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Abstract

We categorize meta-learning evaluation into two settings: in-distribution [ID],
in which the train and test tasks are sampled iid from the same underlying task
distribution, and out-of-distribution [OOD], in which they are not. While most meta-
learning theory and some FSL applications follow the ID setting, we identify that
most existing few-shot classification benchmarks instead reflect OOD evaluation,
as they use disjoint sets of train (base) and test (novel) classes for task generation.
This discrepancy is problematic because—as we show on numerous benchmarks—
meta-learning methods that perform better on existing OOD datasets may perform
significantly worse in the ID setting. In addition, in the OOD setting, even though
current FSL benchmarks seem befitting, our study highlights concerns in 1) reliably
performing model selection for a given meta-learning method, and 2) consistently
comparing the performance of different methods. To address these concerns,
we provide suggestions on how to construct FSL benchmarks to allow for ID
evaluation as well as more reliable OOD evaluation. Our work† aims to inform
the meta-learning community about the importance and distinction of ID vs. OOD
evaluation, as well as the subtleties of OOD evaluation with current benchmarks.

1 Introduction
Meta-learning considers learning algorithms that can perform well over a distribution of tasks [19, 37].
To do so, a meta-learning method first learns from a set of tasks sampled from a training task
distribution (meta-training), and then evaluates the quality of the learned algorithm using tasks from
a test task distribution (meta-testing). The test task distribution can be the same as the training
task distribution (a scenario we term in-distribution generalization evaluation or ID evaluation) or a
different task distribution (out-of-distribution generalization evaluation or OOD evaluation).

In this work, we argue that there is a need to carefully consider current meta-learning practices
in light of this ID vs. OOD categorization. In particular, meta-learning is commonly evaluated
on few-shot learning (FSL) benchmarks, which aim to evaluate meta-learning methods’ ability to
learn sample-efficient algorithms. Current benchmarks primarily focus on image classification and
provide training tasks constructed from a set of train (base) classes that are completely disjoint and
sometimes extremely different from the test (novel) classes used for test tasks. As we discuss in
Section 3, this design choice imposes a natural shift in the train and test task distribution that makes
current benchmarks reflective of OOD generalization. However, there are a number of reasons to
also consider the distinct setting of ID evaluation. First, whether in terms of methodology or theory,
many works motivate and analyze meta-learning under the assumption that train and test tasks are
sampled iid from the same distribution (see Section 2). Second, we identify a growing number of
applications, such as federated learning, where there is in fact a need for sample-efficient algorithms
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that can perform ID generalization. Crucially, we show across numerous benchmarks that methods
that perform well OOD may perform significantly worse in ID settings. Our results highlight that it is
critical to clearly define which setting a researcher is targeting when developing new meta-learning
methods, and we provide tools for modifying existing benchmarks to reflect both scenarios.

Beyond this, we also re-examine current OOD FSL benchmarks and analyze how the shift in the train
and test task distributions may impact the reliability of OOD evaluations. We point out two concerns
which we believe are not widely considered in the meta-learning community. First, unlike areas
such as domain generalization where model selection challenges are more widely discussed [18, 23],
we conduct to the best of our knowledge the first rigorous study demonstrating the difficulty of
model selection due to the shift in the validation and test task distributions in FSL benchmarks.
Second, because the OOD scenario in meta-learning does not assume a specific test task distribution,
there is room for different test distributions to be used for evaluation. We show that comparing
which meta-learning method performs better can be unreliable not only over different OOD FSL
benchmarks, but also within a single benchmark depending on the number of novel classes.

Our main contributions are: i) We clearly outline both ID and OOD FSL evaluation scenarios and
explain why most popular FSL benchmarks target OOD evaluation (Section 3). ii) We provide realistic
examples of the ID scenario and show that the performance of popular meta-learning methods can
drastically differ in ID vs. OOD scenarios (Section 4). iii) For existing OOD FSL benchmarks,
we highlight concerns with a) current model selection strategies for meta-learning methods, and
b) the reliability of meta-learning method comparisons (Section 5). iv) To remedy these concerns,
we suggest suitable modifications to the current FSL benchmarks to allow for ID evaluation, and
explain how to construct FSL benchmarks to provide more reliable OOD evaluation. Our hope in
highlighting these evaluation concerns is for future researchers to consider them when evaluating
newly proposed meta-learning methods or designing new FSL benchmarks.

2 Related Work

Current FSL benchmarks. A plethora of few-shot image classification benchmarks (e.g., mini-
ImageNet (mini in short) [42], CIFAR-FS [4]) have been developed for FSL evaluation. These
benchmarks typically provide three disjoint sets of classes (base, validation, novel) taken from
standard classification datasets, e.g., ImageNet or CIFAR-100 [36, 32, 42]. Training, val, and test
tasks are then constructed from these classes respectively, which, as we discuss in Section 3, can
induce a shift in their corresponding task distributions. Distribution mismatch can be particularly large
with non-random splits created at the super class level, e.g., FC-100 [30], or dataset level, e.g., Meta-
Dataset [40]. Recently, Arnold and Sha [2] propose an automated approach to construct different class
splits from the same dataset to allow for varying degrees of task distribution shifts; Triantafillou et al.
[41] separate the distribution shifts on Meta-Dataset into weak vs. strong generalization depending
on whether the novel classes are taken from the used training datasets or not. Both works find that the
meta-learning methods that perform better in one distribution shift scenario might perform worse in
another, providing further evidence to our OOD performance comparison inconsistency argument in
Section 5.2. Beyond these canonical ways of task construction through a set of classes, Ren et al.
[35] propose new benchmarks in a new flexible few-shot learning (FFSL) setting, where the aim is
to classify examples into a context instead of an object class. During testing, they perform OOD
evaluation on unseen contexts. Inspired by their approach, we also provide an FSL benchmark where
tasks are specified by contexts (Section 4), though we differ by exploring ID evaluation.

