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Abstract

In content-based image retrieval, the first-round retrieval result by simple visual
feature comparison may be unsatisfactory, which can be refined by visual re-ranking
techniques. In image retrieval, it is observed that the contextual similarity among
the top-ranked images is an important clue to distinguish the semantic relevance.
Inspired by this observation, in this paper, we propose a visual re-ranking method
by contextual similarity aggregation with self-attention. In our approach, for each
image in the top-K ranking list, we represent it into an affinity feature vector by
comparing it with a set of anchor images. Then, the affinity features of the top-K
images are refined by aggregating the contextual information with a transformer
encoder. Finally, the affinity features are used to recalculate the similarity scores
between the query and the top-K images for re-ranking of the latter. To further
improve the robustness of our re-ranking model and enhance the performance of
our method, a new data augmentation scheme is designed. Since our re-ranking
model is not directly involved with the visual feature used in the initial retrieval,
it is ready to be applied to retrieval result lists obtained from various retrieval
algorithms. We conduct comprehensive experiments on four benchmark datasets
to demonstrate the generality and effectiveness of our proposed visual re-ranking
method.

1 Introduction

In instance image retrieval, the goal is to efficiently identify images containing the same object
or describing the same scene with the query image from a large corpus of images. Towards this
goal, many works have emerged in recent years [42, 21, 36, 26, 24]. With the development of
deep learning, a great number of methods leverage convolutional neural network (CNN) as feature
extractor [38, 3, 44, 4, 14, 34, 25, 35, 45] to replace or combine with the classic SIFT feature [23].
Generally, the performance of the initial retrieval results by simple comparison of visual feature may
not be satisfactory. To refine it, many visual re-ranking techniques have been proposed [9, 19, 48].

Popular visual re-ranking techniques include query expansion, geometric context verification, kNN-
based re-ranking, and diffusion-based methods, etc. Query Expansion (QE) [9, 10, 39, 34, 30]
computes an average feature of the query and the top-ranked images to update the original query
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feature, which is then used for a second-round retrieval. Geometric Context Verification (GCV) [30,
12, 20, 2] leverages the geometric context of local features to remove the false matches in the
original results. Besides, if two images belong to the k-reciprocal nearest neighbors (kNN) of each
other, these two images have a high probability of being relevant. Based on this observation, lots
of k-Nearest Neighbors (kNN) based re-ranking methods thus emerge and achieve outstanding
performance [19, 48, 50]. Diffusion-based methods [51, 11, 18] consider the global similarity of all
images and perform similarity propagation iteratively. Most of the above methods do not involve
training, thus can be quickly equipped with various features. The recent learning-based methods such
as LAttQE [16] and GSS [22], achieve better performance but require training a specific model for
each kind of feature.

Different from the methods mentioned above, in this paper, we propose a novel visual re-ranking
method by contextual information aggregation. The initial retrieval results generated by feature
comparison only consider pairwise image similarity, but ignore the rich contextual information
contained in the ranking list. As illustrated in [29], if two images are mutually relevant, they share
similar distances from a set of anchor images. Thus, we directly select the top-L retrieval results
as anchors for each query to fully model the contextual information in the ranking list. We define
an affinity feature for each image in top-K candidates by computing the similarity between it and
the anchor images. To further promote the re-ranking quality, we propose a new data augmentation
method.

Moreover, inspired by Query Expansion (QE) which employs the information of top-ranked images
to update the query feature, we propose to update affinity features of each top-K candidates by
aggregating the affinity features of other candidates to promote the re-ranking performance with
transformer encoder [46]. For each image in the top-K candidates, our re-ranking model dynamically
aggregates the affinity features of other candidates based on the importance between candidates
by computing their similarities using the affinity features. The output of our re-ranking model can
be regarded as the refined affinity features for top-K candidates which contain more contextual
information.

