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Abstract

Spatial verification is a crucial technique for particular object retrieval. It utilizes
spatial information for the accurate detection of true positive images. However,
existing query expansion and diffusion methods cannot efficiently propagate the
spatial information in an ordinary graph with scalar edge weights, resulting in
low recall or precision. To tackle these problems, we propose a novel hypergraph-
based framework that efficiently propagates spatial information in query time and
retrieves an object in the database accurately. Additionally, we propose using the
image graph’s structure information through community selection technique, to
measure the accuracy of the initial search result and to provide correct starting
points for hypergraph propagation without heavy spatial verification computations.
Experiment results on ROxford and RParis show that our method significantly
outperforms the existing query expansion and diffusion methods.

1 Introduction

Image search is a fundamental problem in computer vision with numerous applications such as
content-based image browsing [36, 19, 1], visual localization [2, 30], and 3D reconstruction [15, 31].
To retrieve the database images that contain the same object of a query, a search engine represents
images using global or local features [5, 21, 33, 26, 3] that describe their similarities, and then
performs a nearest neighbor search for the query image.

An object is depicted in various conditions in the real world [25]. Global features of images depicting
the same object form a manifold in the feature space [39]. Euclidean-distance-based nearest neighbor
search [20, 4] does not work well on this manifold. To improve the retrieval performance, query
expansion [9, 13, 27, 3, 14] issues a new query by aggregating useful information of nearest neighbors
of the prior query. Unfortunately, this approach only explores the neighborhood of very similar images,
resulting in a low recall [16]. Diffusion [16, 39] explores more images on a neighborhood graph of
the dataset. It, however, adopts false positive items in practice, leading to a low precision [25].

Spatial verification [23] uses spatial information to detect the true positive images. However, due
to its heavy computational overhead, it is impractical to apply spatial verification to all the images
during diffusion. This paper aims to pre-compute the spatial matching information of database images
offline and quickly propagate them for a given query online. To achieve this goal, we propose a
hypergraph propagation model. Our model efficiently builds a hypergraph for a given query and
propagates the spatial relationship with the query through hyperedges in a sequence of images.

When the query image is not in the database, diffusion represents it using its top-ranked images in the
initial search [16, 37]. However, not all the top-ranked images contain the object of the query [16, 25].
Some works [25, 6] show that applying spatial verification before diffusion improves the retrieval
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performance, but it requires heavy computational overheads [25, 9]. The second contribution of this
paper is the proposal of an initial search technique, community selection, which reduces the overhead
of spatial verification while maintaining high accuracy.

Experimental result shows that our hypergraph propagation significantly outperforms the existing
query expansion and diffusion methods. On the hard protocol of the ROxford dataset, our hypergraph-
propagation-based approach achieves the impressive mAPs of 73.0 and 60.5 with and without R1M
distractors, respectively.

In conclusion, our contributions are: 1) we propose a novel hypergraph model to efficiently propagate
the spatial information in a sequence of images to improve the search performance; 2) we propose
community selection to predict the accuracy of the initial search and to provide correct starting points
for hypergraph diffusion; 3) we achieve state-of-the-art performance on the ROxford dataset with and
without R1M distractors.

2 Background

2.1 Query expansion and diffusion: relation based search

Query expansion (QE) [9] aggregates the top-ranked initial candidates into an expanded query, which
is then used to search more images in the database. The critical factor here is how to aggregate only
helpful information and cull out unrelated information.

Average query expansion (AQE) [9] mean-aggregates the top k retrieved images as the expanded
query. Average query expansion with decay (AQEwD) [13] gives the top k images the monotonically
decaying weights over their rank. Alpha query expansion (αQE) [27] uses the power-normalized
similarity between the query and the top-ranked images as the aggregation weights. Discriminative
query expansion (DQE) [3] also uses the weighted average, where the weight is the dual-form
solution of an SVM, which classifies the positive (top-ranked) and negative (low-ranked) images of a
query. Learnable attention-based query expansion (LAttQE) [14] uses self-attention [34] to share
information between the query and the top-ranked items to compute better aggregation weights.

