
Hyperparameter Optimization Is Deceiving Us,
and How to Stop It

A. Feder Cooper∗
Cornell University

afc78@cornell.edu

Yucheng Lu
Cornell University

yl2967@cornell.edu

Jessica Zosa Forde
Brown University

jforde2@cs.brown.edu

Christopher De Sa
Cornell University

cdesa@cs.cornell.edu

Abstract

Recent empirical work shows that inconsistent results based on choice of hyper-
parameter optimization (HPO) configuration are a widespread problem in ML
research. When comparing two algorithms J and K, searching one subspace can
yield the conclusion that J outperforms K, whereas searching another can entail
the opposite. In short, the way we choose hyperparameters can deceive us. We
provide a theoretical complement to this prior work, arguing that, to avoid such
deception, the process of drawing conclusions from HPO should be made more
rigorous. We call this process epistemic hyperparameter optimization (EHPO), and
put forth a logical framework to capture its semantics and how it can lead to incon-
sistent conclusions about performance. Our framework enables us to prove EHPO
methods that are guaranteed to be defended against deception, given bounded
compute time budget t. We demonstrate our framework’s utility by proving and
empirically validating a defended variant of random search.

1 Introduction

Machine learning can be informally thought of as a double-loop optimization problem. The inner
loop is what is typically called training: It learns the parameters of some model by running a training
algorithm on a training set. This is usually done to minimize some training loss function via an
algorithm such as stochastic gradient descent (SGD). Both the inner-loop training algorithm and the
model are parameterized by a vector of hyperparameters (HPs). Unlike the learned output parameters
of a ML model, HPs are inputs provided to the learning algorithm that guide the learning process, such
as learning rate and network size. The outer-loop optimization problem is to find HPs (from a set of
allowable HPs) that result in a trained model that performs the best in expectation on “fresh” examples
drawn from the same source as the training set, as measured by some loss or loss approximation. An
algorithm that attempts this task is called a hyperparameter optimization (HPO) procedure [12, 20].

From this setup comes the natural question: How do we pick the subspace for the HPO procedure to
search over? The HPO search space is enormous, suffering from the curse of dimensionality; training,
which is also expensive, has to be run for each HP configuration tested. Thus, we have to make hard
choices. With limited compute resources, we typically pick a small subspace of possible HPs and
perform grid search or random search over that subspace. This involves comparing the empirical
performance of the resulting trained models, and then reporting on the model that performs best in

∗Corresponding author: https://cacioepe.pe

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

terms of a chosen validation metric [20, 37, 41]. For grid search, the grid points are often manually
set to values put forth in now-classic papers as good rules-of-thumb concerning, for example, how
to set the learning rate [36, 45, 46, 56]. In other words, how we choose which HPs to test can seem
rather ad-hoc. We may have a good rationale in mind, but we often elide the details of that rationale
on paper; we choose an HPO configuration without explicitly justifying our choice.

Much recent empirical work has critiqued this practice [7, 11, 16, 48, 50, 53, 62, 65]. The authors
examine HPO configuration choices in prior work, and find that those choices can have an outsize
impact on convergence, correctness, and generalization. They therefore argue that more attention
should be paid to the origins of empirical gains in ML, as it is often difficult to tell whether measured
improvements are attributable to training or to well-chosen (or lucky) HPs. Yet, this empirical work
does not suggest a path forward for formalizing this problem or addressing it theoretically.

To this end, we argue that the process of drawing conclusions using HPO should itself be an
object of study. Our contribution is to put forward, to the best of our knowledge, the first theoretically-
backed characterization for making trustworthy conclusions about algorithm performance using HPO.
We model theoretically the following empirically-observed problem: When comparing two algorithms,
J and K, searching one subspace can pick HPs that yield the conclusion that J outperforms K,
whereas searching another can select HPs that entail the opposite result. In short, the way we choose
hyperparameters can deceive us—a problem that we call hyperparameter deception. We formalize
this problem, and prove and empirically validate a defense against it. Importantly, our proven defense
does not make any promises about ground-truth algorithm performance; rather, it is guaranteed to
avoid the possibility of drawing inconsistent conclusions about algorithm performance within some
bounded HPO time budget t. In summary, we:

• Formalize the process of drawing conclusions from HPO (epistemic HPO, Section 3).

• Leverage the flexible semantics of modal logic to construct a framework for reasoning rigorously
about 1) uncertainty in epistemic HPO, and 2) how this uncertainty can mislead the conclusions
drawn by even the most well-intentioned researchers (Section 4).

• Exercise our logical framework to demonstrate that it naturally suggests defenses with guarantees
against being deceived by EHPO, and offer a specific, defended-random-search EHPO (Section 5).

2 Preliminaries: Problem Intuition and Prevalence in ML Research

Principled HPO methods include grid search [41] and random search [3]. For the former, we perform
HPO on a grid of HP-values, constructed by picking a set for each HP and taking the Cartesian
product. For the latter, the HP-values are randomly sampled from chosen distributions. Both of these
HPO algorithms are parameterized themselves: Grid search requires inputting the spacing between
different configuration points in the grid, and random search requires distributions from which to
sample. We call these HPO-procedure-input values hyper-hyperparameters (hyper-HPs).2 To make
HPO outputs comparable, we also introduce the notion of a log:

Definition 1. A log � records all the choices and measurements made during an HPO run, including
the total time T it took to run. It has all necessary information to make the HPO run reproducible.

A log can be thought of as everything needed to produce a table in a research paper: code, random
seed, choice of hyper-HPs, information about the learning task, properties of the learning algorithm,
all of the observable results. We formalize all of the randomness in HPO in terms of a random seed r
and a pseudo-random number generator (PRNG) G. Given a seed, G deterministically produces a
sequence of pseudo-random numbers: all numbers lie in some set I (typically 64-bit integers), i.e.
r ∈ I and PRNG G : I → I∞. With this, we can now define HPO formally:

Definition 2. An HPO procedure H is a tuple (H∗, C,Λ,A,M, G,X) where H∗ is a randomized
algorithm, C is a set of allowable hyper-HPs (i.e., allowable configurations for H∗), Λ is a set of
allowable HPs (i.e., of HP sets λ), A is a training algorithm (e.g. SGD), M is a model (e.g. VGG16),
G is a PRNG, and X is some dataset (usually split into train and validation sets). When run, H∗ takes
as input a hyper-HP configuration c ∈ C and a random seed r ∈ I , then proceeds to run Aλ (on Mλ

2We provide a glossary of all definitions and symbols for reference at the beginning of the Appendix.