To train the re-ranking model, two loss functions are introduced. Firstly, we use a contrastive loss to
restrain the updated affinity features so that the relevant images have large similarity, and vice versa.
Besides, we exploit a Mean Squared Error (MSE) loss to reserve the information in original affinity
features by restricting the difference between the original affinity features and the refined affinity
features. During the inference time, we compute the affinity features for the top-K candidates and
utilize the transformer encoder to refine the features. Then we re-rank these candidates by computing
the cosine similarity between the refined affinity features. The rank of images outside the top-K
ranking list remains unchanged.

Note that our re-ranking model is not directly involved with the original visual feature. Instead, it
computes the affinity features for top-K images, which serve as the input in our method. Therefore,
it can be combined with various existing image retrieval algorithms including representation learning
and re-ranking methods, and further enhance the retrieval performance with low computational
overhead. We conduct comprehensive experiments on four benchmark datasets to prove the generality
and effectiveness of our proposed visual re-ranking method. Besides, the time and memory complexity
of our re-ranking method is lower than the state-of-the-art re-ranking methods.

2 Related Work

In this section, we review the related works on visual re-ranking including query expansion, geometric
context verification, kNN based methods, and diffusion-based methods.

Query Expansion. Query Expansion (QE) uses the information of the top-ranked images obtained
from the initial retrieval to refine the representation of the original query for further retrieval. Average
query expansion (AQE) [9] aggregates the features of top-K retrieval results by average pooling.
Average query expansion with decay (AQEwD) [15] proposes a weighted average aggregation, where
the weights decay over the rank of retrieved images. Discriminative query expansion (DQE) [1]
regards the top-ranked images as positive images, and regards the bottom-ranked images as negative
images to train a linear SVM. Then DQE sorts images according to their signed distance from the
decision boundary. In [34], α-weighted query expansion (αQE) weights the top-K images by their
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Figure 1: The pipeline of our method. In the first retrieval stage marked in blue, given a query, we
perform the first-round retrieval to get the initial ranking list. In the second stage marked in green, we
first obtain the affinity features for the query (orange cuboid) and top-K candidates (blue cuboids)
with top L images as anchor images. The transformer encoder is used to refine the affinity features.
The network is trained by minimizing the contrastive loss and MSE loss using the refined affinity
features. In the re-ranking phase marked in orange, we recalculate the similarity scores between the
query and the top K candidates using the refined affinity features. Best viewed in color.
cosine similarity with the query. LAttQE [16] proposes an attention-based model to learn the weights
of aggregation.

Geometric Context Verification. Geometric Context Verification uses the geometric context of
local features to remove the false matches. Some approaches [9, 30, 37] estimate the transformation
model to verify the local correspondences by RANSAC-based methods. RANSAC [12] generates
hypotheses on random sets of correspondences and then identifies a geometric model with maximum
inliers. Spatial coding [52] proposes to represent the relative spatial locations among local features
into binary maps for efficient local matching verification. DSM[40] leverages the MSER regions
which are detected on the activation maps of the convolutional layer. Then DSM regards these regions
as local features for spatial verification.

k-NN-based Re-ranking. The k-reciprocal nearest neighbors of an image are considered as highly
relevant candidates [49, 32, 39]. Contextual Dissimilarity Measure (CDM) [19] iteratively regularizes
the average distance of each point to its neighbors to update the similarity matrix. Visual Rank [48]
determines the centrality of nodes on a similarity graph according to the link structures among
images to rank images. In CRL [27], a lightweight CNN model is trained to explore the contextual
information and learn the relevance between images. GSS [22] proposes an unsupervised method for
re-ranking based on graph neural network neighbor encoding and pairwise similarity separation loss.
In [50], the k-reciprocal feature is designed by encoding the k-reciprocal nearest neighbors into a
single vector to perform re-ranking.

Diffusion-based Re-ranking. Diffusion technique is initially designed for ranking on manifolds [51],
and it has been successfully applied to many computer vision tasks, such as image classification,
object detection, image retrieval, etc. In image retrieval, a lot of research concentrates on propagating
similarity through the kNN graph [11]. Diffusion is usually used as a re-ranking method, and it
has achieved state-of-the-art performance on many benchmarks [28, 47, 5, 18, 33, 8, 7, 6, 13, 28].
Diffusion considers the underlying manifold structure and explores the internal relationships between
images. As one of the representative methods, DFS [18] proposes a regional diffusion mechanism
to further improve the recall of small objects based on the neighborhood graphs. Then it employs
conjugate gradient method to compute the closed-form solution of diffusion as well as maintaining
time efficiency and accuracy.