Unfortunately, these QE methods only explore the neighborhood of very similar images of the query.
The recursive methods [9] improve the results by recursively generating new queries from all spatially
verified results returned so far. However, this is at the cost of increased query time.

Diffusion [39, 16] ameliorates the problem mentioned above by propagating similarities through a
pairwise affinity matrix. The works of Chang et al. [6] and Liu et al. [17] are two novel variants of
this line. The critical issue in diffusion is how to calculate the affinity matrix. Some works [24, 16]
use the reciprocal neighborhood relations to refine the search results, and other [23, 6] use the inliers
number of SP to re-weight the similarity. However, all of these methods compress the relations
between two images as a single scala. As a result, these prior methods lost the spatial matching detail.
Although the propagation methods are elegant, they have difficulties recovering good relations to
guide the diffusion direction.

We propose a novel and straightforward hypergraph model to utilize the relations among database
images better. It connects the corresponding local features among images using hyperedges; in a
sequence of similar images, it detects the image from which the following images are no longer
relevant to the query.

2.2 Local descriptors and spatial verification

Local descriptors are the representations of an image’s important patches. Some popular local
descriptors are RootSIFT [3], deep local feature (DELF) [21] and deep local and global feature
(DELG) [5].

Local descriptors’ location information is usually used in the spatial verification (SP) [22] stage.
A standard SP pipeline is first using a KD-tree [22] to find the nearest neighbors between local
descriptors in two images. Then it uses the RANSAC algorithm [12] to estimate the homography
matrix [32] and the number of inlier correspondences between two images. Existing image search
engines commonly apply SP on the shortlist, say the top 100 images ranked by a global descriptor.
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Figure 1: a) shows a part of an ordinary graph with scalar-weighted, i.e., similarity, edges. Orange
frames are the common visible regions among images x1, x2, x3, and x4. Purple frames are the
common visible regions between images x2 and x5. x3 and x5 are close neighbors to image x2. While
x3 is related to x1 by sharing the orange frame, x5 is not. Utilizing scalar-weighted edges cannot
propagate the query in the ordinary graph without this ambiguity issue. b) shows the corresponding
hypergraph of a). Inter-image hyperedges e1s are shown in yellow, intra-image hyperedges e2k are in
blue, and local features yn are in green. A hypergraph path connects local features from y1 to y9 in
x1 and x3, but no path connects local features in x1 and x5. A large version of this figure is in the
appendix.

SP is known to be crucial for verifying true positive images [25]. Performing SP before diffusion
improves the final retrieval performance [25, 6]. However, it is also the slowest process [3, 23] in
image search. In this paper, we propose community selection to reduce the computing overhead of SP.
Community selection frames the diffusion initialization task as selecting a community for the given
query rather than verifying the top-ranked images one by one. Experiment shows that community
selection reduces much SP overhead without hurting the accuracy.

3 Overview

We first discuss issues of query expansions and diffusion process of ordinary graphs in Sec.3.1 and
our novel hypergraph based propagation (Sec. 3.2) and initialization scheme utilizing the concept of
community (Sec. 3.3) for achieving accurate diffusion process.

3.1 Propagating in ordinary graph

We can use a graph G = (X,F) to represent the database images. X := {x1, ..., xm} is the node set,
where item xi could be either an image or an image region depending on a chosen retrieval method;
F is the set of edges whose scalar weight represents the similarity between two nodes connected
by each edge. Utilizing information in this ordinary graph is an important strategy to improve
retrieval results, and, thus, widely used in various methods, such as query expansion [9, 8, 27, 14] and
diffusion [16, 39]. Both diffusion and query expansion can be represented by the following function:

f∗ = I(f0), (1)

where I represents the post-processing process, fu ∈ R is the ranking score for xu, f0 is the initial
ranking vector with f0

u = 1 if xu is a query and f0
u = 0 otherwise, and f∗ is the ranking vector after

query expansion or diffusion. Diffusion methods diffuse the label of the query node to its neighbors
along the graph edges until reaching a stationary state. The stationary state is found by repeating the
iteration function: ft+1 = αOft + (1−α)f0, where O is the normalized affinity matrix that describes
the weights of graph edges, α is a jumping probability. Query expansion gathers useful information
in the query node’s nearest neighbors to update the ranking list.

