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A GP bandits: Useful definitions and auxiliary results (Realizable setting)

Assumed observation model. We say a real-valued random variable X is �-sub-Gaussian if it its
mean is zero and for all " 2 R we have
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⌘
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At every round t, the learner selects xt 2 D and observes the noisy function evaluation

yt = f(xt) + ⌘t, (27)

where we assume {⌘t}Tt=1 are �-sub-Gaussian random variables that are independent over time steps.
Such assumptions on the noise variables are frequently used in bandit optimization.

Typically, in kernelized bandits, we assume that unknown f 2 Fk(D;B) = {f 2 Hk(D) : kfkk 

B}, where Hk(D) is the reproducing kernel Hilbert space of functions associated with the given
positive-definite kernel function. Typically, the learner knows Fk(D;B), meaning that both k(·, ·)
and B are considered as input to the learner’s algorithm.

Example kernel functions. We outline some commonly used kernel functions k : D ⇥D ! R, that
we also consider:

• Linear kernel: klin(x, x0) = x
T
x
0,

• Squared exponential kernel: kSE(x, x0) = exp
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• Matérn kernel: kMat(x, x0) = 21�⌫
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where l denotes the length-scale hyperparameter, ⌫ > 0 is an additional hyperparameter that dictates
the smoothness, and J(⌫) and �(⌫) denote the modified Bessel function and the Gamma function,
respectively [34].

Maximum information gain. Maximum information gain is a kernel-dependent quantity that
measures the complexity of the given function class. It has first been introduced in [40], and since
then it has been used in numerous works on Gaussian process bandits. Typically, the upper regret
bounds in Gaussian process bandits are expressed in terms of this complexity measure.

It represents the maximum amount of information that a set of noisy observations can reveal about
the unknown f that is sampled from a zero-mean Gaussian process with kernel k, i.e., f ⇠ GP (0, k).
More precisely, for a set of sampling points S ⇢ D, we use fS to denote a random vector [f(x)]x2S ,
and YS to denote the corresponding noisy observations obtained as YS = fS + ⌘S , where ⌘S ⇠

N (0,�I). We note that under this setup after observing YS , the posterior distribution of f is a
Gaussian process with posterior mean and variance that correspond to Eq. (8) and Eq. (9).

The maximum information gain (about f ) after observing t noisy samples is defined as (see [40]):

�t(k,D) := max
S⇢D:|S|=t

I(fS ;YS) = max
S⇢D:|S|=t

1
2 |It + �

�1
Kt|, (28)

where I(·, ·) denotes the mutual information between random variables, | · | is used to denote a matrix
determinant, and Kt is a kernel matrix [k(xs, xs0)]s,s0t 2 Rt⇥t.

Under the previous setup (GP prior and Gaussian likelihood), the maximum information gain can be
expressed in terms of predictive GP variances:

�t(k,D) = max
{x1,...,xt}⇢D
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The proof of this claim can be found in [40, Lemma 5.3]. It also allows us to rewrite Eq. (12) from
Lemma 1 in the following frequently used form:

|f(x)� µt�1(x)| 
⇣

�

�1/2

p
2 ln(1/�) + 2�t�1 +B

⌘
�t�1(x). (30)

Next, we outline an important relation (due to [40]) frequently used to relate the sum of GP predictive
standard deviations with the maximum information gain. We use the formulation that follows from
Lemma 4 in [9]:
Lemma 3. Consider some kernel k : D ⇥ D ! R such that k(x, x)  1 for every x 2 D, and let
f ⇠ GP (0, k) be a sample from a zero-mean GP with the corresponding kernel function. Then for
any set of queried points {x1, . . . , xt} and � > 0, it holds that

tX

i=1

�i�1(xi) 
p

(2�+ 1)�tt. (31)

Finally, we outline bounds on �t(k,D) for commonly used kernels as provided in [40]. An important
observation is that the maximum information gain is sublinear in terms of number of samples t for
these kernels.
Lemma 4. Let d 2 N and D ⇢ Rd be a compact and convex set. Consider a kernel k : D ⇥D ! R
such that k(x, x)  1 for every x 2 D, and let f ⇠ GP (0, k) be a sample from a zero-mean
Gaussian Process (supported on D) with the corresponding kernel function. Then in case of

• Linear kernel: �t(klin,D) = O(d log t),

• Squared exponential kernel: �t(kSE,D) = O((log t)d+1),

• Matérn kernel: �t(kMat,D) = O(td(d+1)/(2⌫+d(d+1)) log t).