3 Method

3.1 Framework Overview

In image retrieval, the database is defined asD = {I1, I2, · · · , IN}, where Ii denotes the ith database
image and N is the database size. Usually, images are first mapped to high-dimensional vectors
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through a feature extractor φ(·). We define the feature representation of images as f = φ(I) ∈ Rd.
Given a query, we obtain an initial ranking list of the top-K images R = [r1, r2, · · · , rK ] by a
retrieval algorithm, where ri denotes the ID of the ith image. For convenience of the following
discussion, we assume the query image is returned at the first position in the ranking list, otherwise
we directly insert it in the front of the ranking list. The features of top-K images in the ranking list
are described as FK = [fr1 ,fr2 , · · · ,frK ] ∈ Rd ×K .

Our framework is shown in Fig. 1. With the initial retrieval ranking list obtained by a query, we
propose to represent each of the top-K candidates into an affinity feature vector by computing the
cosine similarity between it and a set of anchor images. Then the affinity features are refined by a
transformer encoder to aggregate the contextual information in the ranking list.

Affinity Feature. Generally, if two images are relevant to the query, they shall be relevant to each
other [43]. Moreover, as revealed in [29], if two images are mutually relevant, their distances to a set
of pre-defined anchor images shall be similar. Actually, it is a non-trivial issue to select a proper set
of images as anchors. Generally, if the selected anchor images are far from the top-K candidates
in the ranking list, the variance of its distance with candidates is relatively small, which is difficult
to provide useful information to distinguish the candidates. In other words, a better alternative is to
choose the top-L images in ranking list as the anchor images. With anchor images, we define the
affinity features for the ith image in the rank list R as follows:

ai = [fT
rifr1 ,f

T
rifr2 , · · · ,fT

rifrL ]
T , 1 ≤ i ≤ K. (1)

After that, we take the affinity features of the K images in R as a sequence, which is fed into our
re-ranking model for refinement. Note that the input of our proposed method is affinity feature
sequence and is not directly related to the original feature, which endows our method with good
generality.

Contextual Similarity Aggregation with Transformer. Although the affinity features have taken
into account the contextual information in the ranking list, there may be inconsistency in the initial
affinity features obtained by directly comparing with anchor images. In order to make the affinity
features of related images more consistent, we propose a new re-ranking model by contextual
information aggregation to dynamically refine the affinity features of different images. Specifically,
with transformer encoder as the core component of our re-ranking model, we first map the affinity
feature ai ∈ RL for the ith image to a′ ∈ RL′

using a learnable projection matrix Wp ∈ RL×L′
,

and then feed the sequence a′i, i = 1, 2, · · · ,K into a transformer encoder consisting of Multi-Head
Attention (MHA) and Feed-Forward Networks (FFNs).

In MHA, each sequence element is updated by a weighted sum of all other elements based on
the scaled dot-product similarity. The scaled dot-product attention first maps affinity features
a′i (i = 1, 2, · · · ,K) to Queries (Q ∈ RK×ds ), Keys (K ∈ RK×ds ) and Values (V ∈ RK×ds ) with
three learnable projection matrices. After that, the similarity between Q and K is aggregated with V
together,

Attention(Q,K,V ) = Softmax(
QKT

√
ds

)V , (2)

which can be seen as using the similarity between images as weights to aggregate affinity features.
The multi-head structure concatenates and fuses the outputs of multiple scaled dot-product attention
modules using the learnable projection WM . MHA is defined as follows:

MHA(Q,K,V ) = Concatenation(h1, h2, · · · , hNH
)WM , (3)

where
hi = Attention(Qi,Ki,Vi), i = 1, 2, · · · , NH , (4)

andNH is the head number. Note that to update the affinity feature of an image, the affinity features of
all the relevant candidates should be considered as contextual information. A single-head self-attention
layer limits the ability of the model to focus on one or more relevant candidates simultaneously
without affecting other equally important candidates. This can be achieved by projecting the original
affinity features into different representation subspaces. Specifically, in MHA, different projection
matrices for Q, K, and V are used for different heads, and these matrices can project affinity features
into different subspaces. The output is normalized via Layer Normalization (LN) and finally added to
S′ to form a residue connection,

S′ = S′ + LN(MHA(Q,K,V )). (5)
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In addition to MHA, the transformer encoder layer has a position-wise feed-forward network.

