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A Theoretical insights of HCL1

A.1 Proof of Proposition 12

Proposition 1 The historical contrastive instance discrimination (HCID) can be modelled as a3

maximum likelihood problem optimized via Expectation Maximization.4

Proof:5

Maximum likelihood (ML) is a concept to describe the theoretic insights of clustering algorithms.6

For unsupervised model adaptation task, the objective of HCID is to adapt the source-trained encoder7

weights θE to maximize the log-likelihood function of the unlabeled target data Xtgt:8

θ∗E = arg max
θE

∑
xq∈Xtgt

log p(xq; θE). (1)

We assume that the unlabeled samples Xtgt are related to latent variable {kn}Nn=1 which denotes the9

keys of the data and N is the number of keys. In this way, we can re-write Eq. 1 as the following:10

θ∗E = arg max
θE

∑
xq∈Xtgt

log
N∑
n=1

p(xq, kn; θE) (2)

As it is not easy to optimize Eq.14 directly, we employ a surrogate function to lower-bound the11

log-likelihood function:12 ∑
xq∈Xtgt

log

N∑
n=1

p(xq, kn; θE) =
∑

xq∈Xtgt

log

N∑
n=1

Z(kn)
p(xq, kn; θE)

Z(kc)

≥
∑

xq∈Xtgt

N∑
n=1

Z(kn) log
p(xq, kn; θE)

Z(kn)
,

(3)

where Z(kn) denotes some distribution over k’s (
∑N
n=1Z(kn) = 1), and the last step of derivation13

employs Jensen’s inequality [6, 7, 4]. This equality holds if
p(xt,kc;θfq )

D(kc)
= Constant, based on which14

we can get:15

Z(kn) =
p(xq, kn; θE)∑N
n=1 p(xq, kn; θE)

=
p(xq, kn; θE)

p(xq; θE)
= p(kn;xq, θE) (4)
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By ignoring the constant−
∑
xq∈Xtgt

∑N
n=1Z(kn) logZ(kn) in Eq.3, we are supposed to maximize:16

∑
xq∈Xtgt

N∑
n=1

Z(kn) log p(xq, kn; θE) (5)

Expectation step focuses on estimating the posterior probability p(kn;xq, θE). We first gener-17

ate keys by a historical encoder: kt−mn = Et−m(xt), and xt ∈ Xtgt. Then, We calculate18

p(kn;xq, θE) = p(kt−mn ;xq, θE) = 1(xq, k
t−m
n ), where 1(xq, k

t−m
n ) = 1 if both belong to the19

positive pair; otherwise, 1(xq, k
t−m
n ) = 0.20

Please note the notation “t−m” shows that the k is encoded by a historical encoder.21

Maximization step focuses on maximizing the lower-bound in Eq.5. With the result from Expectation22

step, we get:23

∑
xq∈Xt

N∑
n=1

Z(kn) log p(xq, kn; θE) =
∑
xq∈Xt

N∑
n=1

p(kn;xq, θE) log p(xq, kn; θE)

=
∑
xq∈Xt

N∑
n=1

p(kt−mn ;xq, θE) log p(xq, k
t−m
n ; θE)

=
∑
xq∈Xt

N∑
n=1

1(xq, k
t−m
n ) log p(xq, k

t−m
n ; θE)

(6)

By assuming a uniform prior over categorical keys, we have:24

p(xq, k
t−m
n ; θE) = p(xq; k

t−m
n , θE)p(kt−mn ; θE) =

1

N
· p(xq; kt−mn , θE), (7)

where we let the prior probability p(kt−mn ; θE) for each kn as 1/N as all samples are evenly sampled25

as keys.26

By assuming that the feature distribution around each key kt−mn is an isotropic Gaussian [2], we have:27

p(xq; k
t−m
n , θE) = exp

(
−(q − kt−m+ )2

2σ2
+

)/ N∑
n=1

exp

(
−(q − kt−mn )2

2σ2
n

)
, (8)

where q = E(xq), and we define kt−m+ as the positive key that is encoded by a historical encoder. By28

applying `2-normalization on q and k, we have (q − k)2 = 2− 2q · k. Combining this equation with29

Eqs.14, 3, 5, 6, 7, 8, we re-write the likelihood maximization as:30

θ∗E = arg min
θE

∑
xq∈Xtgt

− log
exp(q · kt−m+ /τ+)∑N
n=1 exp(q · kt−mn /τn)

, (9)

where τ ∝ σ2 stands for the density of the feature distribution around a key (e.g., kt−mn ).31

In practice, we achieve Eq. 9 by minimizing a historical contrastive instance discrimination loss:32

LHisNCE =
∑

xq∈Xtgt

− log
exp(qt·kt−m+ /τ)rt−m+∑N
i=0 exp(qt·kt−mi /τ)rt−mi

(10)

Please note that Eq. 10 is an instance of Eq. 9. The two equations look different due to: 1) Eq. 1033

adds the notation t on q to show that the q is encoded by current encoder E (i.e., θE). 2) Eq. 10 adds34

reliability r to re-weight the loss for better implementation.35

A.2 Proof of Proposition 236

Proposition 2 The HCID is convergent under certain conditions.37
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Proof:38

We suppose39

Q(θE) =
∑

xq∈Xtgt

log p(xq; θE) =
∑

xq∈Xtgt

log

N∑
n=1

p(xq, kn; θE)

=
∑

xq∈Xtgt

log

N∑
n=1

Z(kn)
p(xq, kn; θE)

Z(kn)

≥
∑

xq∈Xtgt

N∑
n=1

Z(kn) log
p(xq, kn; θE)

Z(kn)
.