2

using G(r) and data3 from X) some number of times for different HPs λ ∈ Λ. Finally, H∗ outputs a
tuple (λ∗, �), where λ∗ is the HP configuration chosen by HPO and � is the log documenting the run.

Running H is a crucial part of model development. As part of an empirical, scientific procedure, we
specify different training algorithms and a learning task, run potentially many HPO passes, and try to
make general conclusions about overall algorithm performance. That is, we aim to develop knowledge
regarding whether one of the algorithms outperforms the others. However, recent empirical findings
indicate that it is actually really challenging to pick hyper-HPs that yield reliable knowledge about
general algorithm performance. In fact, it is a surprisingly common occurrence to be able to draw
inconsistent conclusions based on our choice of hyper-HPs [11, 16, 48, 65].

An example illustrating the possibility of drawing inconsistent conclusions from HPO. As a
first step to studying HPO as a procedure for developing reliable knowledge, we provide an example
of how being inadvertently deceived by HPO is a real problem, even in excellent research (we give an
additional example in the Appendix).4 We first reproduce Wilson et al. [72], in which the authors
trained VGG16 with different optimizers on CIFAR-10 (Figure 1a). This experiment uses grid search,
with a powers-of-2 grid for the learning rate α crossed with the default HPs for Adam. Based on the
best-performing HPO per algorithm (α = 1), it is reasonable to conclude that non-adaptive methods
(e.g., SGD) perform better than adaptive ones (e.g., Adam [42]), as the non-adaptive optimizers
demonstrate higher test accuracy.

However, this setting of grid search’s hyper-HPs directly informs this particular conclusion; using
different hyper-HPs makes it possible to conclude the opposite. Inspired by Choi et al. [11], we
perform grid search over a different subspace, tuning both learning rate and Adam’s � parameter. Our
results entail the logically opposite conclusion: Non-adaptive methods do not outperform adaptive
ones. Rather, when choosing the HPs that maximize test accuracy, all of the optimizers essentially
have equivalent performance (Figure 1b, Appendix). Notably, as we can see from the confidence
intervals in Figure 1, satisfying statistical significance is not sufficient to avoid being deceived
about comparative algorithm performance [73]. Thus, we will require additional tools aside from
statistical tests to reason about this, which we discuss in Sections 4 & 5.

��� ����������
�����

�����
��������������

���

����

����

����

����

����

����

����

�
�
�
�
�
�
�
�

��� ����������
�����

�����
��������������

���

����

����

����

����

����

����

����

�
�
�
�
�
�
�
�

Figure 1: Demonstrating the possibility of drawing inconsistent conclusions from HPO (what we
shorthand hyperparameter deception) when training VGG16 on CIFAR-10. Each box plot represents
a log. In (a), we replicate Wilson et al. [72] and show the best-performing results: One can reasonably
conclude that Adam under-performs non-adaptive methods. In (b), we change the HPO search space
for Adam, and similarly show the best-performing results: In contradiction, one can reasonably
conclude that Adam performs just as well as non-adaptive methods in terms of test accuracy.

This example is not exceptional, or even particularly remarkable, in terms of illustrating the hy-
perparameter deception problem. We simply chose it for convenience: The experiment does not
require highly-specialized ML sub-domain expertise to understand it, and it is arguably broadly
familiar, as it very well-cited [72]. However, we emphasize that hyperparameter deception is
rather common. Additional examples can be found in numerous empirical studies across ML sub-
fields [7, 11, 16, 49, 50, 53, 60, 65] (Appendix). This work shows that reported results tend to

3Definition 2 does not preclude cross-validation, as this can be part of H∗. The input dataset X can be split
in various ways, as a function of the random seed r.

4All code can be found at https://github.com/pasta41/deception.

3

be impressive for the tested hyper-HP configurations, but that modifying HPO can lead to vastly
different performance outcomes that entail contradictory conclusions. More generally, it is possible
to develop results that are wrong about performance, or else correct about performance but for the
wrong reasons (e.g., by picking “lucky” hyperparameters). Neither of these outcomes constitutes
reliable knowledge [27, 47]. As scientists, this is disheartening. We want to have confidence in
the conclusions we draw from our experiments. We want to trust that we are deriving reliable
knowledge about algorithm performance. In the sections that follow, our aim is to study HPO in
this reliable-knowledge sense: We want to develop ways to reason rigorously and confidently
about how we derive knowledge from empirical investigations involving HPO.

3 Epistemic Hyperparameter Optimization

Our discussion in Section 2 shows that applying standard HPO methodologies can be deceptive: Our
beliefs about algorithm performance can be controlled by happenstance, wishful thinking, or, even
worse, potentially by an adversary trying to trick us with a tampered set of HPO logs. This leaves us
in a position where the “knowledge” we derived may not be knowledge at all—since we could have
easily (had circumstances been different) concluded the opposite. To address this, we propose that
the process of drawing conclusions using HPO should itself be an object of study. We formalize this
reasoning process, which we call epistemic hyperparameter optimization (EHPO), and we provide an
intuition for how EHPO can help us think about the hyperparameter deception problem.
Definition 3. An epistemic hyperparameter optimization procedure (EHPO) is a tuple (H,F)
where H is a set of HPO procedures H (Definition 2) and F is a function that maps a set of HPO
logs L (Definition 1) to a set of logical formulas P , i.e. F(L) = P . An execution of EHPO involves
running each H ∈ H some number of times (each run produces a log �), and then evaluating F on
the logs L produced in order to output the conclusions F(L) we draw from all of the HPO runs.

In practice, it is common to run EHPO for two training algorithms, J and K, and to compare their
performance to conclude which is better-suited for the task at hand. H contains at least one HPO
that runs J and at least one HPO that runs K. The possible conclusions in output P include p =
“J performs better than K”, and ¬p = “J does not perform better than K”. Intuitively, EHPO is
deceptive whenever it could produce p and also could (if configured differently or due to randomness)
produce ¬p. That is, we can be deceived if the EHPO procedure we use to derive knowledge about
algorithm performance could entail logically inconsistent results.

Our example in Section 2 is deceptive because using different hyper-HP-configured grid searches
for H could produce contradictory conclusions. We ran two variants of EHPO (H,F): The first
replicated Wilson et al. [72]’s original H of 3 grid-searches on SGD, HB, and Adam (Figure 1a), and
the second used 3 grid-searches with a modified grid search for Adam that also tuned � (Figure 1b).
Each EHPO produced a L with 3 logs. For both, to draw conclusions F picks the best-performing
HP-config per A and maps them to formulas including “SGD outperforms Adam." From the 3 logs in
Figure 1a, we conclude p: “Non-adaptive optimizers outperform adaptive ones"; from the 3 logs in
Figure 1b, we conclude ¬p: “Non-adaptive methods do not outperform adaptive ones." How can we
formally reason about EHPO to avoid this possibility of drawing inconsistent conclusions—to guard
against deceiving ourselves about algorithm performance when running EHPO?

