
A Experiments Details

A.1 Compute resources

All models were trained using an NVDIA GeForce RTX 2080 Ti and an NVDIA GeForce V100
GPU.

A.2 Prepossessing of CelebA

We first perform a central crop with edge length 150px and then resize to 32×32×3. We select the
first 10000 images as our CelebA test set.

A.3 Model Architecture

This section provides additional details concerning the model building blocks used in our experiments.
All models share a similar PixelCNN [49] architecture, which contains a masked CNN as the first
layer and multiple Residual blocks as subsequent layers, we next provide further details on both
components.

Masked CNN structure is proposed in [49]. For our local model with dependency horizon h, one
kernel of the CNN has size k × k with k = 2× h+ 1. The masked CNN contains masks to zero out
the input of the future pixels. There are two types of Masked CNN, which we refer to as mask A
(zero out the current pixel) and mask B (allow connections from a color to itself), see [49] for further
details. The first layer of our model utilizes mask A and the residual blocks use mask B.

Residual Block Each residual Block [49] contains the following structure. We use MaskedCNNB to
denote a Masked CNN using mask B.

Algorithm 1: Residual Block
Input: xinput
h = MaskedCNNB(xinput)
h = ReLU(h)
h = MaskedCNNB(h)
h = ReLU(h)
h = MaskedCNNB(h)
h = ReLU(h)

Return : xinput + h

Pixel CNN Our full Pixel CNN and local pixel CNN shares the same backbone. The difference
between the two models is that the full model has kernel size 3×3 for the second masked CNN layer
in the Residual Block and, in contrast, the local model uses a kernel size of 1×1 for each of the
masked CNN layers, in the Residual block. Crucially, this difference results in the receptive field of
the full model increasing when stacking multiple Residual blocks whereas the receptive field of the
local model does not increase. A Pixel CNN with N residual blocks has the following structure:

Algorithm 2: Pixel CNN
Input: xinput
h = MaskedCNNA(xinput)
h = ReLU(h)
for i from 1 to N:
h = ResBlocki(h)

h = MaskedCNNB(h)
h = ReLU(h)
h = MaskedCNNB(h)

Return : h

A.3.1 OOD detection

Gray images For gray images, our full Pixel CNN model has five residual blocks and channel size
256, except the final layer which has 30 channels. The kernel size is 7 for the first Pixel CNN and the

14



kernel size is [1×1, 3×3, 1×1] for three masked CNNs in the residual blocks. Our local Pixel CNN
model has one residual block and channel size 256, except the final layer which has 30 channels. The
kernel size is 7 for the first Pixel CNN and the kernel size is [1×1, 1×1, 1×1] for three masked CNNs
in the residual blocks. We use the discretized mixture of logistic distribution [41] with 10 mixture
components. The models are trained using the Adam optimizer [20] with learning rate 3×10−4 and
batch size 100 for 100 epochs.

Color images For color images, our full Pixel CNN model has 10 residual blocks and channels size
256, except the final layer which has 100 channels. The kernel size is 9 for the first masked CNN and
the kernel size is [1×1, 3×3, 1×1] for three masked CNNs in the residual blocks. Our local Pixel
CNN model has 10 residual blocks and channels size 256, except for the final layer which has 100
channels. The kernel size is 7 for the first Pixel CNN and the kernel size is [1×1, 1×1, 1×1] for three
masked CNNs in the residual blocks. We use the discretized mixture of logistic distribution [41] with
10 mixture components. The models are trained using the Adam optimizer [20] with learning rate
3×10−4 and batch size 100 for 1000 epochs.

A.3.2 Lossless compression

The NeLLoC is based on a Pixel CNN. Since it is a local model, the kernel size is 1×1 for all the
kernels in the Residual block. Additional details regarding the first layer kernel size and number
of residual blocks are found in the main text, Section 4. All models are trained using the Adam
optimizer [20] with a learning rate of 3×10−4 and batch size 100 for both the CIFAR dataset (1000
epochs) and the ImageNet32 dataset (400 epochs).

B Local Model

B.1 Effect of Horizon Size for Color Images

In Section 2.2 of the main manuscript we show that, for a simple gray-scale dataset, the model
can overfit to non-local features that are specific to the training distribution and thus degrade OOD
generalization performance. For a more complex training distribution, e.g. CIFAR, we find that a
model with limited capacity is less susceptible to overfit to non-local features. However, as observable
in Table 7, when the local horizon size increases, the ID generalization continues to improve, whereas
the OOD generalization remains stable. This is consistent with our hypothesis: local features are
not shared between distributions and cannot significantly aid OOD generalization. We conjecture
that, with the use of a more flexible base model e.g. PixelCNN++ [41], over-fitting to the non-local
features will occur and thus result in familiar degradation of OOD generalization abilities.

