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Abstract

Dental forensic identification targets to identify persons with dental traces. The
task is vital for the investigation of criminal scenes and mass disasters because
of the resistance of dental structures and the wide-existence of dental imaging.
However, no widely accepted automated solution is available for this labour-costly
task. In this work, we pioneer to study deep learning for dental forensic identifica-
tion based on panoramic radiographs. We construct a comprehensive benchmark
with various dental variations that can adequately reflect the difficulties of the task.
By considering the task’s unique challenges, we propose FoID, a deep learning
method featured by: (i) clinical-inspired attention localization, (ii) domain-specific
augmentations that enable instance discriminative learning, and (iii) transformer-
based self-attention mechanism that dynamically reasons the relative importance
of attentions. We show that FoID can outperform traditional approaches by at
least 22.98% in terms of Rank-1 accuracy, and outperform strong CNN baselines
by at least 10.50% in terms of mean Average Precision (mAP). Moreover, ex-
tensive ablation studies verify the effectiveness of each building blocks of FoID.
Our work can be a first step towards the automated system for forensic identi-
fication among large-scale multi-site databases. Also, the proposed techniques,
e.g., self-attention mechanism, can also be meaningful for other identification
tasks, e.g., pedestrian re-identification. Related data and codes can be found at
https://github.com/liangyuandg/FoID.

1 Introduction

Forensic identification targets to identify living or deceased persons by analyzing their trace evidences.
The identification with dental data is particularly vital for the investigation of criminal scenes,
accidents and mass disasters for at least two reasons [30, 27]: (i) dental patterns can be highly
identifying while their traces are widely archived than other methodologies e.g., DNA profiling
[4, 45, 59]. For instance, around 1.4 billion dental X-rays were performed in 2019 in the U.S.2;
(ii) dental structures are more resistant to damages than other body tissues including bones [7, 46].
In the current practice, forensic dental examinations are mostly done by the visual comparison of
radiographs [46, 45] between a target entity (person) and those from databases. Due to the lack
of widely accepted automated solutions, such examination cannot scale up to large databases, and
its results are vulnerable to oversights and/or mistakes [19, 39]. This work pioneers to study deep
learning for forensic identification with dental panoramic radiographs — one of the most common
dental traces nowadays [59].
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Figure 1: A challenging case of dental identification with two dental radiographs captured from a
same person. The case exists large anatomical variations including tooth reduction (d), the addition
of braces and implants (e1, e2), and the change of teeth alignment (f1, f2). In the forensic practice,
teeth, condyle (a), angle of mandible (b), and maxillary sinus (c) are the key anatomies for dentists.

There have been a few attempts for forensic dental identification, most of which take the approaches
of matching handcrafted feature [1, 78, 9]. According to our best knowledge, only one work utilizes
off-the-shelf convolutional neural networks (CNNs) for learning discriminative representations of
a dental radiograph for identification [39]. However, the work is preliminary since it is based on
a small-scale dataset with both temporal and heterogeneous limitations — it is different from the
applied situation where significant intra-entity variations in dental structures can exist because of
external factors, e.g., interventions, and internal factors, e.g., decaying, over long scanning intervals
[46, 1]. Moreover, no architecture exploration was made for this unique identification task.

We performed a formative study with two board-certified dentists, and outlined the distinct challenges
of forensic dental identification: (C1) the lack of paired dental radiographs for metric learning; (C2)
sparseness of identification information in high-resolution radiographs; and (C3) dental variations
can be heterogeneous but useful as inclusion or exclusion criteria for identifying. To study the task,
we construct a comprehensive benchmark: it involves 583 persons, and comes with a challenging
testing set spanning over 21.0±11.5 months of scanning intervals, covering a wide range of dental
variations including orthodontics, tooth loss, and implanting/filling. Moreover, we propose the
first optimized deep learning Forensic IDentification solution, named FoID. In specific, to take
the advantage of overwhelmingly unpaired radiographs (C1), we develop a set of domain-specific
augmentations (DSA) for effective self-supervised metric learning. To focus on meaningful areas,
FoID incorporates hard attention extraction and alignment guided by semantic segmentation and
anatomical registration (C2). Moreover, FoID introduces a novel transformer-based self-attention
mechanism, as inspired by dentist’s practice, to dynamically reason the optimal aggregation of partial
attentions for representation (C3). Overall, the main contributions of our work are three folds:

• We give the first in-depth study of deep learning for dental forensic identification. The
formative study with dentists outlines the unique challenges and offers insights into solutions.

• We construct a comprehensive dental forensic benchmark, which covers a wide range of
dental variations to reflect the realistic scenario of the task.