We stack n transformer encoder layers to obtain more consistent affinity features. The refined affinity
features yi, i = 1, 2, · · · ,K come from the output of the last layer of our re-ranking model.

Data Augmentation. According to the description above, we represent the top-K images into affinity
features, which serve as the input to our model. To improve the robustness of the re-ranking model
and avoid overfitting, it is necessary to increase the size of the training sets. To this end, we design a
data augmentation scheme oriented to our framework.

Considering that our training data comes from retrieval results, we propose to use different visual
features to obtain the ranking lists of the same query. With different types of features to create the
affinity features, the network will learn more information about the contextual information. For a
query, we employ M different visual feature extractors {φ(·)1, φ(·)2, · · · , φ(·)M} to obtain different
ranking lists, and compute their corresponding affinity features according to the previous section.
The obtained M affinity feature sequences for the same query are used as training samples. In this
way, we enlarge the training set size to M times of the original size and improve the robustness of
our model.

3.2 Objective Functions

Contrastive Loss. The relevant images should have larger cosine similarity and vice versa, thus we
design a contrastive loss for representation learning, which is defined as follows:

LC = −log
∑K

i=2 exp(sim(y1,yi)/τ) · 1(r1 and ri are relevant)∑K
i=2 exp(sim(y1,yi)/τ)

, (6)

with the cosine similarity:
sim(yi,yj) = yT

i yj/(‖yi‖·‖yj‖), (7)
where ‖·‖ is L2 norm, 1(·) is the indicator function, τ is a temperature hyper-parameter, and y1 is
the refined affinity feature of the query because we assume that query is on the top of the ranking list.
The output affinity features of other images in ranking list are represented as yi, 2 ≤ i ≤ K. In the
numerator, the sum is over relevant images, and in the denominator, the sum is over all top-K images
in the ranking list. Contrastive loss is minimized when query is similar to its relevant images and
dissimilar to all other irrelevant images.

MSE Loss. In order to preserve the information contained in the original affinity features, we propose
to use a Mean Squared Error (MSE) loss between the original affinity features and the refined affinity
features. MSE loss is defined as follows:

LM =

K∑
i=1

‖ai −MLP(yi)‖2, (8)

where si and yi is the original and refined affinity feature for the ith candidate, respectively. The
Multilayer Perceptron (MLP) containing two layers with GELU non-linearity projects the refined
affinity features back to the original affinity feature space to compute the MSE loss.

Combining Eq. (6) and Eq. (8), we define the final objective function of the proposed method as
follows:

L = LC + λLM , (9)
where λ is a hyper-parameter to indicate the importance of MSE loss.

3.3 Re-ranking Processing

To aggregate the contextual information, we represent the top-K images into affinity features and
refine them by the transformer encoder. Because of the assumption that the query is at the first
position of the ranking list, we compute its similarity with the ith image in ranking list in R using the
refined affinity features as follows:

s′i = sim(y1,yi), i = 1, 2, · · · ,K. (10)
Finally, all the K images in the initial ranking list R are re-ranked by their new similarity score
defined in Eq. (10) in descending order. The order of the remaining images which is out of top-K
remains unchanged.
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Table 1: The re-ranking latency and retrieval accuracy of our method at different re-ranking lengths
K onROxf andRPar datasets. The initial retrieval is denoted as R-GeM, which is the baseline in
our experiments. Anchor images list length L = 512.