Framing an adversary who can deceive us. To begin answering this question, we take inspiration
from Descartes’ deceptive demon thought experiment (Appendix). We frame the problem in terms
of a powerful adversary trying to deceive us—one that can cause us to doubt ourselves and our
conclusions. Notably, the demon is not a real adversary; rather, it models a worst-case setting of
configurations and randomness that are usually set arbitrarily or by happenstance in EHPO.

Imagine an evil demon who is trying to deceive us about the relative performance of different
algorithms via running EHPO. At any time, the demon maintains a set L of HPO logs, which it can
modify either by running an HPO H ∈ H with whatever hyper-HPs c ∈ C and seed r ∈ I it wants
(producing a new log �, which it adds to L) or by erasing some of the logs in its set. Eventually,
it stops and presents us with L, from which we will draw some conclusions using F , i.e. F(L).
The demon’s EHPO could deceive us via the conclusions we draw from the set of logs it produces.
For example, L may lead us to conclude that one algorithm performs better than another, when in
fact picking a different set of hyper-HPs could have generated logs that would lead us to conclude
differently. We want to be sure that we will not be deceived by any logs the demon could produce. Of

4

course, this intuitive definition is lacking: It is not clear what is meant by could. Our contribution in
the sections that follow is to pin down a formal, reasonable definition of could in this context, so that
we can suggest an EHPO procedure that can defend against such a maximally powerful adversary.
We intentionally imagine such a powerful adversary because, if we can defend against it, then we
will also be defended against weaker or accidental deception.

4 A Logic for Reasoning about EHPO

The informal notion of could established above encompasses numerous sources of uncertainty. There
is the time to run EHPO and the choices of random seed, algorithms to compare, HPO procedures,
hyper-HPs, and learning task. Then, once we have completed EHPO and have a set of logs, we
have to digest those logs into logical formulas from which we base our conclusions. This introduces
more uncertainty, as we need to reason about whether we believe those conclusions or not. Our
formalization needs to capture all of these sources of uncertainty, and needs to be sufficiently
expressive to capture how they could combine to cause us to believe deceptive conclusions. It needs
to be expansive enough to handle the common case—of a well-intentioned researcher with limited
resources making potentially incorrect conclusions—and the rarer, worst case—of gaming results.

Why not statistics? As the common toolkit in ML, statistics might seem like the right choice
for modeling all this uncertainty. However, statistics is great for reasoning about uncertainty that
is quantifiable. For this problem, not all of the sources of uncertainty are easily quantifiable. In
particular, it is very difficult to quantify the different hyper-HP possibilities. It is not reasonable to
model hyper-HP selection as a random process; we do not sample from a distribution and, even if
we wanted to, it is not clear how we would pick the distribution from which to sample. Moreover,
as we saw in our example in Section 2, testing for statistical significance is not sufficient to prevent
deception. While the results under consideration may be statistically significant, they can still fail
to prevent the possibility of yielding inconsistent conclusions. For this reason, when it comes to
deception, statistical significance can even give us false confidence in the conclusions we draw.

Why modal logic? Modal logic is the standard mathematical tool for formalizing reasoning about
uncertainty [10, 18]—for formalizing the thus far informal notion of what the demon could bring
about running EHPO. It is meant precisely for dealing with different types of uncertainty, particularly
uncertainty that is difficult to quantify, and has been successfully employed for decades in AI [6,
30, 31], programming languages [13, 44, 58], and distributed systems [21, 32, 55]. In each of these
computer science fields, modal logic’s flexible semantics has been indispensable for writing proofs
about higher-level specifications with multiple sources of not-precisely-quantifiable, lower-level
uncertainty. For example, in distributed computing, it lets us write proofs about overall system
correctness, abstracting away from the specific non-determinism introduced by each lower-level
computing process [21]. Analogously, modal logic can capture the uncertainty in EHPO without
being prescriptive about particular hyper-HP choices. Our notion of correctness, which we want to
reason about and guarantee, is not being deceived. Therefore, while modal logic may be an atypical
choice for ML, it comes with a huge payoff. By constructing the right semantics, we can capture all
the sources of uncertainty described above and we can write simple proofs about whether we can
be deceived by the EHPO we run. In Section 5, it is this formalization that ultimately enables us to
naturally suggest a defense against being deceived.

4.1 Introducing our logic: syntax and semantics overview

Modal logic inherits the tools of more-familiar propositional logic and adds two operators: ♦ to
represent possibility and � to represent necessity. These operators enable reasoning about possible
worlds—a semantics for representing how the world is or could be, making modal logic the natural
choice to express the “could” intuition from Section 3. The well-formed formulas φ of modal logic
are given recursively in Backus-Naur form, where P is any atomic proposition:

φ := P | ¬φ | φ ∧ φ | ♦φ
♦p reads, “It is possible that p.”; p is true at some possible world, which we could reach (Appendix).
Note that � is syntactic sugar, with �p ≡ ¬♦¬p. Similarly, “or” has p ∨ q ≡ ¬(¬p ∧ ¬q) and
“implies” has p → q ≡ ¬p ∨ q. The axioms of modal logic are as follows:

� Q → �Q (necessitation). �(Q → R) → (�Q → �R) (distribution).

5

where Q and R are any formula, and � Q means Q is a theorem of propositional logic. We can now
provide the syntax and an intuitive notion of the semantics of our logic for reasoning about deception.

Syntax. Our logic requires an extension of standard modal logic. We need two modal operators to
reckon with two overarching modalities: the possible results of the demon running EHPO (♦t) and
our beliefs about conclusions from those results (B). Combining these modalities yields well-formed
formulas ψ where, for any atomic proposition P and any positive real t,

ψ := P | ¬ψ | ψ ∧ ψ | ♦tψ | Bψ
Note the EHPO modal operator here is indexed: ♦t captures “how possible” (♦) something is,
quantified by the compute capabilities of the demon (t) [6, 18, 33].

Semantics intuition. We suppose that an EHPO user has in mind some atomic propositions (propo-
sitions of the background logic unrelated to possibility or belief, such as “the best-performing log for
J has lower loss than the best-performing log for K”) with semantics that are already defined. ∧ and
¬ inherit their semantics from ordinary propositional logic, which can combine propositions to form
formulas. A set of EHPO logs L (Definition 1) can be digested into such logical formulas. That is,
we define our semantics using logs L as models over formulas p: L |= p, which reads “L models p”,
means that p is true for the set of logs L. We will extend this intuition to give semantics for possibility
♦t (Section 4.2) and belief B (Section 4.3), culminating in a tool that lets us reason about whether or
not EHPO can deceive us by possibly yielding inconsistent conclusions (Section 4.4).