Diffusion and query expansion have different advantages and disadvantages. Diffusion can efficiently
propagate information to the whole graph through a compact formulation. However, the propagation is
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conducted through the affinity matrix O [39, 16], whose scalar value cannot represent accurate spatial
information, resulting in low precision. Take Figure 1 as an example, where images of x1 and x5 are
incorrectly connected through image x2 in the ordinary graph with scalar edge weights; note that they
do not share common regions. This leads to false positives in the diffusion process. We denote this as
the ambiguity problem of propagation. In contrast, query expansion uses sophisticated approaches,
such as transformer [14] and spatial verification [9, 3], to guarantee that only shared information
between query and its nearest neighbors are used to update the ranking list. This approach, however,
only explores the neighborhood of very similar images due to the computational overhead [25, 3, 9],
resulting in a low recall.

This paper proposes novel hypergraph propagation and community selection, settling the ambiguity
problem separately in the propagation and initialization stages. We describe these two techniques
next.

3.2 Extension to hypergraph

One meaningful direction to overcome the drawbacks of diffusion and query expansion is to handle the
ambiguity problem of graph propagation by explicitly resolving the propagation in a more informative
space. The local features contain informative spatial information that can help to distinguish the
ambiguity through geometric verification [22]. However, considering the large scale of the image
database, it is impractical to do the geometric verification on all the pairs. In practice, image search
engines usually build the kNN graph instead of the complete graph, which means every image only
connects with its top k similar images [16]. To utilize the spatial information on the kNN graph, we
propose a novel hypergraph propagation model to efficiently propagate spatial information through
hyperedges, connecting an arbitrary number of nodes. This technique is appropriate for the real-world
situation where the same object in different images has a different number of local features. In the
example of Figure 1, image x1 can connect image x3 by matching the local features with those of
image x2, but will not connect image x5.

When a query is given, we define a hypergraph H = (Y,E) on top of the ordinary image graph, where
its node set Y = {y1, ..., yn} contains all the local features extracted, and the edge set E consists
of hyperedges, which are used to connect the local features related to the query object in different
images. Our model then propagates the label of local features of the query to their neighbors and
uses an aggregation function to find the final ranking list of images, as follows:

l∗ = Ih(l0), f∗ = Agg(l∗), (2)

where l0 and l∗ are the initial and final ranking lists of local features respectively, f∗ is the ranking list
of images, Ih is the propagation function in a hypergraph, and Agg is the aggregation function that
converts ranking scores of local features to ranking scores of images. We will discuss the construction
of hypergraph in Section 4.1 and the propagation process in Section 4.2.

3.3 Handling new queries: community selection

Diffusion methods [11, 38] usually consider the query point to be contained in the dataset. The
standard approach to handle a new query is representing the query using its top-ranked images in the
initial search to start the propagation [16]. However, it is hard to guarantee that these global descriptor-
based nearest neighbors contain the same object as the query. We call it the ambiguity problem of
initialization. Recent studies [25, 6] perform online spatial verification on 100 nearest neighbors
of the query and delete the wrong neighbors to improve the quality of diffusion. Unfortunately,
conducting spatial verification for 100 images in query time is a heavy computational load for a
search engine.

We find that the structure of the image graph [23, 3] contains helpful information to measure the
accuracy of the nearest neighbors. Following the term in graph theory, we call tightly connected
groups communities, which are sets of nodes with many connections inside and few to outside. We
observe that the items containing the same objects have a high probability of composing a community
and having short geodesic distances. Based on this observation, we frame the diffusion initialization
task as selecting a community for the given query instead of using spatial verification to delete the
wrong neighbors. This graph-based approach improves both accuracy and speed. We will give the
detail of community selection in Section 4.3
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4 Methods