We also note that the previous rates in case of the Matérn kernel have been recently improved to:

O

⇣
t

d
2⌫+d (log t)

2⌫
2⌫+d

⌘
in [43].
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B Proofs from Section 3.2 (EC-GP-UCB)

B.1 EC-GP-UCB with known misspecification

Theorem 1. Suppose the learner’s hypothesis class is Fk(D;B) for some fixed B > 0 and D ⇢ Rd.
For any f

⇤ defined on D and ✏ � 0 such that minf2Fk(D;B) kf � f
⇤
k1  ✏, EC-GP-UCB with

enlarged confidence Eq. (15) and known ✏, achieves the following regret bound with probability at
least 1� �:
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Proof. From the definition of RT in Eq. (4) (also recall the definition of f̃ from Eq. (6)), we have:
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where Eq. (33) follows from the validity of the enlarged confidence bounds (by combining Lemmas 1
and 2) and Eq. (34) follows from the selection rule of EC-GP-UCB (Eq. (14)). Finally, Eq. (38) is
due to Eq. (31), and Eq. (39) follows by upper-bounding �T as in Eq. (30).

B.2 EC-GP-UCB and unknown misspecification

In this section, we outline the main hindrance with the analysis of EC-GP-UCB (or GP-UCB [40])
when ✏ is unknown. We start with the definition of RT (Eq. (4)) and repeat the initial steps as in
Eq. (33):
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Since ✏ is unknown here, we cannot repeat the analysis from the previous section as the learner cannot
choose:

argmax
x2D

µ
⇤
t�1(x) +

�
�t +

✏
p
tp
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�
�t�1(x).

Instead, it can select:
xt 2 argmax

x2D
µ
⇤
t�1(x) + �t�t�1(x),
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which corresponds to the standard GP-UCB algorithm when ✏ = 0. By using this rule in Eq. (42), we
can arrive at:

RT 
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While the first two terms in this bound can be effectively controlled and bounded as in the proof
of Theorem 1, the last term, i.e.,

PT
t=1

✏
p
tp
�
�t�1(x⇤), poses an issue since we cannot ensure that

PT
t=1 �t�1(x⇤) is decaying with t, similarly to

PT
t=1 �t�1(xt).

C Optimal dependence on misspecification parameter

In this section, we argue that a joint dependence on T ✏ is unavoidable in cumulative regret bounds. We
consider the noiseless case, and we let the domain be the unit hypercube D = [0, 1]d. Consider some
function f(x) defined on D such that f(x) 2 [�2⇣, 2⇣] for every x 2 D. Moreover, let f(x) satisfy
the constant RKHS norm bound B, and let there exist a non-empty region W ⇢ D where f(x) � ⇣

for every x 2 W . Such a function can easily be constructed, e.g., via the approach outlined in [36].

Now suppose that ✏ = 2⇣ and let the true unknown function f
⇤ be 0 everywhere in D, except at

a single point x 2 W where it is 2⇣. Hence, any algorithm that tries to optimize f
⇤ will only

observe 0-values almost surely, since sampling at the point where the function value is ✏ = 2⇣ is a
zero-probability event. Hence, after T rounds, regardless of the sampling algorithm, ⌦(✏T ) regret
will be incurred. Finally, it is not hard to see that kf � f

⇤
k1  2⇣ = ✏, and so there exists a function

of bounded RKHS norm that is ✏ pointwise close to f
⇤.

D Proofs from Section 3.3 (Phased GP Uncertainty Sampling)

We start this section by outlining the following auxiliary lemma and then we proceed with the proof
of Theorem 2. The following lemma provides an upper bound on the difference between the mean
estimators obtained from querying the true and best-in-class functions, respectively. Here, for the
sake of analysis, we use µt(·) to denote the hypothetical mean estimator in case m noisy observations
of the best-in-class function are available.
Lemma 2. For any x 2 D, t � 1 and � > 0, we have

|µt(x)� µ
⇤
t (x)| 

✏
p
tp
�
�t(x), (16)

where µt(·) and µ
⇤
t (·) are defined as in Eq. (8) and Eq. (11), respectively, and �t(·) is from Eq. (9).