Mismatch between meta-learning theory/methodology and evaluation. Despite theoretical works
which analyze meta-learning OOD generalization [11, 13], there are many theoretical meta-learning
works [e.g., 1, 3, 8, 22] that first assume the train and test tasks are iid sampled from the same
distribution despite validating their analyses on OOD FSL benchmarks. Additionally, several popular
meta-learning methods [25, 16, 31] that are motivated in the ID scenario are largely evaluated on
OOD benchmarks (see Appendix A). Prior work of Lee et al. [24] explores ID vs. OOD; however
they treat the FSL setup as ID when the disjoint base and novel classes are from the same dataset and
OOD only when they are not (e.g., base from ImageNet, novel from CUB). We emphasize that even
the disjointedness of base and novel from the same dataset can create a task distribution shift and
hence unlike [24] we do not consider current FSL benchmarks (like mini) to be ID (Section 3).

FSL ID evaluation. We are unaware of any FSL classification benchmarks that are explicitly
advertised for ID evaluation. As we discuss in Section 4, a growing number of works [7, 12, 20, 22, 27]
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use meta-learning for personalized federated learning, but do not clearly discuss the in-distribution
nature of these benchmarks nor how they differ from standard FSL benchmarks. In recent work, Chen
et al. [10] extend current FSL benchmarks to evaluate their proposed method both ID and OOD, but
only to further improve OOD performance on the original FSL benchmark’s novel classes. Our work
uses a similar setup for constructing ID evaluations with current OOD FSL benchmarks, but focuses
on showing that certain meta-learning methods/design choices can improve OOD performance at
the cost of ID performance. Prior work [17, 34] on incremental few-shot/low-shot learning also
explores performance on both base and novel classes simultaneously. However, they differ in their
methodology, as they use supervised learning (not meta-learning) to classify over the base classes.

OOD evaluation in other fields. Train and test distribution shifts are also found in domain gener-
alization [5, 29] where the goal is to find a model that works well for a different test environment.
Due to this shift, Gulrajani and Lopez-Paz [18] specifically discuss difficulties in performing model
selection in domain generalization benchmarks. They argue that it is the responsibility of the method
designer (not benchmark designer) to determine model selection strategies for their method, and
propose several model selection methods, mainly targeting hyperparameter selection. Unlike domain
generalization, FSL benchmarks often have a pre-determined disjoint set of validation classes to
construct validation tasks, so the need for developing model selection methods may be less obvious.
In Section 5, motivated by [18], we explore strategies for model selection for meta-learning. However,
in contrast to [18], we focus on algorithm snapshot selection for meta-learning, which is required by
hyperparameter selection as a subroutine (exact definitions see Section 5).

3 FSL benchmarks: Background & Focus on OOD evaluation
Background and notation. In this work, we employ a general definition of a meta-learning FSL
task: a task T is a distribution over the space of support and query dataset pairs (S,Q), where S, Q
are two sets of examples from an example space X ×Y . The support set S is used by an algorithm to
produce an adapted model which is then evaluated by the corresponding query set Q. Each time we
interact with a task T , an (S,Q) pair is sampled iid from T , the mechanism for which depends on the
specific application; we provide multiple examples below. As discussed in Section 1, meta-learning
aims to learn an algorithm over a distribution of tasks P(T ). During meta-training, we assume access
to N pairs of {(Si, Qi)}i∈[N ] sampled from a training task distribution‡ Ptr(T ) in the following
way: first, N tasks are sampled iid from the training task Ti ∼ Ptr(T ); then, for each task Ti, a
support query pair (Si, Qi) ∼ Ti is sampled iid. During meta-testing, we assume there is a test task
distribution Pte(T ) where fresh (S,Q) samples are similarly sampled based on Pte(T ). We define a
learning scenario to be in-distribution (ID) if Ptr = Pte and out-of-distribution (OOD) if Ptr ̸= Pte.
Whenever Ptr = Pte, the induced train and test marginal distributions of (S,Q) are also identical.

Construction of (S,Q) pairs in FSL. Most popular FSL benchmarks share a similar structure: they
provide three disjoint sets of classes: base classes CB , validation classes CV , and novel classes CN ,
where any class c in these sets specifies a distribution Pc over the example space X . An n-way
k-shot q-query task Tc in these benchmarks is specified by a length n non-repeated class tuple
c = (c1, . . . , cn) where c ∈ [Cn] := {(d1, . . . , dn) ∈ Cn : di ̸= dj ,∀i ̸= j}. Tc generates random
(S,Q) pairs in the following way: For every class ci, k support examples Si ∼ (Pci)

k and q query
examples Qi ∼ (Pci)

q are sampled. The support and query set is formed by the union of such
labelled examples from each class: S = ∪n

i=1{(x, i),∀x ∈ Si}, Q = ∪n
i=1{(x, i),∀x ∈ Qi}. By

specifying the base and novel classes, the FSL benchmark has provided a collection of tasks for
training {Tc : c ∈ [Cn

B ]} and test {Tc : c ∈ [Cn
N ]}. These sets can be extremely large. For example,

in mini, which has 64 base classes, the total number of 5-way training tasks is 64!
(64−5)!