Method Re-ranking
latency (ms)

Medium Hard

ROxf RPar ROxf RPar

R-GeM [34] 0.0 67.3 80.6 44.3 61.5
R-GeM+Ours(K=128) 7 72.7 82.0 50.0 64.3
R-GeM+Ours(K=256) 11 75.1 83.7 53.4 67.7
R-GeM+Ours(K=512) 19 77.0 85.6 57.0 71.3
R-GeM+Ours(K=768) 28 77.8 86.9 58.3 73.4
R-GeM+Ours(K=1024) 37 77.9 87.2 58.4 74.4
R-GeM+Ours(K=1280) 46 78.3 87.5 59.0 75.0
R-GeM+Ours(K=1536) 55 78.2 88.2 59.1 75.3

Table 2: The retrieval accuracy of our method at different anchor images list length L are compared
with the initial retrieval performance on ROxf and RPar datasets. R-GeM denotes the first-round
retrieval performance, which serves as the baseline in our experiments. Re-ranking length K = 1024.

Method Medium Hard

ROxf RPar ROxf RPar

R-GeM [34] 67.3 80.6 44.3 61.5
R-GeM+Ours(L=128) 75.9 86.9 55.9 72.3
R-GeM+Ours(L=256) 77.5 86.8 57.4 73.0
R-GeM+Ours(L=512) 77.9 87.2 58.4 74.4
R-GeM+Ours(L=768) 77.0 87.2 57.0 73.7
R-GeM+Ours(L=1024) 76.5 87.1 56.1 73.4
R-GeM+Ours(L=1280) 76.4 87.3 56.6 73.7

4 Experiment

4.1 Experiment setup

Image Representation. We extract global visual features for both the query and database images
using a ResNet101 [17] backbone with GeM pooling [34]. The best-performing model fine-tuned on
the GL18 [25] is used. The resulting feature is denoted as R-GeM. To verify the robustness of our
method when the training and testing sets are represented by different features, we also utilize other
four models to extract testing image features: the off-the-shelf version of ResNet101 with R-MAC
pooling [44], the off-the-shelf version of ResNet101 with GeM pooling, the fine-tuned version of
ResNet101 with Max pooling [44], and the fine-tuned version of VGG16 [41] with GeM pooling.

Evaluation Datasets and Metrics. Four image retrieval benchmark datasets, named Revisited
Oxford5k (ROxf), Revisted Paris6k (RPar),ROxf +R1M, andRPar +R1M, are used to evaluate our
method. TheROxf [33] andRPar [33] datasets are the revisited version of the original Oxford5k [30]
and Paris6k datasets [31]. These two datasets both contain 70 query images depicting buildings, and
additionally include 4,993 and 6,322 database images, respectively. ROxf +R1M andRPar +R1M
are the large-scale versions ofROxf andRPar which combine a set of 1M distractor images with the
small ones. Mean Average Precision (mAP) [30] is used to evaluate the performance. We report the
Medium and Hard performance of the four datasets mentioned above. The computation is performed
on a single 2080Ti GPU.

Training Details. rSfM120k [34] is used to create training samples. It includes images selected
from 3D reconstructions of landmarks and city scenes. In total, 91,642 images from 551 3D models
are used for training. Each image in the training set is considered as a query image, and the others
are database images. The first-round retrieval results of each query form a training sample. For
each query image, the image with the same 3D reconstruction cluster id is considered as a positive
sample and vice versa as a negative sample. We select the top-512 returned images for each query
image to form a training sample and select the top-512 images as anchor images for computing the
affinity features. To realize data augmentation, we extract the training image features using multiple
models. Specifically, for each image in the training set, we extract features using fine-tuned Resnet50,
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Table 3: mAP performance of the proposed model with data augmentation. Re-ranking length K=1024,
anchor images list lengthL = 512. rSfM120k denotes the original training set. AugrSfM120k denotes
the training set with data augmentation.

Training
Dataset

Training
nums

Medium Hard

ROxf RPar ROxf RPar

rSfM120k [34] 91,642 77.9 87.2 58.4 74.4
AugrSfM120k 274,926 78.5 88.1 60.0 76.3

Resnet101, and Resnet152 with GeM pooling, respectively, to construct multiple different affinity
features. We denote the training set with data augmentation as AugrSfM120k.