• We present the first deep learning solution FoID, which achieves an mAP of 59.62%, and
largely outperforms the existing dental identification models and strong CNN baselines.
Ablation studies show that the proposed DSA enables effective representation learning from
unpaired data, boosting models by up to 12.33% in terms of mAP; Meanwhile, the proposed
transformer-based self-attention outperforms state-of-the-art attention models by at least
4.82% in terms of mAP.

2 Formative Study

Challenge 1: paired scan instances are scarce With the high radiation of dental imaging, over-
whelming cases from dental clinics contain only one scan instance per person. As such, it poses
as a challenge for metric learning without positive instance pairs. To tackle it, we develop a set
of domain-specific augmentations (DSA) by working with dentists to simulate potential dental
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anatomical variations. Different views of one entity are generated on the fly, which enables effective
intra-/inter-reasoning in a self-supervised manner.

Challenge 2: identification information is sparse Forensic dentists mostly focus on several key
anatomies on panoramic imaging for identification, since others are either non-discriminative or
not well approximated on radiographs. As such, models should focus on such regions for image
embedding to avoid over-fitting. Accordingly, as shown in Figure 1, our method such incorporate
domain knowledge by utilizing a hard attention mechanism on teeth, condyle (Figure 1(a)), angle of
mandible (Figure 1(b)), and maxillary sinus (Figure 1(c)). A combination of semantic segmentation
and registration is applied for efficient key-point localization.

Challenge 3: dental variations are heterogeneous but can be useful There can exist both local
and global anatomical changes over two scanning. As demonstrated by a typical case in Figure 1,
two scans of a same entity can see anatomy loss (Figure 1(d)), artifact implanting (Figure 1(e1, e2)),
structural changes (Figure 1(f1, f2)). In the forensic practice, dentists commonly look through all key
anatomies in a scan, determine most discriminative features among them according to experience,
and then apply those as indexes for matching. Our method follows the philosophy by introducing
a transformer-based self-attention module, which dynamically reasons the relative importance of
attentions among a set of them, for the effective representation learning of a radiograph.

3 Related Works

Person identification with deep learning Person identification tasks such as face recognition
[56, 52, 43, 47, 8] and pedestrian re-identification [13, 50, 63, 60] have been widely studied by the
computer vision community. Current solutions either optimize a discriminant distance metric that
takes a pair of instances [69, 79, 61, 3] as input, or learn an identity-sensitive encoder that maps
an input instance to representations [74, 50, 77, 57]. Our method follows the later approach for its
efficiency of inference within large-scale galleries.

Attention mechanism has been widely explored for pedestrian re-identification to enforce models
to focus on key body parts, such that representations are robust against background clutter, occlusion,
and unconstrained human poses in surveillance images. For example, existing works [51, 40, 11,
54, 62, 63, 33, 66, 48, 74] extract part-based features with either soft or hard attentions, guided by
human pose estimations, and align/aggregate them for the final representation. Works [35, 53, 60]
further propose to mine useful partial attentions from the end-to-end training. Our work follows the
approach by introducing an attention mechanism, but differs in two ways. First, the key areas are
partially localized with non-rigid image registration [5], which effectively reduces the cost of manual
annotations. Second, more importantly, we propose a novel self-attention module to dynamically
reason the relative importance of each attention for the final representation by learning from training
cases. Such self-attention is inspired by the practice of experts, where unique features of dental
structures is searched, and used as matching criteria.

Unsupervised person identification has also been recently discussed in pedestrian re-identification
in order to train models with the widely available unlabeled surveillance videos. The current solutions
can be categorized into clustering and fine-tuning [21, 75, 17, 20, 72], negative instance pair mining
[70, 37], and image translation [6, 64, 77, 65]. However, the challenge of forensic dental identification
is different from the above scenario: within a dental image database, each entity (person) has only one
scan instance (scan), and the method should learn representations from such set of instances. As such,
we take the instance discriminative approach [10, 44, 21], and generate different views of the same
entity with the proposed domain-specific augmentations (DSA) for the contrastive intra-reasoning.

Transformer for image retrieval Transformer has been recently applied to computer vision tasks
[15, 71, 73]. Since our task is image retrieval in nature, we briefly review the related transformer
works: Gkelios et al. [22] and El-Nouby et al. [16] directly replace CNNs with pure transformer
models for image embedding; He et al. [25] further incorporates encoding of meta information,
(e.g., camera viewpoints), into the sequence of inputs; Yang et al. [67] utilizes query and gallery
images as transformer’s query and key inputs respectively for modeling spatial attention between
them. Different from the above works, we propose to utilize a transformer for aggregating a set of
model attentions: the self-attention characteristic of transformer enables the dynamic reasoning of

3



...

Deformed Atlas with Landmarks

c

D
ef

or
m

er
Te

et
h

Es
tim

at
or

C
N

N
 Encoder

Stochastic D
om

ain-
Specific Augm

entions

... ... ... ... ...