≈ 9.1× 108.
However, it is not explicitly specified what underlying task distribution P(T ) generates these sets
of tasks. We believe this may have led prior work to discuss FSL benchmarks in the context of ID
evaluation [e.g., 1, 3, 8], contrary to what we outline below.

Current FSL benchmarks target OOD evaluation. We now informally discuss our reasoning for
arguing that current FSL benchmarks reflect OOD evaluation (we provide a more formal proof by
contradiction in Appendix B). In particular, if the training and test tasks in FSL benchmarks are
indeed iid sampled from the same underlying task distribution, then this underlying distribution must
be induced by a distribution over class tuples of an even larger class set CL (CL ⊇ (CB ∪ CV ∪ CN )).

‡We note that “training task distribution” here refers to the true underlying distribution of training tasks, not
the empirical distribution supported over the finite set of sampled training tasks.
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We consider the following dichotomy:

i) when |CL| = O(nN): In this case, the total number of classes nN covered by the sampled tasks
(counting repetition) is greater than the number of underlying classes. Then with high probability,
both the training and test tasks would each cover a significant portion of all the classes in CL,
making it extremely unlikely to have an empty intersection as in the current FSL benchmarks.

ii) when |CL| = Ω(nN): In this alternative case, the total number of classes (even counting
repetitions) used by sampled tasks is still smaller than the number of underlying classes |CL|.
Thus the sampled tasks cannot cover all the underlying classes. Under this regime, the number
of classes covered by the training tasks alone would scale linearly with N , as repeating an
already-seen class in a new task sample is relatively rare. Since FSL benchmarks typically use
a large number of training tasks during meta-training (N > 103), it is improbable that all the
training tasks would together only cover a very low number of classes (64 in the case of mini).

Randomized class partitions do not imply randomized task partitions. Another issue that may
cause some to view the current FSL benchmarks as performing ID evaluation is that in some of these
benchmarks, the base, val, novel classes are random partitions of iid drawn classes from a class level
distribution (specifically miniImageNet, CIFAR-FS; but not FC-100, tieredImageNet as the classes
are not partitioned randomly). The logic here is that in standard machine learning practice, randomly
partitioning iid sampled data points into train and test guarantees that the train and test samples are
drawn iid from the same underlying distribution. However, it is important to notice that the first class
citizen in common FSL benchmarks is not a class, but a task (represented by a class tuple). So, only a
randomized partition of iid sampled class tuples would guarantee in-distribution sampling.

How can we view Ptr,Pte in common FSL benchmarks? Based on the discussion above, we need to
view train and test tasks in current FSL benchmarks as coming from different distributions, i.e., Ptr ̸=
Pte. In order to ensure that both sets of tasks are still sampled iid from their respective distributions,
it is convenient to view the train/test tasks as being iid sampled from a uniform distribution over all
possible train/test class tuples induced by CB/CN i.e., Ptr = PCB

:= Unif({Tc : c ∈ [Cn
B ]}) and test

Pte = PCN
:= Unif({Tc : c ∈ [Cn

N ]}) — a view which we will adopt in the rest of the paper.

4 Evaluating In-Distribution Performance
Although (as discussed in Section 3) current FSL benchmarks target OOD evaluation, we now explore
example applications where ID generalization is instead required, and provide easily constructible
benchmarks mirroring these scenarios. As we will show, this distinction is important because
meta-learning methods may perform markedly different in ID vs OOD scenarios.

Example 1 (Federated Learning): Multiple works [7, 12, 20, 22, 27] have considered applying meta-
learning methods in federated learning, in which the goal is to learn across a distributed network of
devices [28, 26]. Meta-learning can produce personalized models for unseen devices/users, improving
over a single globally-learned model’s performance. In this setting, a popular benchmark is the
FEMNIST [6] handwriting recognition dataset. For FEMNIST, we assume there exists a distribution
of writers P(id) in a federated network where each writer (with a unique id) is associated with a
few-shot classification problem to recognize over the different character classes the writer has written
for. We associate each writer id with a task Tid which randomly generates a support set with one
random example per class and a query set with varying number of random examples per class.

ID evaluation on FEMNIST. We are given a total of ∼ 3500 writers sampled iid from P(id) and we
randomly partition them into a 2509/538/538 split for training, validation, and test tasks, following
similar practices used in prior FL work [20, 7]. Note that this random split is performed at the
task/id level. As such, we can treat the training and test tasks as being sampled iid from the same
task distribution, unlike current FSL benchmarks.

Example 2 (Online Recommendation): Ren et al. [35] propose the use of Zappos [43] dataset as a
meta-learning benchmark where each task is a binary classification of shoe images into an attribute
context. This mimics an online shopping recommendation problem, where each user has different
shoe preferences based on specific shoe attributes (hence a single global predictive model would not
perform well), and the recommendation system must quickly learn a user’s likes/dislikes through
a few interactions. In this simplified setup, we fix a universal set of shoe attributes A, and each
user’s preference is represented by a specific pair of unique attributes a = (a1, a2), a1 ̸= a2. A task
Ta representing a user with attribute preference a generates 2-way k-shot q-query (S,Q) pair by
iid sampling k + q examples both from the set of images that carry both attributes in a (positive
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Table 1: Ranking in () of meta-algorithms’ test performance on i) ID benchmarks FEMNIST, Zappos-ID (with
either 1000 or 50 training tasks); and ii) OOD FSL benchmark miniImageNet.