Our model consists of a stack of 2 transformer encoder layers, each with 12 heads of 64 dimensions.
The fully connected layers within the encoder layers have 4 times more dimensions than the hidden
dimension. SGD is used to optimize the model, with an initial learning rate of 0.1, a weight decay of
10−5, and a momentum of 0.9. We use a cosine scheduler to gradually decay the learning rate to 0.
The temperature in Eq. (6) is set as 2.0. The batch size is set to 256. The model is trained for 100
epochs on four 2080Ti GPUs.

4.2 Ablation Study

Re-ranking Length. In our method, we re-rank the initial top-K images of the ranking list and
keep the order of the remaining images unchanged. For training, we select the fixed-length top-512
results as training samples. Since our transformer encoder involves no position embedding and the
input length of the model is variable, we can change the length of the re-ranking during testing.
The re-ranking performance of different K onROxf andRPar and the corresponding time required
are shown in Table 1. The results show that the performance of re-ranking keeps improving as K
increases, and the performance starts to saturate afterK is larger than 1024. For practical applications,
we can take a trade-off between accuracy and latency time of re-ranking.

Table 4: mAP performance of the proposed model with different feature types. Te re-ranking model
is trained by fine-tuned R-GeM. Re-ranking length K = 1024. V: VGG16 [41]; R: ResNet101 [17];
[O]: Off-the-shelf networks pretrained on ImageNet; RMAC: regional max-pooling [44]; GeM:
generalized-mean pooling [34]; MAC: max-pooling [44].

Method Training feature Medium Hard

ROxf RPar ROxf RPar

R-RMAC[O] [44] - 51.2 74.0 21.4 51.7
R-RMAC[O]+Ours R-GeM 56.8 81.9 30.5 65.7

R-GeM[O] [34] - 50.3 73.0 23.0 50.9
R-GeM[O]+Ours R-GeM 55.0 81.5 30.3 65.6

R-MAC [44] - 63.3 76.6 35.7 55.5
R-MAC+Ours R-GeM 73.2 86.0 52.8 72.1

V-GeM [34] - 61.6 69.3 34.3 44.9
V-GeM+Ours R-GeM 73.3 81.5 50.0 73.0

Length of Anchor Images List. Our method updates the affinity features to capture the contextual
information in the ranking list, and the choice of anchor images plays a key role. We select the top-L
images of the returned list as the anchor images for each query. Table 2 shows the effect of different
anchor image lengths. The re-ranking achieves a large improvement relative to the baseline for all
settings. When L is small, it limits the expressiveness of the affinity vector, and conversely when L
is large, the proportion of images associated with the query image is too small, introducing a lot of
noisy anchor images and limiting the discriminative power of the model. When L = 512, the best or
competitive performance is achieved on all datasets.

Model Variants. In Figure 2, we show the impact of different model variants on the retrieval
performance. The optimal performance is achieved when the transformer depth is equal to 2 and the
hidden layer dimension is 1024. As seen in Figure 2(a), when the depth is zero, the model contains no
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Figure 2: Impact of transformer model variants and the weight of the MSE loss on mAP onROxf
with Hard evaluation protocols. All model variants are evaluated with re-ranking length K = 1024
and anchor image list length L = 512. (a) Comparisons of different transformer depth n. The hidden
size L′ = 768, and head number Nh = 12. (b) Impact of the hidden size L′. Transformer depth is
kept as 2. (c) Impact of the weight of the MSE loss. The model takes the default settings.

self-attention module and is simply a stack of fully connected layers, at which point the performance
is lower than the baseline features, highlighting how important the self-attention is for our model.
Figure 2(b) shows that the model performance rises and then falls as the model capacity increases.
This can be attributed to the overfitting of the model.

MSE Loss. The effect of the MSE loss on the model performance is shown in Figure 2(c). It can be
seen that as λ increases, the performance gradually rises and reaches the highest when λ = 0.2. An
excessively large λ makes the model learning be dominated by the MSE loss and the performance
decreases.