(11)

We have illustrated in Section A.1 that the inequality in Eq.11 holds with equality if Z(kn) =40

p(kn;xq, θE).41

In the i-th Expectation-step, we have Zi(kn) = Zi(kt−mn ) = p(kt−mn ;xq, θ
i
E). As a result, we can42

have:43

Q(θiE) =
∑

xq∈Xtgt

N∑
n=1

Zi(kt−mn ) log
p(xq, k

t−m
n ; θiE)

Zi(kt−mn )
. (12)

In the i-th Maximization-step,Zi(kt−mn ) = p(kt−mn ;xq, θ
i
E) is fixed, and the weights θE is optimized44

to maximize Equation 12. In this way, we can always have:45

Q(θi+1
E ) ≥

∑
xq∈Xtgt

N∑
n=1

Zi(kt−mn ) log
p(xq, k

t−m
n ; θi+1

E )

Zi(kt−mn )

≥
∑

xq∈Xtgt

N∑
n=1

Zi(kt−mn ) log
p(xq, k

t−m
n ; θiE)

Zi(kt−mn )

= Q(θiE).

(13)

Eq. 13 shows that Q(θiE) monotonously increase along with Expectation-Maximization iterations.46

As the log-likelihood is upper-bounded, i.e., Q(θiE) ≤ 0, the proposed historical contrastive instance47

discrimination will converge.48

One possible way to achieve Eq. 13 is to conduct gradient descent by minimizing the historical49

contrastive instance discrimination loss in Eq. 10. Under a proper learning rate, this loss is guaranteed50

to decrease monotonically. In practical scenarios, model training is conventionally implemented51

via mini-batch gradient descent instead of gradient descent. This training strategy cannot strictly52

guarantee the monotonic decrease of the loss, but is supposed to converge to a lower one certainly.53

A.3 Proof of Proposition 354

Proposition 3 The historical contrastive category discrimination (HCCD) can be modelled as a55

classification maximum likelihood problem optimized via Classification Expectation Maximization.56

Proof:57

Classification Maximum likelihood (CML) has been utilized to describe the theoretic insights of semi-58

supervised learning algorithms [1], and can be optimized via Classification Expectation Maximization59

(CEM). Different from the classical expectation maximization (mentioned in Section A.1) that consists60

of “expectation” and maximization steps, CEM involves an extra “classification” step (between them)61

that classifies a sample into a category with the maximum posterior probability [1, 9].62
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In [1], CML is formulated for the learning setup that includes both labeled and unlabeled data, which63

is defined as:64

θ∗G = arg max
θG

∑
xs∈Xsrc

K∑
k=1

ŷ(k)s log p(k;xs, θG) +
∑

xt∈Xtgt

K∑
k=1

ŷ
(k)
t log p(k;xt, θG). (14)

For unsupervised model adaptation task, the objective of HCCD is to adapt the source-trained model65

weights θG to maximize the classification likelihood function of the unlabeled target data Xtgt. By66

removing the first term of the right-hand side (RHS) in Eq. 14, we get:67

θ∗G = arg max
θG

∑
xt∈Xtgt

K∑
k=1

ŷ
(k)
t log p(k;xt, θG). (15)

Next, we can re-write HCCD as the weighted classification maximum likelihood:68

arg min
θG

LHisST = arg min
θG

−
∑

xt∈Xtgt

hcon × ŷ log pxt

= arg max
θG

∑
x∈Xtgt

hcon

K∑
k=1

ŷ
(k)
t log p(k;xt, θG),

(16)

It can be observed that Eq. 16 is the same as Eq. 15 except involving an extra weighting element69

hcon = 1− Sigmoid(||pt − pt−m||1)).70

In the following, we show the optimization of Eq. 16 is a CEM process.71

Expectation-step: We estimate p(k;xt, θG) for all xt ∈ Xtgt.72

Classification-step: We get ŷ and hcon for all xt ∈ Xtgt, as follows:73

ŷ∗ = arg max
ŷ

K∑
k=1

ŷ(k) log p(k;xt, θ
t
G), s.t. ŷ ∈ ∆K , (17)

hcon = 1− Sigmoid(

K∑
k=1

p(k;xt, θ
t
G)− p(k;xt, θ

t−m
G ))), (18)

Maximization-step: With calculated ŷ and hcon, we optimize θG as follows:74

arg min
θG

−
∑

xt∈Xtgt

hcon × ŷ log pxt . (19)

A.4 Proof of Proposition 475

Proposition 4 The HCCD is convergent under certain conditions.76

Proof: We can re-arrange the three steps mentioned in previous subsection into two steps: 1)77

Expectation-classification step, and 2) Maximization step. Eq. 17 in the Expectation-classification78

step is a concave problem which has a globally optimal solution. The Maximization step is supervised79

learning, which is normally convergent [8, 5, 3]. Thus, the overall training process of HCCD is80

convergent.81
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