Dataset / FEMNIST Zappos-ID miniImageNet
Method *w1s 2w10s 2w5s (1000 train tasks) 2w5s (50 train tasks) 5w5s

PN (1)94.72 ± 0.41% (1)88.40 ± 0.13% (1)86.58 ± 0.15% (1)77.67 ± 0.17% (3)76.22 ± 0.14%

Ridge (1)94.71 ± 0.42% (2)88.01 ± 0.14% (2)85.56 ± 0.16% (2)74.75 ± 0.16% (2)77.20 ± 0.15%

SVM (3)94.22 ± 0.45% (3)87.75 ± 0.14% (3)85.12 ± 0.16% (3)74.06 ± 0.17% (1)77.72 ± 0.15%

FO-MAML N/A (4)81.90 ± 0.14% (4)80.14 ± 0.15% (4)69.85 ± 0.18% (4)75.96 ± 0.17%

examples) and from the set that does not (negative examples). Our task distribution is a uniform
distribution over tasks of all attribute pairs PA(T ) = Unif({Ta : a ∈ [A2])}.

ID evaluation on Zappos. Unlike in [35], where Zappos is used to measure OOD performance by
having disjoint train and test attributes Atr ∩Ate = ϕ, in this work we use Zappos for ID evaluations
by iid sampling both meta-train and meta-test tasks from the same distribution PA(T ). Through
this modification of Ren et al.’s setup, we sample 1000 / 50 attribute pairs from an attribute set
|A| = 36 to construct 1000 / 50 training tasks (each with a randomly sampled (S,Q)) and evaluate
ID performance on another 25000 test tasks sampled in the same way. Our evaluation setup captures
a realistic setting where the goal is to learn an algorithm that can generalize to the entire online
shopper population despite being trained only on a randomly chosen subset of shoppers.

Remark. Even with ID evaluation it is possible to encounter unseen classes/attributes in meta-test
tasks, specifically when the number of meta-train tasks is smaller than the number of underlying
classes/attributes (Section 3). However, a suitable number of iid sampled meta-train tasks is needed
to ensure good performance, which would naturally encompass a larger set of meta-train classes than
those considered by OOD FSL benchmarks. For example, there are still 16 attribute pairs from the
test tasks that are unseen in the 1000 training tasks on Zappos-ID, but the dataset is still in-distribution
since the sampling distributions of train and test attribute pairs (and thus of tasks) are identical.

ID benchmark results. We evaluate the ID performance of four popular meta-learning methods:
Prototypical Networks (PN) [39], MetaOptNet-SVM (SVM) [25], MetaOptNet-Ridge Regression
(RR) [25, 4] and FOMAML [15] on our identified ID FSL benchmarks (Table 1). Since FEMNIST’s
tasks have varying number of ways, FOMAML cannot be directly used due to the logit layer shape
mismatch. We note that the performance order of the four methods are consistent on all three ID
benchmarks yet surprisingly almost completely opposite to the performance order observed on
the OOD benchmark mini (except for FOMAML). In terms of the actual performance differences,
we notice that the ID performance advantage of PN over SVM becomes particularly large (> 3%)
when we reduce of the number of training tasks for Zappos-ID to 50; in contrast, on the OOD
benchmark mini, SVM instead outperforms PN by 1.5% (a significant number as many newly proposed
meta-learning methods often only report improvements over previous methods by 1.5% or less).
These performance differences make it clear that the performance ranking flips between ID and
OOD indeed exist, and as a result, these common OOD FSL benchmarks (like mini) cannot be used
to compare ID performance without modifications, giving further evidence to the danger of such
practices (see Section 2). To further understand this phenomenon, we propose a way to also enable
ID performance evaluation over these common OOD FSL benchmarks and see if there still exists a
difference in ID, OOD performance orders.

Modifying OOD FSL benchmarks for ID evaluation. From our previous discussion, we have
shown that we can think of FSL training tasks as being sampled iid from the task distribution
PCB

:= Unif({Tc : c ∈ [Cn
B ]}). To conduct an in-distribution evaluation, we need to sample fresh

test tasks iid from PCB
. For a freshly sampled Tc ∼ PCB

, we also need to iid sample a fresh support
query pair (S,Q) ∼ Tc. To ensure independent sampling from the already seen meta-training (S,Q)
pairs, we need to introduce new examples from Pc for each class c ∈ CB . Thus we construct slightly
modified versions of four common FSL benchmarks i) miniImageNet-Mod (mini-M) [42], in which
we find (≈ 700) unused examples (from ImageNet) for each base class and use them to evaluate
the performance over PCB

. Here the original 600 examples of each base class are still only used for
meta-training. ii) CIFAR-FS-Mod (cifar-M) [30], FC-100-Mod (FC-M) [4], and tieredImageNet-Mod
(tiered-M) [33]: As we don’t have additional samples for base classes, we randomly partition each
base class’s current examples into an approximate 80/20 split where the training tasks are constructed
using the former and the latter is reserved for ID evaluation.