4.1 Construction

Assume that we have an image dataset X = {x1, ..., xm}, where xu is an image, and its corresponding
K-nearest neighbor (Knn) graph [39, 10] G = (X,F), where F is the ordinary edge sets. For
hypergraph propagation, we define a hypergraph H = (Y,E), where Y = {y1, ..., yn} is the set of
vertices and yi represents a local feature in an image. E = E1 ∪ E2 is the union of the inter-image
hyperedges set E1 =

{
e11, e12, ...e1s

}
and the intra-image hyperedges set E2 =

{
e21, e22, ...e2k

}
. An

inter-image hyperedge connects local features in two images; we also say it connect two images in
this paper. An intra-image hyperedge connects local features in the same image. These hyperedges
are shown by the orange and blue groups in Figure 1-b). The hypergraph has two incidence matrixes
S1 = (s1ia) and S2 = (s2ia), where sαia is 1 if yi ∈ eαa and 0 otherwise. We build the ordinary Knn
offline and build the hypergraph on top of the Knn graph online. We call the local features in the
hypergraph activated local features. We now describe how to constructe the hypegraph.

In order to solve the ambiguity problem of graph propagation, hypergraph propagation propagates
only among the spatially matched local features of images. This paper uses RANSAC [12], the
most common features matching method in the spatial verification stage of image search [25, 21, 5],
to pre-compute the homography matrix [12] between two images offline. We then use these pre-
computed homography matrixes to verify if two features in two images are matched when building
the hyperedges at query time.

We assume the query image can be represented by local features in Y and will discuss how to handle
a new query in Section 4.3. Because a propagation process of a query is progressive, we expand
hyperedges on-demand. To judge if an image is related to the query in a sequence of similar images,
we only need to see if it has the activated local features. An inter-image hyperedge is then defined as
follows:
Definition 4.1 (Inter-image hyperedge). For two images xu and xv , let Vu ⊂ Y be the activated local
features set of xu, and Iv ⊂ Y be the local features set of xv. The inter-image hyperedge among
features in xu and xv is: e1 = ( In = Vu, OUT = { yj ∈ Iv;∃yi ∈ IN is matched with yj by the
pre-computed homography between xu and xv } ).

If the matching inliers between two images are less than a threshold, they could be directly verified
as irrelevant with each other. As the target of hypergraph is to search the related images for the query,
we do not build the hyperedge for them. We set the threshold as 20 in this paper, which is the standard
threshold in the spatial verification stage of the image search systems [23, 7]. Note that even if an
image has more than 20 matching inliers with another one, its activated local features may not be
matched.

Similar to object detection [28], we use bounding box to describe the object region. In an image,
local features depicting an object locate in the object’s bounding box. As a homography does not
guarantee to find all the matched features between two images, the inter-image hyperedges do not
connect all the features in an object’s bounding box. Unfortunately, the unmatched related features
are also important for propagation. As shown in Figure 1-b), features y1, y2 and y3 are in the same
region and describing the same building, but only y1 and y3 are connected within image x2 using
an inter-image hyperedge to image x1. Without an intra-image hyperedge connecting y1, y2 and y3,
we cannot propagate information from images x1 to x3. To recover the unmatched yet related local
features, we define the intra-image hypergraph as follows:
Definition 4.2 (Intra-image hyperedge). Given a feature set in an image xu, let Vu ⊂ Y be the
activated local features set of xu, and Iu ⊂ Y be the set of all the local features of xu. Let the smallest
rectangle covering all the features in Vu be the bounding box b. The intra-image hyperedge in xu is
defined as e2 = ( IN = Vu, OUT = {yj ∈ Iu; yj exists in b}).

Due to the high computing cost, it is impractical to perform the propagation on a large-scale dataset
consisting of millions of images. Inspired by the idea of truncation [16] in diffusion, we build
inter-image hyperedges only among the hop-N neighbors 1 of a given query image. Specifically,
we build the inter-image hyperedges from image xu to xv only if both of them are in the hop-N
neighbors of the query.