*
          ID 
Regressor

    Deep Sup.
Regressor

Linear Projection

O
bjective 1:

C
ontrastive Loss

Objective 2:
ID Loss

Atlas with Landmarks

Input Instance

Semantic Teeth Segmentation

Attention Stack Augmented Attention Stacks   

Attention
Embeddings

Instance
Representation

* [class]
Embedding

Objective 3: 
Deep Sup.

Loss

a

b

de

g
i

i

N
on-Linear Projection

Transform
er Encoder

f

h

j

Figure 2: Overall architecture of FoID, the key components of which consist of attention localization
and alignment, domain-specific augmentations, and feature aggregation with self-attention. The
objective function includes three types of losses that are complementary for representation learning.

attentions’ importance for embedding by comparison, and its permutation-invariance [32] can relieve
the attention misalignment caused by the imperfect key-point localization.

4 Methodologies

We present FoID by first describing its building components and then the multi-task learning strategy.
As shown in Figure 2, FoID maps each scan instance into an embedding. Given a query instance, we
calculate the similarities between the query and all the gallery instances in the embedding space and
return the ranked retrieval list.

4.1 Attention Localization & Alignment

Inspired by the dentists’ practice, FoID employs a hard attention mechanism to focus on (i) teeth and
(ii) landmarks of condyle, angle of mandible, and maxillary sinus to avoid over-fit to unrelated regions.
For teeth localization, FoID formulates it as semantic segmentation, and applies a mask-RCNN [23]
pre-trained on the existing panoramic segmentation dataset of UFBA_UESC [29]. Given an input
instance I , a teeth segmentation map TH×W×32 is estimated (Figure 2(a)), where H and W are
instance height and width, and a channel size is 32 for the number of teeth categories of an adult. The
raw mask-RCNN outputs are filtered for the largest connected mask with a minimal size threshold
for each tooth to denoise. For landmark localization, since the landmarks are largely separated and
establish no accurate boundary, FoID employs a registration-based method to efficiently detect them
from an atlas, with one pair of radiograph and its manual annotation with M=6 landmarks manually
created (Figure 2(b)). For each input instance, the atlas is aligned to the instance with Syn registration
[5], with the annotation deformed accordingly for the landmark estimation (Figure 2(c)). Based on
the teeth and landmark localization, the input is cropped to attention patches with a constant spatial
dimension of h×w, and then sequentially piled as the attention stack Sh×w×38 for the representation
representation. In the case of missing anatomies, zero-valued patches are correspondingly padded.
Appendix includes detailed results on teeth segmentation, landmark localization, and the visualization
of the annotated atlas.

4.2 Contrastive Learning with DSA

In order to build useful representations from overwhelming unpaired instances, FoID adapts a self-
supervised approach with the proposed domain-specific augmentations (DSA). In specific, a set
of structure-aware and forensic-realistic augmentations is stochastically applied to an instance to
generate different views, which are in turn used for intra-reasoning. In the practice, given a mini-batch
of stacked attentions from N entities B = {Sn}Nn=1, K times of DSA are repeatedly applied to
B. Denote S(i)

n as the i-th sample from augmented view of Sn: an instance group {S(i)
n , S

(j)
n } is
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taken as positive pair, while {S(i)
n , S

(j)
\n } is taken as a negative pair, where \n can be any index from

{1, 2, ..., N}\{n}. The learning strategy does not relay on any paired instances or identification
annotation, but can be easily extended when such data is available by including different augmented
inputs belonging to the same identification as positive pairs.

To achieve effective representation learning, augmentations that cover the potential anatomical
variations as in clinics is the key. As showcased in Figure 2, the proposed DSA consists fours types of
augmentations inspired by forensic observations, and is independently applied to each attention patch
on the fly. (i) Random tooth reduction that aims to simulate tooth loss caused by injury or inventions
(e.g., Figure 2(e)). (ii) Random artifact addition that adds patches of flexible shapes to crown (Figure
2(e,f)) or tooth regions (Figure 2(g,h)). Such augmentation aims to simulate the common artifacts of
dental filling, implant, and brace. (iii) Random rigid patch transform within a range of angles and
displacements. The augmentation not only enforces view comparison as in the standard instance
discrimination learning [10, 44], but also simulates global teeth arrangement changes (e.g., caused
by orthodontics), since the transform is performed for patches independently. (iv) Random color
disturbance of contrast shifting and gaussian noise within designed ranges for simulating different
scanning setup and machine noises. More details about the implementation of DSA are included in
Appendix.