Using our concrete example to ground us. To clarify our presentation below, we will map our
semantics to the example from Section 2, providing an informal intuition before formal definitions.

4.2 Expressing the possible outcomes of EHPO using ♦t

Our formalization for possible EHPO is based on the demon of Section 3. Recall, the demon models
a worst-case scenario. In practice, we deal with the easier case of well-intentioned ML researchers.
The notion of possibility we define here gives limits on what possible world a demon with bounded
EHPO time could reliably bring about. We first define a strategy the demon can execute for EHPO:
Definition 4. A randomized strategy σ is a function that specifies which action the demon will take.
Given L, its current set of logs, σ(L) gives a distribution over concrete actions, where each action
is either 1) running a new H with its choice of hyper-HPs c and seed r 2) erasing some logs, or 3)
returning. We let Σ denote the set of all such strategies.

The demon we model controls the hyper-HPs c and the random seed r, but importantly does not fully
control the PRNG G. From the adversary’s perspective, for a strategy σ to be reliable it must succeed
regardless of the specific G. Informally, the demon cannot hack the PRNG.5

Informally, we now want to execute a strategy to bring about a particular outcome p. In Section 2,
our good-faith strategy was simple: We ran each H with its own hyper-HPs and random seed, then
returned. The demon is trickier: It is adopting a strategy to try to bring about a deceptive outcome.
Formally, we model the demon executing strategy σ on logs L with a PRNG unknown to the demon
as follows. Let G denote the distribution over PRNGs G : I → I∞, in which all number sequence
elements are drawn independently and uniformly from I (recall, I is typically the 64-bit integers).
First, draw G from G, conditioned on G being consistent with all the runs in L.6 The demon then
performs a random action drawn from σ(L), using G as the PRNG when running a new HPO H , and
continues—updating the working set of logs L as it goes—until the “return” action is chosen.

Using this process, we define what outcomes p the demon can reliably bring about (i.e., what is
possible, ♦) in the EHPO output logs L by running this random strategy σ in bounded time t.
Informally, ♦tp means that an adversary could adopt a strategy σ that is guaranteed to cause the
desired outcome p to be the case while taking time at most t in expectation. In Section 2, where p is
“Non-adaptive methods outperform adaptive ones", Figure 1a shows ♦tp. Formally,
Definition 5. Let σ[L] denote the logs output from executing strategy σ on logs L, and let τσ(L)
denote the total time spent during execution. τσ(L) is equivalent to the sum of the times T it took

5We do not consider adversaries that can directly control how data is ordered and submitted to the algorithms
under evaluation. This distinction shows that our logical construction non-trivial: We are able to defend against
strong adversaries that can game the output of EHPO, which is separate from cheating by hacking the PRNG.

6i.e., All random events recorded in L should agree with the corresponding random numbers produced by G.

6

each HPO procedure H ∈ H executed in strategy σ to run. Note that both σ[L] and τσ(L) are
random variables, as a function of the randomness of selecting G and the actions sampled from σ(L).
For any formula p and any t ∈ R>0, we say L |= ♦tp, i.e. “L models that it is possible p in time t,” if

there exists a strategy σ ∈ Σ, such that P(σ[L] |= p) = 1 and E[τσ(L)] ≤ t.

We will usually choose t to be an upper bound on what is considered a reasonable amount of time to
run EHPO. It does not make sense for t to be unbounded, since this corresponds to the unrealistic
setting of having infinite compute time to perform HPO runs. We model our budget in terms of time;
however, we could use this setup to reason about other monotonically increasing resource costs, such
as energy usage. Our indexed modal logic inherits many axioms of modal logic, with indexes added
(Appendix), e.g.:

� (p → q) → (♦tp → ♦tq) (necess. + distribution) p → ♦tp (reflexivity)
♦t♦sp → ♦t+sp (transitivity) ♦s�tp → �tp (symmetry)

♦t(p ∧ q) → (♦tp ∧ ♦tq) (dist. over ∧),

To summarize: The demon knows all possible hyper-HPs; it can pick whichever ones it wants to
run EHPO within a bounded time budget t to realize the outcome p it wants. That is, if with some
probability the demon can deceive us in some amount of time, then the demon can reliably deceive us
with any larger time budget: If the demon fails to produce a deceptive result, it can use the strategy
of just re-running until it yields the result it desires. Since ♦t models the worst-case all-powerful
demon, it can also model any weaker EHPO user with time budget t.

4.3 Expressing how we draw conclusions using B

We employ the modal operator B from the logic of belief7 to model ourselves as an observer who
believes in the truth of the conclusions drawn from running EHPO. Bp reads “It is concluded that p.”
For example, when comparing the performance of two algorithms for a task, p could be “J is better
than K" and thus Bp would be understood as, “It is concluded that J is better than K.”

We model ourselves as a consistent Type 1 reasoner [67]. Informally, this means we believe all
propositional tautologies (necessitation), our belief distributes over implication (distribution), and we
do not derive contradictions (consistency). We do not require completeness: We allow the possibility
of not concluding anything about p (i.e., neither Bp nor B¬p). Formally, for any formulas p and q,

� p →Bp (necess.); B(p → q) →(Bp → Bq) (dist.); ¬(Bp ∧ B¬p) (consistency).

To understand our belief semantics, recall that EHPO includes a function F , which maps a set of
output logs L to our conclusions (i.e., F(L) = P is our set of conclusions). Informally, when our
conclusion set F(L) contains a formula p, we say the set of logs L models our belief B in that formula
p. In Section 2, the logs of Figure 1a model Bp and the logs of Figure 1b model B¬p. Formally,
Definition 6. For any formula p, we say L |= Bp, “L models our belief in p”, if p ∈ F(L).

Note we constrain what F can output. For a reasonable notion of belief, F must model the consistent
Type 1 reasoner axioms above. Otherwise, deception aside, F is an unreasonable way to draw
conclusions, since it is not even compatible with our belief logic.

4.4 Expressing hyperparameter deception

So far we have defined the semantics of our two separate modal operators, ♦t and B. We now begin to
reveal the benefit of using modal logic for our formalization. These operators can interact to formally
express what we informally illustrated in Section 2: a notion of hyperparameter deception. It is a
well-known result that we can combine modal logics [61] (Appendix). We do so to define an axiom
that, if satisfied, guarantees EHPO will not be able to deceive us. For any formula p,

¬ (♦tBp ∧ ♦tB¬p) (t-non-deceptive).