ID vs. OOD conflicts still exist. In addition to evaluating the four aforementioned meta-learning
methods, we also consider two supervised pretraining methods: the supervised learning baseline (SB)
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Figure 1: We show the BaseGen and NovelGen performance tradeoff (for best validation snapshots): over the
choice of a set of four meta-learning and two supervised pre-training methods on mini-M (a) and tiered-M (b);
over the number of ways to train PN on mini-M and different learning rates to train FOMAML on FC-M (c); over
the use of FIX-ML (S,Q) generation strategy or not (ML) with SVM, RR and PN on cifar-M in (d).

[9] and Meta-Baseline (MB) [10]. Both of these methods have been shown to outperform many meta-
learning methods on the current OOD FSL benchmarks. For succintness, we call the generalization
performance over the training task distribution PCB

BaseGen and performance over PCN
NovelGen

(we will refer to performance on validation tasks from PCV
ValGen in a later section). We plot

the BaseGen and NovelGen performances of the aforementioned methods on miniImageNet-Mod
and tieredImageNet-Mod in Figure 1(a)(b) (other datasets see Appendix E Figure 4(a)(b)), with a
dotted line connecting BaseGen and NovelGen value of same learned algorithm snapshot of a meta-
learning method. We see that the ID/OOD performance order flips still exist within current FSL
benchmarks themselves (the dotted lines of different methods cross each other frequently), showing
that the issue of improving OOD at the expense of ID is a common realistic phenomenon for
multiple benchmarks. In addition, despite outperforming all meta-learning methods on NovelGen,
the non-meta-learning methods SB and MB cannot beat the best meta-learning methods on BaseGen,
which demonstrates their restrictive advantage only in the OOD setting. More broadly speaking,
these OOD FSL datasets are constructed with a belief that there exists a commonality between the
training and test task distributions so that an algorithm capturing this commonality using the training
distribution alone would also generalize to the test tasks. Thus the phenomenon of improving OOD
while sacrificing ID means the algorithm has in some sense failed to learn the essence/commonality
from the given training tasks. Additionally, we see that the BaseGen ranking of the four meta-learning
methods over these common FSL bechmarks are exactly the same as the ranking over our two newly
proposed ID benchmarks in Table 1. We suggest that researchers who want to also test on their
proposed methods’ ID generalization performance can perform BaseGen evaluation method in our
proposed way as it is a simple addition to their existing NovelGen evaluation setup.

Certain OOD training choices might harm ID generalization. In addition to checking the
discrepancy of ID vs OOD generalization comparison of different meta-learning methods, we now
ask, for a given meta-learning method, whether the meta-training choices found to be most effective
on NovelGen would still be optimal for BaseGen.
i) Meta-training hyperparameters: In Figure 1(c) we see that a higher learning rate when training

FOMAML finds algorithms that have higher BaseGen, whereas lower learning rates are better for
NovelGen. Additionally, we see that the proposed technique of training with more ways for PN in
[39] can lead to better NovelGen performance but worse BaseGen performance than the 5-way
trained PN whose training and test task configurations match.

ii) Meta-training (S,Q) generation alternatives: It was found in [38] that always using the same
support examples for every base class when constructing S (FIX-ML) can improve NovelGen
performance for several meta-learning methods over multiple OOD FSL benchmarks. However,
restricting the training (S,Q)’s diversity sampled from PCB

seems counter-intuitive and we
wouldn’t expect to improve the in-distribution generalization BaseGen. In Figure 1(d), we indeed
see that FIX-ML only improves NovelGen performance at the expense of BaseGen by training
over a much less diverse set of tasks.

These two observations above caution us that some training techniques to boost test accuracy on
FSL benchmarks might only work for the OOD scenario but not the ID scenario.

5 Challenges With Out-of-Distribution Evaluation
After identifying some example benchmarks for ID evaluation, we come back to the current OOD FSL
benchmarks to further examine some subtle challenges in OOD evaluation. Here, instead of focusing
on the distinction between ID vs. OOD, we now look at some reliability and inconsistency problems
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Figure 2: We plot the (Base, Val, Novel)Gen progression of 64(max)-way trained PN on mini-M in (a) and
of SVM trained on cifar-M in (d). In (b) we compute the Kendall rank correlation coefficient (ρ) between the
validation and test rankings of model snapshots for IC (trained on cifar) and algorithm snapshots for PN, SVM,
RR on OOD datasets mini-M (last 40 epochs), cifar-M (last 40), FC-M (last 10), tiered-M (last 20) and ID dataset
Zappos-ID (last 30); in (c) we show the BaseGen tracking NovelGen for 20-way trained PN on tiered-M.

within the OOD evaluation itself. In particular, we highlight two concerns: 1) Despite providing a
validation set of classes for task construction during meta-validation, it is not clear whether this is a
reliable way to perform model selection. 2) As there is no requirement on how similar the training
and test task distributions need to be in the OOD setting, there can be inconsistencies in method
comparisons when the evaluation setup is slightly modified.

5.1 Model Selection
To compare a set of meta-learning methods on the OOD test task distribution, one needs to select a
representative algorithm learned by each method to be evaluated on the test task distribution. To do
so, one should first decide what set of hyperparameter configurations to choose from for a given meta-
learning method (we define the entire set of all hyperparameters for a training run as a hyperparameter
config). For each such considered config, after its training is completed, we need to choose one of the
algorithm snapshots saved during training to represent it (which we call snapshot selection). Then
the set of hyperparameter configs are compared based on their respectively selected snapshots, and a
single config is then chosen among them (which we term hyperparameter selection). This config’s
selected snapshot will represent the given meta-learning method to be finally evaluated on the test
tasks. We refer to the combined problem of hyperparameter and snapshot selection as model selection.
(See Appendix F.1 for a simplified example of snapshot and hyperparameter selection; see F.2 for the
distinction between the commonly used technique early-stopping and snapshot selection.)

