeds per environment. The plot compares
IDRL ( ) to IGR ( ) and uniform sampling
( ), as well as an ablation of IDRL that does
not use the candidate policies to generate addi-
tional candidate queries ( ). EPD is too ex-
pensive and MR is not suited to this kind of queries.

Results. Figure 4 shows that IDRL on average
learns good policies significantly faster than the base-
lines. The individual results in each environment
(in Appendix F) are more nuanced. IDRL clearly
outperforms the baselines in some environments
(e.g., Hopper-v3), performs comparable in other envi-
ronments (e.g., Walker2d-v3), and performs worse
than uniform sampling in a few environments (e.g.,
HalfCheetah-v3). Also while mostly using the can-
didate policy rollouts improves the performance of
IDRL, this is not always the case (e.g., in Swimmer-v3
the ablation performs better). This indicates that
much of the variance might be caused by which
queries are considered, which could be improved
by using other exploration strategies than the candi-
date policies to generate candidate queries. Crucially,
these experiments demonstrate that IDRL is scalable
to high-dimensional, complex tasks, while still im-
proving sample efficiency over existing methods for
such tasks.

8 Conclusion

We studied the problem of actively learning reward function models using as few expert queries as
possible. We introduced Information Directed Reward Learning (IDRL), a novel information-theoretic
algorithm that focuses on learning a good policy rather than attaining a low approximation error of the
reward and that, differently from most prior methods, works with multiple types of feedback. We show
it needs significantly fewer queries than prior methods and that it scales to complex environments.

Limitations and future work. The main practical limitation of IDRL is its computational cost.
We demonstrated how to scale IDRL to complex environments, increasing the runtime by only
a constant factor. While IDRL is still more demanding than most existing algorithms, it is preferable
in situations where better sample efficiency is more important than low computational cost.

Our problem setup also has some conceptual limitations. We assume that interactions with the
environment are cheap, which is not the case in many applications. Future work could aim to achieve
low sample complexity in terms of environment interactions as well as reward queries. Moreover, we
assume that the goal of RL is to learn a good policy in a single environment, which does not
consider the problem of generalizing to other environment. In fact, being designed to learn a
good policy in a single environment, IDRL might not be best for learning a reward model that
generalizes well. To address this, future versions of IDRL could aim to learn a reward model
that leads to good policies over a distribution of environments instead of a single environment.

Overall, we consider IDRL an addition to the set of existing active reward learning algorithms
rather than a replacement of existing methods.

Broader impact. IDRL improves the sample efficiency of learning reward models, which is a step
towards making RL a viable solution for real-world problems. RL systems can be used in various ways,
and they could cause risks from malicious actors (Brundage et al., 2018). However, overall, learning
reward models is likely to help in making RL more robust and safe (Leike et al., 2018).

Improving the sample efficiency of learning reward models, is crucial for making RL more useful.
By addressing this problem, IDRL takes a step towards making RL a more viable solution for
real-world problems.
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