1Node A is in B’s hop-N neighbors if A can be connected with B using not more than N different hyperedges.
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4.2 Propagation

After building the hypergraph, we use a propagation model in the hypergraph to achieve the final
ranking scores of retrieved images. Specifically, we define a propagation matrix P = (pij) and set
the propagation weight between yi ∈ xu and yj ∈ xv as pij = d(xu, xv)maxabc(s

1
ias

1
bas

2
bcs

2
jc),

where d(xu, xv) is the Euclidean distance between the global features of xu and xv, and
maxabc(s

1
ias

1
bas

2
bcs

2
jc) records whether yi and yj are connected in the hypergraph. The propagation

matrix is normalized using the degree matrix D = diag(P1n) as P′ = PD. For aggregation function,
aiu ∈ A is set as 1

bu
if yi ∈ xu, and 0 otherwise, where bu is the number of activated local features in

xu. Then the propagation function in Equation 2 can be written as:

l∗ = Ih(I0) = l0 + l0P′ + l0P′2 + · · ·+ l0P′N , f∗ = Agg(l∗) = l∗A. (3)

Intuitively, this propagation function gives high scores to the images with shorter hypergraph geodesic
distances to the query while considering similarities of global features.

4.3 Community selection for new query

The hypergraph propagation described in Sec. 4 assumes the query is in the database, which may not
be true in a general retrieval scenario. Now we consider how to find the good starting nodes for a new
query.

As discussed in Section 3, we observe that the items containing the same object usually belong to
the same community in G. By checking whether the top S items of the initial search are in the same
community, we can evaluate the quality of the initial search without query time spatial verification.
As shown in Figure 2, the quality of the global-feature-based search of Q1 is better than Q2 because
its top-ranked items are in the same community.

Specifically, after the initial search, we use the top S images and their connected edges in G to build a
subgraph Gs. Gs consists of one or more components, and each component represents a community
in G. We call the top-1 image of initial search the dominant image, its component in Gs the dominant
component, and its community in G the dominant community. We call other components in Gs as the
opposition components. Intuitively if all the top S images in Gs constitute a single component, all of
them may contain the same object with the query image. Otherwise, the uncertainty will increase if
the number and size of the opposition components increase. This observation also agrees with our
experimental results. Inspired by Shannon entropy, we define the uncertainty index, U , of the initial
search as:

U = −
nG∑
i=1

P (Ci) logP (Ci) , (4)

where nG is the number of component in Gs, Ci is a component and P (Ci) is the proportion of Ci

in Gs.

Community selection is the pre-stage of hypergraph propagation. The overall retrieval process with
community selection is to perform the initial search firstly and then calculate the uncertainty of the
initial search result. If the uncertainty index is low, say U is lower than 1, hypergraph propagation
uses images in the dominant community to represent the query image and starts the propagation
process from them. If the uncertainty index is high, the search engine does the spatial verification on
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Figure 2: Two queries on an image graph with three communities. The numbers on the nodes are
their rankings in the initial search. The uncertainty of the initial search result of Q1 is lower than that
of Q2 as most retrieved items of Q1 distribute in the same community.
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the top T images of the initial search to find a new dominant community for the query. In this way,
we significantly reduce the number of spatial verification while keeping very high accuracy.

5 Experiment

5.1 Implementation

We compare hypergraph propagation against the existing QE/diffusion methods: average query
expansion [9], average query expansion with decay [13], α query expansion and diffusion [11]. We
evaluate the performance of hypergraph propagation under the ordinary retrieval pipeline: performing
the initial search, followed by conducting QE/diffusion. The focus of hypergraph propagation is
on improving the QE/diffusion process, so we do not consider more complex approaches such
as repeating QE and diffusion in different stages (e.g., initial search+ QE + spatial verification +
Diffusion [6] and ASMK + spatial verification + Diffusion [25]). Fortunately, our system can be
combined with other methods and produce stronger performance thanks to its generality. We do
not use community selection and always start the hypergraph propagation from the initial dominant
community for all the queries to make the comparison fair.

For hypergraph propagation and all the compared QE/diffusion methods, we use the DELG model [5]
trained on GLDv2 [35] to extract both global and local features. We find the nearest neighbor number
K does not influence the final result a lot, and we report the performance of setting K as 200. After
the propagation, we reorder the initial ranking list using f∗ to get the final results.