Snapshot vs Hyperparameter selection. If the snapshot selection strategy cannot reliably identify
a snapshot with good test performance, it is possible that some hyperparameter configs will be
unfairly represented by a mischosen snapshot, leading to erroneous hyperparameter selection. Thus
we believe snapshot selection is a more fundamental problem and we focus our analyses on it (more
on hyperparameter selection in Appendix F.5). In OOD FSL benchmarks, a reserved set of validation
classes (disjoint from the set of novel classes) is provided, which as we have argued, provides tasks
which are not sampled iid from the test task distribution. As a result, we ask: is performing validation
on the given validation tasks reliable, and, if not, are there other options? In contrast, there is
typically no need for such concerns in standard ID supervised learning, where the validation set is
sampled iid from the test distribution.

5.1.1 Option 1: Snapshot selection tradition using ValGen.

By providing a set of validation classes, it has become the default practice for meta-learning methods
to use ValGen performance for snapshot selection. However, because PCV

and PCN
are different

tasks distributions, it is not clear whether a higher ValGen performance is strongly correlated with a
higher NovelGen performance. In Figure 2(a), we plot the progression of ValGen and NovelGen of a
64-way trained PN on miniImageNet-Mod 5w5s tasks. We notice that ValGen is consistently higher
than NovelGen, indicating that meta-val performance is not an accurate estimator of NovelGen. More
importantly, we see trendwise that while ValGen is generally non-decreasing, NovelGen starts to
decrease after epoch 30. Thus the snapshot selected according to the best ValGen is not the snapshot
with the best possible meta-test performance. In fact, this loss of NovelGen performance due to
choosing the best ValGen model instead of the actual best NovelGen model can be particularly
large, with values being 1.1% for SVM, 1.2% for RR, 0.7% for PN, and 0.9% for FOMAML on the
FC-100 dataset. These performances losses for each method are especially concerning considering
the differences among the best possible NovelGen performance of these different methods are often
smaller than 1.5%.
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Ranking similarity analysis. In light of the above observation, we ask a more general quantitative
question: How similar is the ranking of the training snapshots using meta-val performance (ValGen)
to the ranking using the meta-test performance (NovelGen)? To answer this, we compute the
Kendall rank correlation coefficient§ ρ [21] between the ValGen and NovelGen rankings of algorithm
snapshots trained on four OOD FSL benchmarks (Figure 2(b)) and our ID benchmark Zappos-ID
whose validation and test tasks come from the same distribution PA. More concretely, for each meta-
learning method and dataset combination, we save the algorithm snapshots (one from each epoch)
throughout meta-training and rank these algorithm snapshots according to their ValGen and NovelGen
value respectively. Then ρ is computed between these two rankings for this specific (meta-learning
method,dataset) combination. For snapshot selection through ValGen to work reliably, we need ρ to
be close to 1. For context, we also compute ρ for a standard supervised image classification problem
(IC), where train, val and test examples are sampled from the same example-level distribution.

Unreliabity of ValGen snapshot selection. From Figure 2(b), we see that when using validation
samples generated iid from the test distribution (Zappos-ID and supervised learning IC), the value of
ρ is consistently higher than the OOD benchmarks, indicating the validation performance can more
reliably track the trend of test performance in the ID setting than on the OOD FSL benchmarks. In
particular, for the cifar-M and FC-M datasets, the ValGen ranking of algorithm snapshots seems to
be only weakly correlated with the true meta-test ranking for all the meta-learning methods. In fact,
the meta-val and meta-test rankings of the most useful snapshots can sometimes even be negatively
correlated (ρ ≈ −0.12 < 0 over all snapshots after epoch 30 in the training scenario shown in
Figure 2(a)). These results show that on the OOD FSL benchmarks, snapshot selection using the
pre-assigned validation tasks can sometimes be unreliable/unable to identify a snapshot candidate
with top-tier meta-test performance among all the snapshots.

5.1.2 Option 2: Snapshot selection alternative using BaseGen.

Beyond using OOD validation tasks for snapshot selection, inspired by the domain generalization
community [23, 18], we can alternatively also consider using the ID performance over the training
task distribution for snapshot selection. Perhaps due to the lack of an ID evaluation setup in common
FSL benchmarks, this possibility has not been widely considered. Enabled by our modifications
of current FSL benchmarks, we can now evaluate the ID generalization performance (BaseGen)
throughout training in addition to ValGen.