Informally, our running example can be considered a proof by exhibition: It violates this axiom
because Figure 1a’s logs model ♦tBp and Figure 1b’s logs model ♦tB¬p. That is, ♦tBp ∧ ♦tB¬p
using grid search for this task.

7B is syntactically analogous to the � modal operator in standard modal logic [35, 63, 69] (Appendix).

7

For the worst-case, t-non-deceptiveness expresses the following: If there exists a strategy σ by
which the demon could get us to conclude p in t expected time, then there can exist no t-time
strategy by which the demon could have gotten us to believe ¬p. To make this concrete, suppose
our t-non-deceptive axiom holds for an EHPO method that results in p. Intuitively, given a maximum
reasonable time budget t, if there is no adversary that can consistently control whether we believe p or
its negation when running that EHPO, then the EHPO is defended against deception. Conversely, if
an adversary could consistently control our conclusions, then the EHPO is potentially gameable. That
is, if our t-non-deceptive axiom does not hold (i.e., we can be deceived, ♦tBp ∧ ♦tB¬p), then even
if we conclude p after running EHPO, we cannot claim to know p. Our belief as to the truth-value of
p could be under the complete control of an adversary—or just a result of happenstance.

To summarize: An EHPO is t-non-deceptive if it satisfies all of the axioms above. Our example
in Section 2 is t-deceptive because the axioms do not hold. The semantics of these axioms capture
all of the possible uncertainty from the process of drawing conclusions from EHPO–and how that
uncertainty can combine to cause us to believe t-deceptive conclusions.

5 Constructing Defended EHPO

Now that we have a formal notion of what it means for EHPO to be (non)-deceptive, we can
write proofs about what it means for an EHPO method to be guaranteed to be deception-free.
Importantly, these proofs will increase our confidence that our conclusions from EHPO are not due to
the happenstance of picking a particular set of hyper-HPs.

To talk about defenses, we need to understand what it means to construct a “defended reasoner."
In other words, for an EHPO (H,F), we need F to yield conclusions that we can defend against
deception. Recall from Definition 6 that logs L model our belief in a formula p, i.e. L |= Bp ≡
p ∈ F(L). With this in mind, we begin by supposing we have a naive EHPO (H,Fn) featuring a
naive reasoner Bn with corresponding belief function Fn. We want to construct a new “defended
reasoner” B∗ that has a “skeptical” belief function F∗. F∗ should weaken the conclusions of Fn (i.e.,
F∗(L) ⊆ Fn(L) for any L) and result in an EHPO (H,F∗) that is guaranteed to be t-non-deceptive.
In other words, defended reasoner B∗ never concludes more than the naive reasoner Bn. Informally,
a straightforward way to do this is to have B∗ conclude p only if both the naive Bn would have
concluded p, and it is impossible for an adversary to get Bn to conclude ¬p in time t. Formally,
construct B∗ such that for any p, B∗p ≡ Bnp ∧ ¬♦tBn¬p (1).

Directly from our axioms (Section 4), we can now prove B∗ is defended. We will suppose it is possible
for B∗ to be deceived, demonstrate a contradiction, and thereby guarantee that B∗ is t-non-deceptive.
Suppose B∗ can be deceived in time t, i.e. ♦tB∗p ∧ ♦tB∗¬p is True. Starting with the left, ♦tB∗p :

Rule

♦tB∗p ≡ ♦t (Bnp ∧ ¬♦tBn¬p) Applying ♦t to the definition of B∗p (1)

→ ♦t (¬♦tBn¬p) Reducing a conjunction to either of its terms: (a ∧ b) → b

→ ¬♦tBn¬p Symmetry; dropping all but the right-most operator: ♦t(♦ta) → ♦ta

We then pause to apply our axioms to the right side of the conjunction, ♦tB∗¬p :

Rule

♦tB∗¬p ≡ ♦t (Bn¬p ∧ ¬♦tBnp) Applying ♦t to the definition of B∗¬p (1)

→ ♦tBn¬p ∧ ♦t¬♦tBnp Distributing ♦t over ∧: ♦t(a ∧ b) → (♦ta ∧ ♦tb)

→ ♦tBn¬p Reducing a conjunction to either of its terms: (a ∧ b) → a

We now bring both sides of the conjunction back together: ♦tB∗p∧♦tB∗¬p ≡ ¬♦tBn¬p∧♦tBn¬p.
The right-hand side is of the form ¬a∧a, which must be False. This contradicts our initial assumption
that B∗ is t-deceptive (i.e., ♦tB∗p ∧ ♦tB∗¬p is True). Therefore, B∗ is t-non-deceptive.

This example illustrates the power of our choice of formalization. In just a few lines of simple logic,
we can validate defenses against deception. This analysis shows that a t-defended reasoner B∗ is
always possible, and it does so without needing to refer to the particular underlying semantics of an

8

EHPO. However, we intend this example to only be illustrative, as it may not be practical to compute
B∗ as defined in (1) if we cannot easily evaluate whether ♦tBn¬p. We next suggest a concrete EHPO
with a defended B∗, and show how deception can be avoided in our Section 2 example by using this
EHPO instead of grid search.

A defended random search EHPO. Random search takes two hyper-HPs, a distribution µ over the
HP space and a number of trials K ∈ N to run. HPO consists of K independent trials of training
algorithms Aλ1 ,Aλ2 , . . . ,AλK

, where the HPs λk are independently drawn from µ, taking expected
time proportional to K. When drawing conclusions, we usually look at the “best” run for each
algorithm. For simplicity, we suppose there is only one algorithm, A. We bound how much the choice
of hyper-HPs can affect the HPs, and define a defended EHPO based on a variant of random search.

Definition 7. Suppose that we are given a naive EHPO procedure ({H},Fn), in which H is random
search and is the only HPO in our EHPO, and Fn is a “naive” belief function associated with a naive
reasoner Bn. For any K,R ∈ N, we define the “(K,R)-defended” belief function F∗ for a skeptical
reasoner B∗ as the following conclusion-drawing procedure. First, F∗ only makes conclusion set
P∗ from a single log �̂ with K ∗R trials; otherwise, it concludes nothing, outputting ∅. Second, F∗
splits the single �̂ into R logs �1, �2, . . . , �R, each containing K independent-random-search trials.8
Finally, F∗ outputs the intersection of what the naive reasoner would have output on each log �i,

F∗({�̂}) = P∗ ≡ Fn({�1}) ∩ Fn({�2}) ∩ · · · ∩ Fn({�R}).