For community selection, we set S, the number of images for calculating the uncertainty, as 20. When
testing the performance of combining community selection and hypergraph propagation, we set the
uncertainty threshold as 1, which we find is a good balance of the accuracy and computation overhead.
For the query with an uncertainty index higher than the threshold, we do the spatial verification
for the top 100 items using SIFT features [18]. Once we find an item with more than 20 inliers,
we treat its community as the new dominant community, stop the spatial verification, and apply
hypergraph propagation in the new dominant community. The code of this work is publicly available
on https://sgvr.kaist.ac.kr/~guoyuan/hypergraph_propagation/

We evaluate our methods on two well-known landmark retrieval benchmarks: revisited Oxford (ROxf)
and revisited Paris (RPar) [25]. There are 4993 (6322) database images in the ROxf (RPar) dataset,
and a different query set for each dataset, both with 70 images. We also report the result with the R1M
distractor set, which contains 1M images. The accuracy is measured using mean average precision
(mAP). We conduct the offline process on 6 Intel(R) Core(TM) i9-9900K CPUs @ 3.60GHz and
896GB of RAM and implement the online hypergraph propagation and community selection on one
CPU and 50GB of memory.

5.2 Comparison to the state-of-the-art

Table 1 compares the accuracy of hypergraph propagation and other QE/diffusion methods. Our
method obtains the best result on ROxford and RParis, both with and without the R1M distractor set.
Compared to RParis, ROxford is more challenging as it contains more difficult retrieval cases such
as the change of viewpoint [25]. The performance improvement of our method on ROxford hard
cases is impressive; we get the mAP 70.3 and 60 with and without 1M distractors, outperforming
the traditional diffusion method 18.5% and 55%, respectively. To the best of our knowledge, these
are the state-of-the-art mAP even compared with other techniques methods integrating additional
steps [25, 6] with more computation and memory requirements.

Ordinary diffusion is better than QE methods on all the datasets except ROxford with R1M distractors.
We think that the texture and shape of medieval buildings in ROxford are common and tend to
appear in other buildings around the world. When retrieving these objects with R1M distractors, its
ambiguity problem explores more false positive items, leading to a low mAP than QE methods. Our
hypergraph propagation keeps the spatial information during propagation, thus avoiding the false
positive issue of ordinary diffusion, resulting in high accuracy.
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Table 1: Results (% mAP) on the ROxf/RPar datasets and their large-scale versions
ROxf+1M/RPar+1M, with both Medium and Hard evaluation protocols.

ROxf ROxf+R1M RPar RPar+R1M
Method M H M H M H M H

DELG (Global) [5] 76.3 55.6 63.7 37.5 86.6 72.4 70.6 46.9
DELG (Global + Local) [5] 81.2 64.0 69.1 47.5 87.2 72.8 71.5 48.7

Average QE [9] 77.2 57.1 68.5 43.0 87.6 74.3 75.4 54.8
Average QE with decay [13] 78.4 58.0 70.4 44.7 88.2 75.3 76.2 56.0

α QE [27] 65.2 43.2 57.0 30.2 91.0 81.2 81.0 64.1
Diffusion [16] 81.0 59.3 63.9 38.7 91.4 82.7 80.0 64.9

Hypergrah Propagation (Ours) 85.7 70.3 78.0 60.0 92.6 83.3 86.6 72.7

5.3 Effectivness of community selection

Figure 3 shows the mAP of the initial search results in ROxford with different uncertainty thresholds.
As the uncertainty increases, the mAP of the initial search result decreases. The uncertainty index
predicts the quality of the initial search without any user feedback. Only for the high uncertainty
retrieval results, we use the computationally heavy approach, i.e., spatial verification, to improve the
precision of nearest neighbors before the hypergraph propagation.