Table 7: The generalization ability of local models with increasing horizon size. All models have
residual block number r=1 and are trained on CIFAR10. The reported BPDs have standard deviation
0.02 across multiple random seeds.

Method h=2 h=3 h=4 h=5

(ID) CIFAR 3.38 3.28 3.26 3.25

(OOD) SVHN 2.21 2.16 2.15 2.15
(OOD) CelebA 4.08 4.07 4.07 4.07

B.2 Samples from Local Model

We show samples from a local model with h=3, trained on CIFAR 32×32×3, in Figure 5. It can be
observed in Figure 5a that the samples are locally consistent yet images do not possess much in the
way of recognizable and meaningful global semantics. Figure 5b shows an example image of size
100×100×3. This is made possible since the local model does not require sampled images to have a
fixed size, i.e. size is not required to be consistent with the training data.

15



(a) 16 samples with size 32×32×3 (b) One sample with size 100×100×3

Figure 5: Samples from a local autoregressive model.

C Additional NeLLoC Experiments

We investigate NeLLoC under several different coders: Arithmetic Coding (AC) [50], Asymmetric
Numeral System (ANS) [11] and interleaved-ANS [13] (iANS), in terms of both compression BPD
and method run time, see Table 8 for details. We can find that ANS is slighter faster than AC yet
sacrifices ≈0.01 BPD. The interleaved ANS allows compression (and decompression) of multiple
data simultaneously, thus leads to a large improvement in the compression (decompression) time
per-image. However, in comparison with AC, iANS sacrifices ≈0.03 BPD.

Table 8: Comparisons of NeLLoC with different coders. We implement NeLLoC with three different
coders: Arithmetic Coding (AC), Asymmetric Numeral System (ANS), and interleaved ANS (iANS),
and compare the compression performance in terms of BPD and compression time. Our test images
are 200 samples from the CIFAR10 test set. Our models consist of three different structures with
ResNet block numbers r = {0, 1, 3} respectively. The initial three tables; 8a, 8b, 8c show results
using a Macbook Air (M1, 2020, 8GB memory) CPU. We also report the results of NeLLoC-iANS
with batch size 200 in 8d. Since large batch sizes require large memory, we conducted our experiments
on a CPU Intel i9-9900k with 64GB of memory. Therefore, the results of 8d can not be directly
compared with the results in the other three tables.

(a) Arithmetic Coding (AC)

Res. num. r = 0 r = 1 r = 3
Test BPD 3.35 3.25 3.22

Comp. (s) 0.87 1.34 2.16
Decom. (s) 0.95 1.42 2.24

(b) Asymmetric Numeral System (ANS)

Res. num. r = 0 r = 1 r = 3
Test BPD 3.37 3.26 3.23

Comp. (s) 0.82 1.29 2.06
Decom. (s) 0.83 1.30 2.07

(c) Interleaved ANS (batch size 10)

Res. num. r = 0 r = 1 r = 3
Test BPD 3.38 3.28 3.24

Comp. (s) 0.34 0.48 0.75
Decom. (s) 0.36 0.50 0.77

(d) Interleaved ANS (batch size 200)

Res. num. r = 0 r = 1 r = 3
Test BPD 3.38 3.28 3.24

Comp*. (s) 0.05 0.07 0.09
Decom*. (s) 0.07 0.08 0.11

16



D Datasets

The CelebA [32], ImageNet [10] and SVHN [38] datasets are available for non-commercial research
purposes only. The Fashion MNIST [51] and Omniglot [27] datasets are under MIT License.
The KMNIST [9] is under CC BY-SA 4.0 license. We did not find licenses for CIFAR [25] and
MNIST [28]. The CelebA dataset may contain personal identifications.

E Societal Impacts

In this paper, we introduce a novel generative model and investigate related out-of-distribution
detection, generalization questions. Local autoregressive image models, such as those introduced,
may find application in many down-stream tasks involving visual data. Typical use cases include
classification, detection and additional tasks involving extraction of semantically meaningful informa-
tion from imagery or video. With this in mind, caution should remain prominent, when considering
related technology, to avoid it being harnessed to enable dangerous or destructive ends. Identifcation
or classification of people without their knowledge, towards control or criminilzation provides an
obvious example.

17