We plot how BaseGen and NovelGen progress for meta-learning methods trained on two different
datasets in 2(c)(d). Here we see that on tiered-M, the BaseGen and NovelGen of PN both increase
fairly consistently; thus picking the algorithm snapshot with the highest BaseGen performance
(roughly the end-of-training snapshot) would also give close-to-best NovelGen. However, on cifar-M,
after the learning rate drop at epoch 20, SVM’s BaseGen keeps improving while NovelGen starts
deteriorating. In this case, selecting snapshots according to the best BaseGen would pick a much
worse snapshot than picking according to the best ValGen. (For concrete numbers of how much
snapshot selection through BaseGen vs. ValGen could impact the chosen snapshot’s NovelGen
performance in each of these two cases, see Appendix F.3.) This ambiguity of whether ID or OOD
Validation snapshot selection is better has also been documented in domain generalization, where
Gulrajani and Lopez-Paz [18] find ID model selection can perform better in some settings while
Koh et al. [23] find OOD validation model selection is better in others. Despite this ambiguity, we
believe the commonly neglected in-distribution (BaseGen) snapshot selection approach should
be considered by users of OOD FSL benchmarks as a viable alternative to the default ValGen
selection approach in proper settings.

5.2 Inconsistencies in Meta-learning Method Performance Comparisons

After discussing concerns regarding OOD model selection for a given meta-learning method, we now
analyze the reliability and consistency of conclusions drawn from comparing different meta-learning
methods’ OOD performance on these benchmarks. In particular, we focus on two cases:

Inconsistency example 1: Limited number of novel classes in a single benchmark. Since in
OOD FSL we specifically care about the learned algorithms’ ability to quickly learn many unseen
concepts, we should not be satisfied with an algorithm performing well only on tasks constructed
from a small number of pre-selected novel classes. However, for many widely-used FSL benchmarks

§ρ ∈ [−1, 1], ρ ≈ 0 means no correlation, while ρ = 1/ρ = −1 means exactly same/opposite rankings.
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Figure 3: In (a), we show the CDF plot of Aϕ1(CN ) − Aϕ2(CN ) over 100 randomly chosen sets of CN with
20 (out of total |CL|=120) novel classes each. In (b), for different values of true performance difference ϵ and
values of underlying class size |CL|, training class size (|CB |), and evaluation class size (|CN |); we show the
percentage of conclusion flips (CF) and improvement exaggerations (IE) with δ = 0.5% computed over 100
evaluations. In (c), we demonstrate the inconsistencies in performance rankings for PN, SVM, RR, and FOMAML
on two OOD benchmarks: Zappos-OOD and mini-OOD.

(miniImageNet, CIFAR-FS, FC-100), only 20 novel classes are used for meta-testing. Ideally, even if
we don’t measure it, we would hope that our learned algorithm would also generalize to tasks made
by other sets of classes different from the fixed small set of novel classes.

Formal setup. We suppose the existence of a much larger collection of classes CL, where the
novel classes CN used for meta-testing is a small random subset with each element class sampled
uniformly and non-repeatedly from CL and fixed thereafter for NovelGen evaluation. Ideally, our
goal is to evaluate an algorithm snapshot ϕ on the task distribution PCL

(denote this performance
by Aϕ(CL)), yet during evaluation we only have access to the novel classes in CN and thus we can
only compute the performance Aϕ(CN ). It is easy to see that when we randomize over different
choices of CN , the expected performance over the sampled novel classes would match the true
performance: ECN

[Aϕ(CN )] = Aϕ(CL). However, when using a single randomly sampled novel set,
the estimator Aϕ(CN ) can have high variance (see Appendix F.6). Instead of relying on Aϕ(CN ) to
directly estimate Aϕ(CL), we ask a more relaxed question: for a pair of algorithms Aϕ1

and Aϕ2

(given by two meta-learning methods), if the true performance Aϕ1
(CL)−Aϕ2

(CL) = ϵ > 0, how
frequently will we observe an opposite conclusion i.e., P(Aϕ1

(CN ) < Aϕ2
(CN )) over a randomly

sampled CN (we call this event conclusion flip)? Additionally, it is also possible that the observed
performance difference on CN is greater than the true difference ϵ by some amount δ > 0. In this
case, the NovelGen observation would make the algorithm snapshot ϕ1 look better than ϕ2 more than
it actually is on CL. Thus we also ask what is the probability of P(Aϕ1(CN ) − Aϕ2(CN ) > ϵ + δ)
and we call such events improvement exaggerations. To answer both these questions empirically,
we first suggest some larger class sets CL for mini and tiered. For both we select unused classes
from ImageNet disjoint from the base and validation classes. For tiered, we use all the remaining
1000− 351 (base) −97 (novel) = 552 classes as CL while for mini, we randomly choose 120 or 552
(to match |CL| in tiered) unused classes. We fix these CL choices in the following analysis.

Checking the frequency of conclusion flips and exaggerations. Figure 3(a) shows the empirical
CDF of the performance differences Aϕ1(CN ) − Aϕ2(CN ) computed over 100 randomly sampled
size-20 novel class sets CN for a fixed pair of PN and RR algorithm snapshots whose true performance
difference over the larger 120 classes CL is ϵ = 0.5%. In 15% of the cases the performance order
is flipped from the true order, while in 25% of them improvements are exaggerated by more than
0.5% (total difference greater than 1%). Moreover, for some of the performance order flips, the
observed performance difference can be quite negative < −0.5% thus significantly opposite to the
true performance order. (Here for each run we evaluate both methods on 20,000 tasks sampled from
PCN

in order to significantly reduce the randomness in estimating the true Aϕ1
(CN ), Aϕ2

(CN ).)