Equivalently, {�̂} |= B∗p only if {�i} |= Bnp for all i.

Informally, to draw a conclusion using this EHPO, B∗ splits a random-search-trial log of size K ∗R
into R groups of K-trial logs, passing each K-trial log to one of an ensemble of R naive reasoners
Bn. B∗ only concludes p if all R naive reasoners unanimously agree on p. We can guarantee this
EHPO to be t-non-deceptive by assuming a bound on how much the hyper-HPs can affect the HPs.

Theorem 1. Suppose that the set of allowable hyper-HPs C of H is constrained, such that any two
allowable random-search distributions µ and ν have Renyi-∞-divergence at most a constant, i.e.
D∞(µ�ν) ≤ γ. The (K,R)-defended random-search EHPO of Definition 7 is guaranteed to be
t-non-deceptive if we set R ≥

�
t exp(γK)/K = O(

√
t).

We prove Theorem 1 in the Appendix. This result shows that our defense is actually a defense, and
moreover it defends with a log size K ∗R—and compute requirement for good-faith EHPO—that
scales sublinearly in t. A good-faith actor can, in sublinear-in-t time, produce a log (of length K ∗R)
that will allow our t-non-deceptive reasoner to reach conclusions. This means that we defend against
adversaries with much larger compute budgets than are expected from good-faith actors.

Validating our defense empirically and selecting hyper-HPs. Any defense ultimately depends on
the hyper-HPs it uses. Thus, we should have a reasonable belief that choosing differently would
not have led an opposite conclusion. We therefore run a two-phased search [11, 34, 59], repeating
our VGG16-CIFAR10 experiment from Section 2. First, we run a coarse-grained, dynamic protocol
to find reasonable hyper-HPs for Adam’s �; second, we use those hyper-HPs to run our defended
random search. We start with a distribution to search over �, and note that the performance is best on
the high end. We change the hyper-HPs, shifting the distribution until Adam’s performance starts to
degrade, and use the resulting hyper-HPs (� ∈ [1010, 1012]) to run our defense (Appendix).

We now run a modified version of our defended EHPO in Definition 7, described in Algorithm 1, with
K ∗R = 600 (200 logs for each optimizer). Using a budget of M = 10000 iterations, we subsample
κ = 11 logs and pass them to an ensemble of κ naive reasoners Bn. We use κ logs, relaxing the
requirement of using all K ∗R logs in Definition 7, for efficiency. Each iteration m concludes the
majority conclusion of the κ-sized Bn ensemble. This is why we set κ to an odd number—to avoid
ties. B∗ draws conclusions based on the results of the M -majority conclusions. That is, we further
relax the requirements of Definition 7: Instead of requiring unanimity, B∗ only requires agreement on
the truth-value of p for a fractional subset of M . We set this fraction using parameter δ ∈ [0, 1], where
δ controls how skeptical our defended reasoner B∗ is (lower δ corresponding to more skepticism). B∗
concludes p when at least (1− δ) of our M subsampled runs concluded p. When this threshold is not
met, B∗ remains skeptical and concludes nothing. We summarize our final results in Table 1, and

8This is not generally allowable. F∗ can do this because random-search logs contain interchangeable trials.

9

provide complete results in the Appendix. Given how similar the optimizers all perform on this task
(similar to Figure 1), being more skeptical increases the likelihood that we do not conclude anything.

Algorithm 1 Defense with Random Search
Require: Set of K ∗R random-search logs {Li}KR

i=1 ,
defense subsampling budget M ,
criterion constant δ, subsample size κ.

1: for m = 1, · · · ,M do
2: Subsample κ logs: {Li}κi=1 ∼ {Li}KR

i=1 .
3: Obtain conclusions {Pi}κi=1 from {Li}κi=1.
4: Obtain output conclusion for m:

P(m) ← Majority({Pi}κi=1)
5: end for
6: if ∃p s.t. ≥ (1− δ)M of {P(m)}Mi=1 conclude p

then
7: Conclude p.
8: else
9: Conclude nothing.

10: end if

Table 1: Results from repeating our Sec-
tion 2 experiment, using Algorithm 1 in-
stead of grid search. p = “Non-adaptive
optimizers (SGD and HB) perform better
than the adaptive optimizer Adam”.

p ¬p 1− δ Conclude

SGD
vs.

Adam
0.213 0.788

0.75 ¬p
0.8 Nothing

0.9 Nothing

HB
vs.

Adam
0.168 0.832

0.75 ¬p
0.8 ¬p
0.9 Nothing

6 Conclusion and Practical Takeaways

Much recent empirical work illustrates that it is easy to draw inconsistent conclusions from HPO [7,
11, 16, 49, 50, 53, 60, 65]. We call this problem hyperparameter deception and, to derive a defense,
argue that the process of drawing conclusions using HPO should itself be an object of study.
Taking inspiration from Descartes’ demon, we formalize a logic for studying an epistemic HPO
procedure. The demon can run any number of reproducible HPO passes to try to get us to believe a
particular notion about algorithm performance. Our formalization enables us to not believe deceptive
notions: It naturally suggests how to guarantee that an EHPO is defended against deception. We offer
recommendations to avoid hyperparameter deception in practice (we expand on this in the Appendix):

• Researchers should construct their own notion of skepticism B∗, appropriate to their specific
task. There is no one-size-fits-all defense solution. Our results are broad insights about defended
EHPO: A defended EHPO is always possible, but finding an efficient one will depend on the task.

• Researchers should make explicit how they choose hyper-HPs. What is reasonable is ultimately
a function of what the ML community accepts. Being explicit, rather than eliding hyper-HP choices,
is essential for helping decide what is reasonable. As a heuristic, we recommend setting hyper-HPs
such that they include HPs for which the optimizers’ performance starts to degrade, as we do above.

• Avoiding hyperparameter deception is just as important as reproducibility. We have shown
that reproducibility [7, 29, 34, 57, 64] is only part of the story for ensuring reliability. While
necessary for guarding against brittle findings, it is not sufficient. We can replicate results—even
statistically significant ones—that suggest conclusions that are altogether wrong.

More generally, our work is a call to researchers to reason more rigorously about their beliefs
concerning algorithm performance. In relation to EHPO, this is akin to challenging researchers to
reify their notion of B—to justify their belief in their conclusions from the HPO. Such epistemic rigor
concerning drawing conclusions from empirical studies has a long history in more mature branches
of science and computing, including evolutionary biology [28], statistics [25, 26], programming
languages [54], and computer systems [23] (Appendix). We believe that applying similar rigor will
contribute significantly to the ongoing effort of making ML more robust and reliable.