4.3 Self-Attention for Feature Aggregation

To build the representation of an instance from its attention stack, FoID consists a CNN encoder f
(Figure 2(i)) to embed each attention patch, followed by a transformer-based self-attention module
(Figure 2(j)) for aggregating the attention embeddings. The encoder f targets to extract salient
features for an input patch with the existence of possible anatomical variations, and it can be adapted
from any convolutional encoders. The output attention embeddings from the CNN encoder can be
denoted as Z38×C , where C is the embedding length.

To aggregate the generated multiple embeddings of attentions, we propose to utilize a transformer to
dynamically reason the importance of each attention among the set of them: dental structures that fall
into the general distribution of populations should take less attentions, while the ones that are more
identifying should take more attentions. More importantly, such importance of attentions should
be relative based on the experience of forensic dentists: the more discriminating anatomies in an
instance are more often selected as index for matching. This differs from the existing pedestrian re-
identification works [11, 33, 74], where the attention to a body parts is modeled without conditioning
on its comparison among all body parts. As shown in Figure 2, the sequence of attentions Z38×C =
[zC1 , z

C
2 , ..., z

C
38] is first projected into a constant token dimension C ′ with a linear encoder α, and

then is fed into a two-layer BERT encoders [58, 14] for unidirectional context learning. Note that
no positional information [15] is injected to attention embeddings for two reasons: (i) we assume
that the semantic category of anatomies sets no prior for reasoning the importance, (ii) teeth can be
often mis-classified due to their similarity in patterns (see Appendix for examples), which can in
turn pose as noise when positions are modeled. The feature outputs from the last transformer layer
are further encoded into a reduced dimension C ′′ as a regularization with a non-linear encoder β, and
then concatenated as the final embedding Y = cat(yC

′′

1 , yC
′′

2 , ..., yC
′′

38 ) for the instance. Moreover,
a learnable [class] token zC

′

0 is prepended to the transformer’s input sequence, the embedding of
which at the output yC

′

0 serves as a complementary instance embedding for the purpose of multi-task
learning.

4.4 Objective Function & Training

To learn discriminative representations, we adopt three complementary optimization tasks to train
FoID: a contrastive loss, an identification loss, and a deep supervision loss.

Contrastive loss Given a pair of instance embeddings {Yi, Yj}, the contrastive loss Lcontrast is
defined as: Lcontrast = 1li=lj [mpos−S(Yi, Yj)]++1li 6=lj [S(Yi, Yj)−mneg]+, where [x]+ equals
max(x, 0), and li denotes the instance’s id category of representation {Yi} among the training set;
mpos and mneg are similarity margins for positive and negative pairs; S(., .) is the pre-defined
similarity measure, and cosine distance is used in this work. Online mining is applied to train on
challenging positive (views of one instance) and negative (views of different instances) pairs.
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Table 1: Demographic and dental variation information of the testing set. Scan interval is the average
of largest time interval between any two radiographs of an entity. The numbers of entity presenting
the dental variations and their proportions are shown.

Demographic Dental Variations

Age Gender Scan Interval Orthodontics Filling/Implant Brace Tooth Loss

10∼55 F:23; M:17 21.0±11.5 mo. 25 (62.5%) 10 (25.0%) 16 (40.0%) 18 (45.0%)

Identification loss An identification loss Lid is applied to all samples within a mini-batch for
the prediction of ID category from the transformer’s [class] embedding output. In specific, Lid =

CE(softmax(rid(y
C′

0 )), l), where CE denotes cross entropy loss; yC
′

0 and and l are the sample’s
transformer’s [class] output and id category label, respectively; rid is a regressor that transfer the
embedding dimension from c′ to the total training id count. The identification loss and contrastive
loss are applied on different embeddings and have a diverged objective, which can potentially serve
as a regularization for the transformer.

Deep supervision loss The CNN encoder f is expected to extract salient features that are discrimi-
native for identification from a given attention patch. Since the target diverges from the contrastive
loss and identification loss that directly optimize on the aggregated embeddings, we incorporates a
deep supervision signal for f . In specific, we formulate the deep supervision loss Lsup as a cross
entropy loss: Lsup = CE(softmax(rsup(cat(y

C
1 , y

C
2 , ..., y

C
38))), l) , where rsup is a regressor that

maps the concatenation of a sample’s attention embeddings to a vector, the dimension of which equals
the total count of training instances.

The final objective function for training FoID is the unweighted sum of the three types of loss:
L = Lcontrastive + Lid + Lsup. During the training, the whole model can be optimized from
end-to-end, while the transformer’s non-class embeddings cat(yC

′′

1 , yC
′′

2 , ..., yC
′′

38 ) is taken as the
representation of an instance during the inference.