Table 2 compares the performances between with and without community selection (CS) as the
pre-stage when using spatial verification (SP) to initialize the hypergraph propagation (HP). With CS,
the search engine improves the performance of hypergraph propagation in ROxford very efficiently
by only conducting SP on 4 and 7 queries with and without R1M distractors, respectively. The
performance improvement with R1M distractors is less than that without them. We think its reason is
that the correct items with the R1M distractors are ranked outside the top 100 images and thus are not
detected by SP. Although CS does not improve the retrieval results of these cases, it successfully tags
them as uncertain cases. We think this result leads to a promising future direction. Because once a
search engine can automatically detect the failed query cases, it is possible to refine the representation
ability by relabeling and training only for the failed cases instead of training on a large dataset.

Thanks to the improved representation ability of DELG [5] features, the nearest neighbors of all
queries in RParis dataset have high precision. The average precisions of the top 20 items of the initial
result of all the queries in RParis are 0.97 and 0.90 in medium and hard protocols, respectively. As
the initial dominant communities for all the queries in RParis are correct, online SP is not helpful
for the propagation process. CS avoids these unnecessary SPs in these cases as the uncertainties of
all the queries are low, as shown in Table 2. CS significantly improves the retrieval performance for
some hard cases. Figure 4 shows an impressive example in ROxford, in which the mAP increases
from 0.077 and 0.062 to 0.988 and 0.987 in medium and hard protocols, respectively.

In summary, the main benefits of CS include: 1) CS quickly detects the low-quality retrieval result,
which is either because of the difficult query or the insufficient feature representation ability; 2) CS
avoids the unnecessary computationally heavy spatial verification process; 3) CS provides significant
performance improvement for some hard cases.

6 Discussion

While we have shown benefits of our method, it has limitations and interesting future work. First,
matching using the homography matrix calculated by RANSAC might not be the best option for
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Figure 3: mAP of the query results above the uncertainty threshold. Uncertainty predicts the query
quality well.

8



Table 2: Comparison between with and without community selection (CS) as the pre-stage when
using spatial verification (SP) to initialize the hypergraph propagation (HP). This table shows both
the mAP and the total number of queries which need SP when testing the corresponding dataset.

HP CS + SP + HP SP + HP
mAP mAP total # SP mAP total # SP

ROxf(M/H) 85.7/70.3 88.4/73.0 4 88.4/73.0 70
ROxf+R1M(M/H) 78.0/60.0 79.1/60.5 7 79.1 / 60.5 70

RPar(M/H) 92.6/83.3 92.6/83.3 0 92.6/83.3 70
RPar+R1M(M/H) 86.6/72.7 86.6/72.7 0 86.6/72.7 70

our hypergraph propagation. It does not consider local features’ contextual cues when applying
matching, and it has the offline homography calculation overhead. Recent deep-learning-based
matching techniques such as SuperGlue [29] show performance improvement in many tasks in terms
of both speed and accuracy and can also be helpful for our hypergraph propagation. Second, to
achieve a better result, both hypergraph propagation and community selection can be combined with
existing query expansion, diffusion, and spatial verification methods. For example, it is possible
to adapt region diffusion [10] to the hypergraph model or adapt community selection on ordinary
diffusion methods.

Image search techniques might be related to surveillance techniques. But our work does not study
human-related problems, so we think the negative social impact is minor.

Overall, we believe that our hypergraph propagation method combined with the community selection
technique takes a meaningful step towards designing highly accurate image search techniques.
Especially on the hard protocol of the ROxford dataset, our hypergraph propagation achieved the
impressive mAPs of 73.0 and 60.5 with and without R1M distractors, respectively. To the best of our
knowledge, these are the state-of-the-art results.

Query

The initial search result ( uncertainty: 1.77, Medium mAP: 0.077, Hard mAP: 0.062 ) 

The result after CS and HP ( Medium mAP: 0.988, Hard mAP: 0.987 )

…

…

Figure 4: In this example, the top 11 images and the initial dominant community is unrelated to
the query. Its uncertainty index is 1.77, which means the search engine is very uncertain about the
accuracy of initial dominant community. So CS finds a new dominant community using spatial
verification. After hypergraph propagation in this new dominant community, the retrieval performance
is significantly improved.
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