Acknowledgements

A. Feder Cooper is supported by the Artificial Intelligence Policy and Practice initiative at Cornell
University, the Digital Life Initiative at Cornell Tech, and the John D. and Catherine T. MacArthur
Foundation. Jessica Zosa Forde is supported by ONR PERISCOPE MURI N00014-17-1- 2699. We
would additionally like to thank the following individuals for feedback on earlier ideas, drafts, and

10

iterations of this work: Prof. Rediet Abebe, Harry Auster, Prof. Solon Barocas, Jerry Chee, Prof.
Jonathan Frankle, Dr. Jack Goetz, Prof. Hoda Heidari, Kweku Kwegyir-Aggrey, Prof. Karen Levy,
Prof. Helen Nissenbaum, and Prof. Gili Vidan. We also thank Meghan Witherow for her whimsical
interpretation of Descartes’ evil demon, which we include in the Appendix.

References
[1] Mark Van Atten. On Brouwer. Cengage Learning, 2004.

[2] Alexandru Baltag and Sonja Smets. Probabilistic dynamic belief revision. Synthese, 165(2):
179–202, 2008.

[3] James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization. J.
Mach. Learn. Res., 13:281–305, February 2012. ISSN 1532-4435.

[4] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-
Parameter Optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2546–2554.
Curran Associates, Inc., 2011.

[5] Guram Bezhanishvili and Wesley H. Holliday. A semantic hierarchy for intuitionistic logic.
Indagationes Mathematicae, 30(3):403 – 469, 2019. ISSN 0019-3577.

[6] Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. Handbook of Modal Logic,
volume 3. Elsevier Science Inc., USA, 2006. ISBN 0444516905.

[7] Xavier Bouthillier, César Laurent, and Pascal Vincent. Unreproducible Research is Reproducible.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 725–734. PMLR, 09–15 Jun 2019.

[8] Roberto Calandra, Ignasi Clavera Gilaberte, Frank Hutter, Joaquin Vanschoren, and Jane Wang.
Meta-learning. Meta-Learning Workshop at NeurIPS 2020, 2020.

[9] Jimena Canales. Bedeviled: A Shadow History of Demons in Science. Princeton University
Press, Princeton, NJ, USA, 2020.

[10] Brian F. Chellas. Modal Logic - An Introduction. Cambridge University Press, 1980.

[11] Dami Choi, Christopher J. Shallue, Zachary Nado, Jaehoon Lee, Chris J. Maddison, and
George E. Dahl. On Empirical Comparisons of Optimizers for Deep Learning, 2019.

[12] Marc Claesen and Bart De Moor. Hyperparameter Search in Machine Learning, 2015.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263,
April 1986. ISSN 0164-0925.

[14] A. Feder Cooper and Ellen Abrams. Emergent Unfairness in Algorithmic Fairness-Accuracy
Trade-Off Research. In Artificial Intelligence, Ethics, and Society (AIES), 2021.

[15] René Descartes. Discourse on Method and Meditations on First Philosophy. Hackett Publishing
Company, Inc., Translator Donald A. Cress, 4th edition, 1998. Meditation One: Concerning
Those Things That Can Be Called into Doubt.

[16] Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. Show Your
Work: Improved Reporting of Experimental Results. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 2185–2194, Hong Kong, China,
November 2019. Association for Computational Linguistics.

[17] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20:1–21, 2018.

11

[18] E. Allen Emerson. Temporal and Modal Logic, page 995–1072. MIT Press, Cambridge, MA,
USA, 1991. ISBN 0444880747.

[19] Eduardo Fermé and Sven Ove Hansson. AGM 25 Years: Twenty-Five Years of Research in
Belief Change. Journal of Philosophical Logic, 40:295–331, April 2011.

[20] Matthias Feurer and Frank Hutter. Hyperparameter Optimization. In Frank Hutter, Lars Kotthoff,
and Joaquin Vanschoren, editors, Automated Machine Learning: Methods, Systems, Challenges,
pages 3–33. Springer International Publishing, 2019.

[21] Michael J. Fischer and Lenore D. Zuck. Reasoning about uncertainty in fault-tolerant distributed
systems. In M. Joseph, editor, Formal Techniques in Real-Time and Fault-Tolerant Systems,
pages 142–158, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[22] Jessica Zosa Forde, A. Feder Cooper, Kweku Kwegyir-Aggrey, Chris De Sa, and Michael
Littman. Model Selection’s Disparate Impact in Real-World Deep Learning Applications, 2021.
ICML 2021 Science of Deep Learning Workshop.

[23] Batya Friedman and Helen Nissenbaum. Bias in Computer Systems. ACM Trans. Inf. Syst., 14
(3):330–347, July 1996. ISSN 1046-8188.

[24] James Garson. Modal Logic. In The Stanford Encyclopedia of Philosophy. Fall 2018 Edition,
Edward N. Zalta (ed.), 2018.

[25] A. Gelman and Eric Loken. The garden of forking paths: Why multiple comparisons can be a
problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis
was posited ahead of time, 2019.

[26] Andrew Gelman and Eric Loken. The statistical crisis in science: data-dependent analysis—a
“garden of forking paths”–explains why many statistically significant comparisons don’t hold
up. American Scientist, 102(6):460–466, 2014.

[27] Edmund L. Gettier. Is Justified True Belief Knowledge? Analysis, 23(6):121–123, 06 1963.

[28] Stephen Jay Gould. The Mismeasure of Man. Norton, New York, 1981.

[29] Odd Erik Gundersen and Sigbjørn Kjensmo. State of the Art: Reproducibility in Artificial
Intelligence. In AAAI, 2018.

[30] Joseph Y. Halpern. Reasoning about Uncertainty. The MIT Press, 2 edition, 2017.

[31] Joseph Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. In Journal of
the ACM, 1991.

[32] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving Practical Distributed Systems Correct.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, page 1–17,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338349.

[33] Aviad Heifeitz and Philippe Mongin. The Modal Logic of Probability. In Proceedings of the 7th
Conference on Theoretical Aspects of Rationality and Knowledge, pages 175–185, July 1998.

[34] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep Reinforcement Learning that Matters. In Thirty-Second AAAI Conference On
Artificial Intelligence, 2018.

[35] Jaakko Hintikka. Knowledge and Belief. Cornell University Press, 1962.

[36] Geoffrey E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines. In Grégoire
Montavon, Geneviève B. Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the
Trade: Second Edition, pages 599–619. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[37] Chihwei Hsu, Chihchung Chang, and ChihJen Lin. A Practical Guide to Support Vector
Classification, November 2003.