5 Benchmark Construction

Similar to the setup of existing image retrieval datasets [34, 76, 36], our benchmark consists of a
training set and a testing set. The training set is derived from an existing DNS Panoramic dataset [49],
which contains 543 panoramic radiographs and exist common dental variations of tooth reduction
and artifact addition. Each of the radiographs is scanned from a separate identity, which resembles
the practical situation of dental forensic where there is a lack of paired data for metric learning.
There are 271 images that overlap between this training set and the one used for teeth localization as
aforementioned in Section 4.1. This setup simulates the potential forensic application: a subset of
available data in the imaging repository can possibly be labeled for developing the teeth segmentation
model. Moreover, the testing data of identification is unseen to the training of segmentation model,
and thus would not artificially inflates the performance during the test.

The testing set contains 87 panoramic radiographs scanned with 40 identities, among which 33
identities hold 2 radiographs and 7 identities hold 3 radiographs. For covering comprehensive dental
variations to make it sufficient for reflecting the difficulty of dental forensic, the testing set are selected
from both endodontics and orthodontics departments. The method is distinct from previous dental
forensic studies that either construct testing cases without controlling data variety [18, 1, 26], or
consider only a specific dental variation over a short scanning interval (i.e., single tooth extraction
over 64.0 days [39]). Table 1 describes the profile of the testing set, and Figure 1 shows one typical
case. All the data has been anonymized. To evaluate a model, we apply an one-against-all strategy
for the efficient use of data. In specific, one instance from the testing set is used as the query, while
the union of training set and the rest of testing set is used as the gallery set. The average results
among all testing instances is reported as the final accuracy measurement.

6



Table 2: Comparison to the existing dental forensic identification approaches and strong CNN
baselines. AHI [26] is not designed to rank all gallery instances, and thus mAP cannot be measured.

Methods Backbone mAP Rank-1 Rank-5 Rank-10

AHI [26] - - 0.2759 0.4483 0.5287
HIDPR [42] - 0.3018 0.2759 0.4138 0.4713

classification ResNet-34 0.4912 0.4253 0.6437 0.7356
contrastive ResNet-34 0.4072 0.3218 0.5977 0.6322

triplet ResNet-34 0.4723 0.4253 0.6092 0.6667
reconstruction ResNet-34 0.3537 0.3333 0.4943 0.6092
classification Inception-ResNet 0.3638 0.2644 0.5287 0.5862
contrastive Inception-ResNet 0.3854 0.3448 0.4943 0.6092

triplet Inception-ResNet 0.3609 0.2989 0.5172 0.6437
reconstruction Inception-ResNet 0.2912 0.2299 0.5172 0.5862

FoID (ours) ResNet-34 0.5465 0.4817 0.6897 0.7471
FoID (ours) Inception-ResNet 0.5962 0.5057 0.7586 0.7816

6 Experimental Results

6.1 Implementation Details

We adopt two mostly used CNN architectures in re-identification works, ResNet-34 [24] and Inception-
ResNet [55], for the CNN encoder f . Both models drop the final fully connected layer, and are
initialized by pre-training on the ImageNet [12] and the face recognition dataset LFW by following
[47], respectively. The output embedding of both encoders has a 512 channels per input attention
patch. By following [15], the single layer linear encoder α maps an attention embedding to 128
channels; The transformer holds a hidden embedding dimension of 128 and a multi-attention head
number of 4; Meanwhile, the final encoder β consists a fully connected layer and batch normalization,
mapping the transform’s outputs to 13 channels per attention patch, and thus leading to a dimension
of 494 for the final instance embedding. The deep supervision regressor and [class] embedding
regressor are both implemented with two fully connected layers, the output feature dimensions of
which are 256 and the total count of training instances respectively. Batch normalization and ReLU
activation are applied in both regressors.

Regarding data pre-processing, all the radiography instances are normalized to a pixel spacing of
0.11mm × 0.11mm, and are normalized to a same color space with histogram matching. The
attention patch dimensions h and w are set as the minimal embodying size for all anatomies, which
are 28.16mm and 21.56mm respectively. Unless otherwise specified, the batch size is set to 6 and
the augmentation repeat is set to 5 per instance for all the training. Unless otherwise specified, Adam
optimizer is employed with an initial learning rate of 1e-4, and is reduced to a half every 30 epochs.
All the methods are trained for 100 epochs. For the online hard pair mining, the positive and negative
similarity margins are set to 0.6 and 0.4 respectively. All experiments are conducted on servers with
three GeForce GTX 1080 Ti GPUs. Cosine similarity is applied to rank the retrievals given a query
instance. Rank-k retrieval accuracy (k ∈ {1, 5, 10}) and mean average precision (mAP) are used as
evaluation metrics.