Dataset augmentation. As shown in Table 3, when using data augmentation, we can increase the
training set to three times the original size, achieving higher performance relative to the baseline for
the model trained without data augmentation. The re-ranking setting is the same as the compared
methods which uses ResNet101-GeM feature to perform retrieval and re-rank using our trained
model.

4.3 Cross Feature Testing

Our method just requires the affinity feature generated by comparing the image with anchor images,
and is not directly related to the original feature. It can be accomplished with different visual features.
We use fine-tuned R-GeM feature for the first-round retrieval and compute the affinity features for
top candidates to train the re-ranking model. Then we test our model on various (type of features,
fine-tuned or not) features. The performance of our method for different testing features is shown in
Table 4. It obtains a large improvement relative to the baseline in several settings.

4.4 Comparison with the state-of-the-art methods

mAP Comparison. Table 5 reports the performance of our method and different compared methods
onROxf,RPar,ROxf +R1M,RPar +R1M. We compare our method with the following methods:
QE and its variants as well as Database Augmentation (DBA), DSM [40], CRL [27], GSS [22], and
DFS [11]. In Table 5 , if the visual feature in the first-round retrieval of comparison methods in the
original paper is the same with our feature, we directly use the results in the corresponding paper.
For example, the results in the second and the third blocks in Table 5 are copied from LAttQE [16].
While in the fourth block in Table 5, the visual features of comparison methods in their original paper
are different from our feature. Therefore, we re-test DSM [40] and DFS [11], re-train GSS [22] with
our feature by the released code for fair comparison. As for CRL [27], we re-implement it with our
features by our own.

The proposed re-ranking method achieves higher performance than most of the compared methods in
all settings. Our method obtains better performance compared with LAttQE [16], which is the state-
of-the-art method among QE-based methods. DFS [18] and GSS [22] can achieve better performance
than ours in some settings since they utilize all database images for re-ranking but inevitably incur
expensive extra time costs when the database size is large. We further combine DFS and GSS with
our re-ranking approach, i.e., we apply our re-ranking approach to the list of retrieved results based
on DFS or GSS re-ranking and the retrieval performance is further improved. Notably, when using
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Table 5: mAP comparison against existing methods on the testing datasets, with Medium and Hard
evaluation protocols. The performance of our method is evaluated based on the optimal settings of K
and L. AugrSfM120k and rSfM120k denote the training datasets with and without data augmentation,
respectively.

Method Medium Hard
ROxf ROxf+R1M RPar RPar+R1M ROxf ROxf+R1M RPar RPar+R1M

R-GeM(No re-ranking) [34] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8
Affinity Feature 72.0 52.8 82.9 66.5 51.1 30.5 66.8 43.4

AQE [9] 72.3 57.3 82.7 62.3 49.0 30.5 65.1 36.5
AQEwD [15] 72.0 56.9 83.3 63.0 48.7 30.0 65.9 37.1
DQE [1] 72.7 54.5 83.7 64.2 48.8 26.3 66.5 38.0
αQE [34] 69.3 52.5 86.9 66.5 44.5 26.1 71.7 41.6
LAttQE [16] 73.4 58.3 86.3 67.3 49.6 31.0 70.6 42.4

ADBA + AQE [9] 71.9 55.3 83.9 65.0 53.6 32.8 68.0 39.6
ADBAwD + AQEwD [15] 73.2 57.9 84.3 65.6 53.2 34.0 68.7 40.8
DDBA + DQE [1] 72.0 56.9 83.2 65.4 50.7 32.9 66.7 39.1
αDBA + αQE [34] 71.7 56.0 87.5 70.6 50.7 31.5 73.5 48.5
LAttDBA + LAttQE [16] 74.0 60.0 87.8 70.5 54.1 36.3 74.1 48.3

DSM [40] 67.1 50.7 80.5 57.4 43.7 26.6 61.1 30.1
CRL [27] 72.0 54.4 83.3 62.6 50.0 30.7 67.4 38.4
GSS [22] 78.0 57.8 88.9 84.8 60.9 34.3 76.5 69.2
DFS [18] 73.3 65.1 89.7 85.7 48.3 41.2 80.3 73.7