12

[38] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine Learning:
Methods, Systems, Challenges. Springer, 2018. In press, available at http://automl.org/
book.

[39] Frank Hutter, Joaquin Vanschoren, Marius Lindauer, Charles Weill, Katharina Eggensperger,
and Matthias Feurer. Icml workshop on automated machine learning. AutoML Workshop at
ICML 2020, 2020.

[40] Charles Isbell. You Can’t Escape Hyperparameters and Latent Variables: Machine Learning as
a Software Engineering Enterprise. NeurIPS Keynote, 2020.

[41] George H. John. Cross-Validated C4.5: Using Error Estimation for Automatic Parameter
Selection. Technical report, Stanford University, Stanford, CA, USA, 1994.

[42] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations, 12 2014.

[43] Barteld P. Koou. Probabilistic Dynamic Epistemic Logic. Journal of Logic Language and
Information, 12(4):381–408, 2003.

[44] Leslie Lamport. "sometime" is Sometimes "Not Never": On the Temporal Logic of Programs.
In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’80, page 174–185, New York, NY, USA, 1980. Association for Computing
Machinery. ISBN 0897910117. doi: 10.1145/567446.567463.

[45] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An
Empirical Evaluation of Deep Architectures on Problems with Many factors of Variation. In Pro-
ceedings of the 24th International Conference on Machine Learning, ICML ’07, page 473–480,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937933.

[46] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient BackProp. In
Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop,
page 9–50, Berlin, Heidelberg, 1998. Springer-Verlag. ISBN 3540653112.

[47] Keith Lehrer. The Gettier Problem and the Analysis of Knowledge. In George Sotiros Pappas,
editor, Justification and Knowledge: New Studies in Epistemology, pages 65–78. Springer
Netherlands, Dordrecht, 1979.

[48] Zachary C. Lipton and Jacob Steinhardt. Troubling Trends in Machine Learning Scholarship.
ACM Queue, 2018.

[49] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are GANs
Created Equal? A Large-Scale Study. In S Bengio, H Wallach, H Larochelle, K Grauman,
N Cesa-Bianchi, and R Garnett, editors, Advances in Neural Information Processing Systems,
volume 31, pages 700–709. Curran Associates, Inc., 2018.

[50] Gábor Melis, Chris Dyer, and Phil Blunsom. On the State of the At of Evaluation in Neural
Language models. In International Conference on Learning Representations, 2018.

[51] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[52] Tom M. Mitchell. The Need for Biases in Learning Generalizations. Technical report, Rut-
gers University, New Brunswick, NJ, 1980. http://www-cgi.cs.cmu.edu/~tom/pubs/
NeedForBias_1980.pdf.

[53] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A Metric Learning Reality Check, 2020.

[54] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing Wrong
Data without Doing Anything Obviously Wrong! In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems, AS-
PLOS XIV, page 265–276, New York, NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605584065.

13

[55] Susan Owicki and Leslie Lamport. Proving Liveness Properties of Concurrent Programs. ACM
Trans. Program. Lang. Syst., 4(3):455–495, July 1982. ISSN 0164-0925. doi: 10.1145/357172.
357178.

[56] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, and et al.
Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res., 12:2825–2830, November
2011. ISSN 1532-4435.

[57] Joelle Pineau. The Machine Learning Reproducibility Checklist, March 2019. https://www.
cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf.

[58] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, SFCS ’77, page 46–57, USA, 1977. IEEE Computer
Society.

[59] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian Bandits Showdown: An
Empirical Comparison of Bayesian Deep Networks for Thompson Sampling. In ICLR, February
2018.

[60] F. Schneider, L. Balles, and P. Hennig. DeepOBS: A Deep Learning Optimizer Benchmark
Suite. In 7th International Conference on Learning Representations (ICLR). ICLR, May 2019.

[61] Dana Scott. Advice on modal logic. In Karel Lambert, editor, Philosophical Problems in Logic:
Some Recent Developments, pages 143–173. Springer Netherlands, Dordrecht, 1970.

[62] D. Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. Winner’s Curse? On Pace, Progress,
and Empirical Rigor. In ICLR 2018 Workshop, February 2018.

[63] Krister Segerberg. Two Traditions in the Logic of Belief: Bringing them Together. In Hans Jür-
gen Ohlbach and Uwe Reyle, editors, Logic, Language and Reasoning: Essay in Honour of Dov
Gabbay, pages 135–148. Springer Science+Business Media, Dordrecht, Netherlands, 1999.

[64] K Sinha, J Pineau, J Forde, R N Ke, and H Larochelle. NeurIPS 2019 Reproducibility Challenge.
ReScience, 6(2), 2020.

[65] Prabhu Teja Sivaprasad, Florian Mai, Thijs Vogels, Martin Jaggi, and François Fleuret. Op-
timizer Benchmarking Needs to Account for Hyperparameter Tuning. In Hal Daumé III and
Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 9036–9045. PMLR, 13–18
Jul 2020.

[66] Brian Cantwell Smith. The Limits of Correctness. SIGCAS Computer and Society, page 18–26,
January 1985. ISSN 0095-2737. doi: 10.1145/379486.379512. URL https://doi.org/10.
1145/379486.379512.

[67] Raymond M. Smullyan. Logicians Who Reason about Themselves. In Proceedings of the 1986
Conference on Theoretical Aspects of Reasoning about Knowledge, TARK ’86, page 341–352,
San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc. ISBN 0934613049.

[68] Richmond H. Thomason. Combinations of tense and modality. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic, pages
135–165. Springer Netherlands, Dordrecht, 1984. ISBN 978-94-009-6259-0.

[69] Johan van Benthem. Epistemic Logic and Epistemology: The State of Their Affairs. Philosoph-
ical Studies: An International Journal for Philosophy in the Analytic Tradition, 128(1):49–76,
2006.

[70] Johan van Benthem. Dynamic logic for belief revision. Journal of Applied Non-Classical
Logics, 17(2):129–155, 2007.

[71] Johan van Benthem, Jelle Gerbrandy, and Barteld P. Kooi. Dynamic Update with Probabilities.
Stud Logica, 93(1):67–96, 2009.

14

[72] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
Marginal Value of Adaptive Gradient Methods in Machine Learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 4148–4158. Curran Associates, Inc., 2017.

[73] Cristobal Young. Model Uncertainty and the Crisis in Science. Socius, 4:2378023117737206,
2018. doi: 10.1177/2378023117737206.

[74] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural
network architecture generation. CVPR, 2018.

[75] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

15