6.2 Comparison to Existing Approaches

We compare our method to both: (i) key-point matching based on handcrafted descriptors, and (ii)
strong CNN baselines. For the key-point matching, it is the most studied approach for forensic
dental identification. Two recent methods of AHI [26] and HIDPR [42] are included in comparison,
which are based on the matching of Speeded Up Robust Features and tooth-aware appearance and
positional similarity, respectively. Both methods have achieved satisfying identification accuracies
with panoramic radiographs based on their own in-house datasets. For the CNN approach, few study
has investigated it possibly due to the challenge of learning from the overwhelming unpaired data.
For fair comparison, we enable the proposed domain-specific augmentations for all the training,
and include four most commonly used representation learning methods as the strong baselines,
the objective functions of which are id classification loss [56, 77], contrastive loss [52, 57, 13],
triplet loss [43, 47, 50], and reconstruction loss [31]. As reported in a recent comparison study on
pedestrian re-identification [41], the above baselines can already achieve accuracy comparable to the
state-of-the-arts. Note that all the CNN baselines take a whole radiograph as input without attention
mechanism, and apply the same backbone architectures of ResNet-34 and Inception-ResNet as FoID.
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Table 3: Performance of FoID across ages and genders measured in mAP, and the significance values
of the observed difference between the corresponding groups.

Groups mAP 95% CI p-value

Age <=30 0.6322 0.5161-0.7483 0.2703>30 0.5161 0.3260-0.7062

Gender Female 0.6353 0.5033-0.7674 0.2969Male 0.5296 0.3806-0.6787

According to Table 2, our method significantly outperforms all the existing approaches, achieving
up to 59.62% in terms of mAP and 50.57% in terms of rank-1 accuracy. Compared to the key-point
matching approach, the improvement shows that the proposed augmentation strategy enables effective
representation learning from unpaired data. Compared to CNN baselines, our method surpass by
incorporating domain knowledge with attentions — the accuracy boost of at least 10.50% in terms
of mAP indicates that the localized attention regions are valid for identification, and can obviously
reduce the over-fitting to the non-related areas. Examples that visualize the query images and
corresponding FoID’s retrievals can be found in Appendix.

As shown in Table 3, we also report the performance of our proposed FoID across two age groups
(<=30 and >30) and two gender groups (female and male). Overall, according to the paired t-
test, no significant difference in the model’s performance (p-value > 0.1) is observed between the
aforementioned groups. Meanwhile, we can see that FoID has a lower mAP on the group of age>30.
This can possibly be explained as artifacts, e.g., implants and fillings, could be more often introduced
to the identities of this group, which makes the identification task more challenging.

6.3 Ablation Studies

Table 4: Ablation studies of our proposed self-
attention by comparing with the state-of-the-art
attention-based identification methods and com-
mon aggregation mechanisms.

Methods Backbone mAP Rank-1 Rank-5 Rank-10

PDC [51] - 0.4556 0.4253 0.5632 0.6322
PGFA [40] - 0.4982 0.4598 0.5862 0.6092
Mancs [60] - 0.4723 0.4368 0.5747 0.6092

Avg Pool. ResNet-34 0.3707 0.3103 0.5057 0.5977
Max Pool. ResNet-34 0.2519 0.2069 0.3793 0.4253

FC ResNet-34 0.4000 0.2989 0.5517 0.6667
Att ResNet-34 0.4085 0.3563 0.5172 0.5632

Gated Att ResNet-34 0.4268 0.4023 0.4828 0.5060
FoID (ours) ResNet-34 0.5465 0.4817 0.6897 0.7471

Avg Pool. Inception-ResNet 0.3824 0.2989 0.5517 0.6092
Max Pool. Inception-ResNet 0.2654 0.1954 0.3793 0.5172

FC Inception-ResNet 0.3007 0.2414 0.4138 0.5172
Att Inception-ResNet 0.3527 0.2989 0.5172 0.5517

Gated Att Inception-ResNet 0.3741 0.3103 0.5287 0.6322
FoID (ours) Inception-ResNet 0.5962 0.5057 0.7586 0.7816

Table 5: Ablation studies of the objective function.
Our proposed function combining three comple-
mentary types of losses leads to the overall highest
accuracy as indicated by mAP.