Ours(rSfM120k) 78.2 61.5 88.2 71.6 59.1 38.2 75.3 51.0
GSS+Ours(rSfM120k) 79.3 62.1 90.7 85.1 62.2 42.3 80.0 70.3
DFS+Ours(rSfM120k) 76.3 66.2 90.2 86.3 57.8 42.4 81.2 75.4
Ours(AugrSfM120k) 80.3 62.8 90.0 73.0 62.4 39.4 78.6 53.0
GSS+Ours(AugrSfM120k) 79.0 64.1 91.4 85.3 62.0 44.0 81.0 70.2
DFS+Ours(AugrSfM120k) 79.2 69.2 90.3 86.0 61.1 47.2 81.3 74.8

Table 6: Complexity comparison for different re-ranking methods. Latency is measured on an
NVIDIA GTX 2080Ti GPU. k: number of nearest neighbors; t: iteration times in DFS; K: number
of candidates to be re-ranked; N : number of database images; d: feature dimensionality; L:anchor
image list length; Cplx: complexity.

Method Space Cplx. Time Cplx. Re-ranking
latency (ms)

Memory (GB)

ROxf+R1M RPar+R1M

DFS [18] O(Nd+Nk) O(tK2) 837 7.81 7.82
GSS [22] O(Nd+Nk) O(Nd+ k2d2) 317 15.37 15.39
αQE [34] O(Nd) O(Nd+ kd) 184 7.68 7.69
Ours(K=1560) O(Nd) O(KLd+K2) 58 7.68 7.69
Ours(K=1280) O(Nd) O(KLd+K2) 46 7.68 7.69
Ours(K=1024) O(Nd) O(KLd+K2) 37 7.68 7.69

data augmentation, we can achieve higher performance relative to the baseline for the model trained
without data augmentation. We show some successful cases and failed cases of our method onROxf
dataset in Figure 3.

Speed and Memory Costs. In Table 6, we present the complexity of the different methods in time
and space as well as the measured average re-ranking latency (ms) and the total memory overhead
required on theROxf +R1M, andRPar +R1M datasets. In terms of spatial complexity, both our
method and the QE-based method [34] only involve the top-K initial returned images. Differently,
DFS [18] needs to encode the neighbor information between database images, resulting in an overhead
to store the neighbor graph. As for GSS [34], it requires the neighbor relationship to update the
features of the query image. Besides, since it involves the GCN network, the updated features
cannot be used to calculate the distance directly with the original features of the database images. So
additional storage of the updated features of the database images is required.

As for time complexity, DFS performs iterative operations on the top-K returned candidates (generally
K = 10, 000, with over 10 iterations). QE-based methods and GSS need to first update the query
features and then perform a second-round retrieval, which leads to larger latency when the size
of the database becomes larger. Our method needs to firstly calculate the similarity between the
top-K returned candidates and the L anchor images (usually L = 512, K = 512), and then use
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Figure 3: Selected qualitative examples of our re-ranking method. We show the top-10 results in the
figure. The figure is divided into four groups each of which consists of a result of initial retrieval and
a result of our re-ranking method. The first two groups are the successful cases and the other two
groups are the failed cases. The images on the left with orange bounding boxes are the queries. The
images with green bounding boxes denote the true positives and the red bounding boxes are false
positives. Best viewed in color.

transformer encoder to generate the features, leading to a secondary complexity about K. Besides,
the computation complexity of our method does not increase as the size of the database grows.

5 Conclusion

In this paper, we propose a novel visual re-ranking method for instance image retrieval. We represent
the top-K images in the ranking list with affinity features according to the top-L anchor images. In
order to explore the contextual similarity information in the ranking list, we design a self-attention re-
ranking model, which updates the affinity features for re-ranking. Besides, our method is robust to the
retrieval algorithm based on other image feature representation since the input of our re-ranking model
is not directly related to the original image features. We further propose a data augmentation method
to improve the robustness of the re-ranking model and avoid overfitting. Extensive experiments on
four datasets show that our method achieves promising results compared with existing state-of-the-art
methods in terms of both retrieval performance and computational time.
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