Comparison to supervised learning. We check for the conclusion flip and improvement exaggeration
frequency when only a random subset of the full test set (100 randomly drawn test images from
each base class in mini-M) is used to compare two supervised learning image classification models
with the same full test set performance difference of ϵ = 0.5 (row (IC) in Table 3(b)). Here we
see that compared to supervised learning, the chances of getting an incorrect performance
comparison (row (i) in Table 3(b)) is much higher for the meta-learning OOD FSL benchmarks
when evaluating only on 20 randomly chosen novel classes (as done in several FSL benchmarks).

Larger |CL| makes it even less reliable but larger ϵ helps. If we were to care about an even larger
set of underlying classes (|CL| = 552) despite still using only 20 random novel classes for evaluation
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comparison, the conclusions are even less reliable (Table 3(b) (i) vs (ii)). On the other hand, we do
see that the performance comparison becomes comparatively more consistent if the true performance
difference ϵ is higher (1% in (iii) compared to 0.5% in (ii)), despite that there still exists a statistically
significant chance (10%) of getting an opposite conclusion.

OOD evaluations in current FSL benchmarks. In practice, because 1) we never specify exactly
what and how big the underlying set of classes that we care about is, and 2) some of the recent
meta-learning methods (SVM vs PN on cifar in Table 2 of [25], R2-D2 vs GNN on mini in Table 1 of
[4], FIX-ML [38]) sometimes only improve over the prior works by < 1%, we believe researchers
should be aware of the possibility of getting a performance conclusion that is inconsistent over a
single randomly chosen and fixed set of 20 novel classes used by some of these benchmarks.

Actionable suggestions. Since the size of the unknown underlying larger class set CL and the true
performance difference ϵ might not be something one can directly control when designing the OOD
benchmark, we now discuss two actionable choices that can reduce the chances of conclusion flips:

i) Use more novel classes in the evaluation: By comparing (iv) vs (v) and (vi) vs (vii) in Table 3,
we see that the frequency of conclusion flips and improvement exaggerations are much lower
when 160 novel classes are used as opposed to 20 when |CL| is the same.

ii) Train on more base classes: The tiered dataset has more base classes (351 compared to 64 for
mini) to train on. When comparing PN and RR snapshots trained on a modified version of tiered
with fewer (randomly sampled 64 out of 351 to match mini) base classes, we see that the CF
frequency is twice as high compared to when 351 base classes are used (Table 3(b)(iv) vs (vi)).

Based on these two trends, for more reliable comparisons of meta-learning methods’ OOD perfor-
mance we suggest using datasets like tieredImageNet and MetaDataset (both with much larger set of
base and novel classes) in addition to the smaller benchmarks like miniImageNet, CIFAR-FS, and
FC-100, which some recent works [e.g., 30, 4] still solely rely upon.

Inconsistency example 2: Inconsistency across multiple OOD FSL benchmarks. Unlike the ID
scenario where the training and test task distribution are the same, the similarity between training
and test distributions in the OOD FSL benchmarks can vary significantly. Ideally, we want a meta-
learning method to be consistently better on multiple OOD benchmarks with different type/degree of
distribution shifts. Since Ren et al. [35] originally use the Zappos dataset for OOD evaluation, we
also perform a similar evaluation on new attribute pairs based on their setup. At test time, we use an
attribute set A′ disjoint from the one used in the Zappos-ID setup A, and sample attribute pairs from
A′ only. This induces a test task distribution PA′ different from the training task distribution PA.
We evaluate different meta-learning methods on these Zappos-OOD tasks to see if the performance
order is consistent with other OOD FSL benchmarks (Table 3(c)). Here we see that despite SVM
outperforming RR and PN on mini NovelGen, the performance order of these three methods are
completely flipped on Zappos-OOD. Similar observations can be made from TADAM underper-
forming PN in Table 2 of [35] despite TADAM being shown to outperform PN on the other more
commonly-used FSL benchmarks. This inconsistency over different types of OOD FSL benchmarks
is in stark contrast to the consistency of performance rankings over the 6 different ID benchmarks
(FEMNIST, Zappos-ID, and the BaseGen results of the 4 current FSL benchmarks (Section 4)).
Based on these findings, we caution meta-learning researchers to be aware of such conclusion
inconsistencies over different OOD FSL scenarios and reason carefully about the generality of
their empirical findings when using only specific types of OOD datasets.

6 Conclusion
In this paper, we categorize meta few-shot learning evaluation into two settings: in-distribution
(ID) and out-of-distribution (OOD). After explaining why common FSL benchmarks reflect OOD
evaluation, we identify realistic needs for ID FSL evaluation and provide new benchmarks as well as
suggestions on how to modify existing OOD FSL benchmarks to allow for ID evaluation. Through
experiments performed on these ID benchmarks, we demonstrate a surprising phenomenon that
many meta-learning methods/training techniques improve OOD performance while sacrificing ID
performance. Beyond this, through quantitative analyses, we show that even in the OOD scenario,
current FSL benchmarks may present subtle challenges with both model selection for a given meta-
learning method and reliable performance comparisons of different methods. For these concerns, we
provide initial suggestions and alternatives with the hope of alleviating these issues. Overall, we aim to
raise awareness about the dichotomy of FSL evaluation and to motivate the meta-learning community
to collectively reason about ways to improve both ID and OOD methodology and evaluation.
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download the data.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We document these in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
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[Yes] We use public datasets and cite the creators.
(b) Did you mention the license of the assets? [N/A]
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using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable
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5. If you used crowdsourcing or conducted research with human subjects...
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Board (IRB) approvals, if applicable? [N/A]
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