# Lcontrast Lid Lsup mAP Rank-1 Rank-5 Rank-10

ResNet-34 as backbone

1 X 0.4760 0.4253 0.6303 0.6811
2 X 0.3196 0.2874 0.4598 0.5434
3 X X 0.5394 0.4598 0.6782 0.7356
4 X X X 0.5465 0.4817 0.6897 0.7471

Inception-ResNet as backbone

5 X 0.4438 0.3793 0.5747 0.6092
6 X 0.2808 0.1609 0.4828 0.5517
7 X X 0.5394 0.4368 0.7356 0.8046
8 X X X 0.5962 0.5057 0.7586 0.7816

Self-attention with transformer FoID incorporates a novel transformer-based self-attention mech-
anism to reason the relative importance of attentions for the feature aggregating. In order to verify its
effectiveness, we first compare with the state-of-the-art attention mechanisms introduced in pedestrian
re-identification: PDC [51], PGFA [40], and Mancs [60]. To adapt those methods to our task, the
original human body attention localization is replaced by the dental one as beforehand described in
subsection 4.1. For fair comparison, the same DSA and training strategy as FoID are applied. Table 4
shows that FoID can outperform all the methods, exceeding by up to 9.80% and 8.04% in terms of
mAP and rank-1 accuracy respectively. Different from the observation in [40, 60], FoID outperforms
PGFA and Mancs by applying hard attentions over soft attentions — such mechanism provides (i)
the accurate definition of key anatomies informed from the formative study, and (ii) the improved
efficiency of training with patches cropped out of large unrelated regions.

More importantly, the results also prove that modeling self-attentions can potentially lead to better
aggregation results. To verify, we ablate the effect of self-attention by replacing the transformer
with the existing aggregation modules of average pooling (Avg Pool.), max pooling (Max Pool.),
fully connected layers (FC), weighted attention (Att) [28], and gated attention (Gated att) [68, 28],
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Figure 3: Visualization of the dynamic self-attentions captured by the transformer for four typical
instances. Attention rollout is performed to infer the attentions on input patches. View in color and
zooming in for the best quality. More attention visualizations can be found in Appendix.

meanwhile fixing all other setups. As Table 2 confirms, by consistently achieving the highest accuracy
on all metrics with both backbone CNNs, reasoning the relative importance of various attentions is
important for representation learning, and the proposed transformer approach can fulfill the goal.
More details on PDC, PGFA, Mancs, and the adaptations we performed can be found in Appendix.

Self-attention visualization We further look into the self-attention reasoning by visualizing raw
images and their corresponding self-attention weight maps. In specific, we roll out the attention
weights of the transformer encoder layers to capture the propagation of information from input tokens
to the final representation [2]. In FoID, each input token is the embedding of a cropped attention
patch encoded by the upstream CNN encoder. Figure 3 demonstrates the visualization results of
four typical cases. We can obviously see that, in each case, FoID can localize certain identifying
anatomies with higher attentions than the others. Such pattern is clear to include tooth with a unique
shape (Figure 3(a1)), wise tooth (Figure 3(a2, b3)), tooth with a distinct artifact (Figure 3(c4,d5)),
and condyle of uncommon structure (Figure 3(d6)). The phenomenon proves that our method can
dynamically compare between the captured attentions, and highlight discriminative ones to boost
recognition performance. Moreover, it also shows that the approach has a chance to improve the
model explainability, which can be vital when dentists are making final forensic decisions based on
deep learning predictions. Nonetheless, we should note that such attention reasoning results is learnt
based on our specific training dataset, which can be limited in both size and variety when compared
to a real clinical database. As such, more robust attention reasoning can possibly be learnt when the
method is applied to large scale databases, and accordingly a higher identification accuracy can also
possibly be achieved. We provide visualization results for both success and failure cases of FoID, as
well as more detailed analysis, in Appendix to help understand the capability of FoID.

Table 1

No aug With aug

0.471 0.1 0.5465 0.1

0.4729 0.2 0.5057 0.2

0.27839 0.01 0.36089 0.01

0.300261 0.2 0.38547 0.2

0.28981 0.01 0.36382 0.01

0.31902 0.3 0.47225 0.3

0.31831 0.1 0.4072 0.1

0.43243 0.05 0.49118 0.05

0
0.1
0.2
0.3
0.4
0.5
0.6

Re
sN

et
-3

4

(cl

as
sifi

ca
tio

n)

Re
sN

et
-3

4

(co

nt
ra

sti
ve

)

Re
sN

et
-3

4

(tr

ipl
et

)

Inc
ep

-R
es

Ne
t


(cl
as

sifi
ca

tio
n)

Inc
ep

-R
es

Ne
t


(co
nt

ra
sti

ve
)

Inc
ep

-R
es

Ne
t


(tr
ipl

et
)

Fo
ID

 (o
ur

s)

(R

es
Ne

t-3
4)

Fo
ID

 (o
ur

s)

(In

ce
p-

Re
sN

et
)

m
ea

n 
Av

er
ag

e 
Pr

ec
is

io
n Domain-specific augmentationsBasic augmentations

�1

Figure 4: Ablation studies on the proposed domain-
specific augmentations for the model training. Var-
ious methods are included in comparison. A set of
basic augmentations is used as the baseline.

Domain-specific augmentations We intro-
duce the DSA to generate forensic-realistic
views of an instance for the effective instance
discriminative learning. To verify the effective-
ness of DSA compared to basic augmentations,
we perform the ablation study based on both
FoID and the CNN baselines. We define a set of
basic augmentations (BA) by following existing
self-supervised contrastive approaches [44, 10],
which include random displacements, rotations,
and gaussian noises. More details about BA can
be found in Appendix. Figure 4 shows that DSA
consistently outperforms BA, achieving mAP
improvements ranging from 3.28% to 15.32%.

Objective function design Three types of
losses are included in FoID to complement for the representation learning. In order to under-
stand the effect of each loss type, an ablation study is performed based on both CNN encoders of
ResNet-34 and Inception-ResNet. Table 5 indicates that contrastive loss and id classification losses
alone can have inferior performance, while the combining of the two leads to largely improved
accuracy in terms of mAP (ResNet-34 as backbone: 0.4760/0.3196→0.5394; Inception-ResNet
as backbone: 0.4438/0.2808→0.5394). Such phenomenon has been observed by several previous
studies on pedestrian re-identification, but the accuracy boosts in our work seem to be more significant
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(e.g., 0.817→0.859 and 0.706→0.764 as in [38]). This can possibly due to that two losses in FoID
optimize two less correlated tasks of different supports, which makes it more effective for regularizing
the transformer. Besides, plugging in the deep supervision signal for the CNN encoder can further
increase the accuracy (ResNet-34 as backbone: 0.5394→0.5465; Inception-ResNet as backbone:
0.5394→0.5962), possibly by the improved back-propagation and the direct regularization of the
CNN encoder.

7 Discussion and Conclusion

Dental forensic identification has always been an important part of criminal/disaster investigation, but
is challenging and labour-consuming by relying on expert’s visual comparison. Many efforts have
been made on systems for storing, accessing and comparing imaging data to benefit the identification,
e.g., WinID3by The American Board of Forensic Odontology. Our study is the first deep learning
approach, aiming to speed up identification in scale and increase the success rate of identifying
missing/unidentified/wanted persons, and its inspiring result can possibly lead it to work with the
above existing systems.

Ethical Considerations Apart from the promising results achieved by our deep learning solution
for dental forensics, its risk of misuse should be considered when deploying such technique. First,
although the technique is designed to benefit criminal and disaster investigation, there is a chance
for this technique to be used for surveillance. The forensic identification shares a similar nature
with pedestrian re-identification — the techniques of which have drawn concerns to intentionally
or unintentionally discriminate against marginalized groups. Meanwhile, the pedestrian one can
cause identification leakage by one’s daily activities captured from surveillance systems, and the
forensic one can be by one’s medical care experience. As such, medical practitioners should follow
the existing medical data protection protocol to avoid the possible identification leakage. Second,
forensic practitioners can over-relay on the deep learning results for identification. The proposed
method can be limited by the quality of training data as well as the lack of using other medical
records entries beyond imaging. As such, we clarify that the method is designed to only provide
assistance for dental forensics, rather than make conclusions. An appropriate application of our
method can be using the method as an initial recommendation engine for top ranked matches by
searching from large-scale medical records among multi-site databases, followed by practitioners
manually examining the recommended results for the final conclusions.

Known Limitations There exist two known gaps between our proposed method and the clinical
practice of forensic dentists. First, this work only includes panoramic radiographs, since they embody
more comprehensive information compared to partial screening, e.g., bitewing x-rays, and is more
widely used than expensive 3D screening, e.g., Magnetic resonance imaging. However, in real
practice, forensic dentists can take advantages of multi-modality scans, e.g., by matching certain
structures between bitewing and panoramic radiographs. Second, dentists can also utilize medical
records as priors for imaging matching. For example, if a medical record indicates an entity was
receiving dental fillings, a shape difference at certain location can thus be expected between the
preoperative scan in the database and a query scan. As such, how to design deep learning methods to
overcome the two gaps is open to explore.

Broad impact First, this work introduces a novel re-identification task to the machine learning
community. Compared to the existing tasks, e.g., pedestrian re-identification, the forensic one differs
in several aspects as listed in our formative study. As such, directly applying existing re-identification
methods led to inferior results (-9.80% in mAP compared to FoID). Moreover, the needs for the
multi-modality awareness and medical priors also make it unique. Combining the potential social
impacts, future research might find forensics an interesting research topic. Second, we propose a
novel transformer-based self-attention module that enables better attentions aggregation, according
to both quantitative and qualitative merits. Such method is also promising for the pedestrian re-
identification task, where different attentions (body key-points) can be assigned with different weights
for representation based on the relative importance of body parts under certain circumstances (e.g.,
occlusions). Third, our domain-specific augmentation and multi-task learning have considered
domain knowledge of dental forensics. This would be applicable to radiological forensics in general.

3https://abfo.org/winid/
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