Proof. Our proof closely follows the one of [4, Lemma 2], with the problem-specific difference at
the very end of the proof (see Eq. (53)).

Let x be any point in D, and fix a time index t � 1. Recall that Y ⇤
t = [y⇤1 , . . . , y

⇤
t ] where each y

⇤
i for

i  t, is obtained as in Eq. (1). Following upon Eq. (7), we can write Yt = [y⇤1 �m(x1), . . . , y⇤t �

m(xt)] which correspond to the hypothetical noisy observations of the function belonging to the
learner’s RKHS. From the definitions of µt(·) and µ

⇤
t (·), we have:

|µ
⇤
t (x)� µt(x)| = |kt(x)

T (Kt + �It)
�1

Y
⇤
t � kt(x)

T (Kt + �It)
�1

Ỹt| (46)

= |kt(x)
T (Kt + �It)

�1
mt|, (47)

where mt = [m(x1), . . . ,m(xt)]. We proceed by upper bounding the absolute difference, i.e.,
|kt(x)T (Kt + �It)�1

mt|, but first we define some additional terms.
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Let Hk(D) denote the learner’s hypothesis space, i.e., RKHS of functions equipped with inner-
product h·, ·ik and corresponding norm k · kk. This space is completely determined by its associated
k(·, ·) that satisfies: (i) k(x, ·) 2 Hk(D) for all x 2 D and (ii) f(x) = hf, k(x, ·)ik for all x 2 D

(reproducing property). Due to these two properties and by denoting �(x) := k(x, ·), we can
write k(x, x0) = hk(x, ·), k(x0

, ·)ik = h�(x),�(x0)ik for all x, x0
2 D. Moreover, let �t denote

operator �t : Hk(D) ! Rt, such that for every f 2 Hk(D) and i 2 {1, . . . , t}, we have (�tf)i =
h�(xi), fik, and also let �⇤

t denote its adjoint �⇤
t : Rt

! Hk(D). We can then write Kt = �t�⇤
t ,

and kt(x) = �t�(x). We also define the weighted norm of vector x, by kxk� =
p
hx,�xi.

By using the following property of linear operators:
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where Eq. (49) is by Cauchy-Schwartz, and Eq. (51) follows from the following standard identity
(see, e.g., Eq. (50) in [4]):

�t(x) = �
1/2

k�(x)k(�⇤
t�t+�Ik)�1 . (55)

Finally, �max(·) denotes a maximum eigenvalue in Eq. (53), and Eq. (54) follows since for � > 0,
we have �max(Kt(Kt + �It)�1)  1, as well as by upper bounding kmtk2 

p
tkmtk1 where

kmtk1  ✏ which holds by definition of m(·) (see Eq. (7)).

Now, we are ready to state the proof of Theorem 2.
Theorem 2. Suppose the learner’s hypothesis class is Fk(D;B) for some fixed B > 0 and D ⇢ Rd.
For any f⇤ defined on D and ✏ � 0 such that minf2Fk(D;B) kf �f

⇤
k1  ✏, Phased GP Uncertainty

Sampling (Algorithm 2) achieves the following regret bound with probability at least 1� �:

R
⇤
T = Õ

⇣
B

p
�TT +

p
(ln(1/�) + �T )�TT + ✏T

p
�T

⌘
.

Proof. We present the proof by splitting it into three main parts. We start with episodic
misspecification.

Episodic misspecification. First, we bound the absolute difference between the misspeci-
fied mean estimator µ

⇤
me

(·) (from Eq. (11)) and best-in-class function f 2 Fk(D;B) (i.e.,
f 2 argminf2Fk(D;B) kf � f

⇤
k1  ✏ ) at the end of some arbitrary episode e. Also, µm(·) is

defined in Eq. (8), where noisy observations in the definition correspond to f(·).

For any x 2 De, we have:

|µ
⇤
me

(x)� f(x)| = |µ
⇤
me

(x) + µme(x)� µme(x)� f(x)| (56)
 |µ

⇤
me

(x)� µme(x)|+ |µme(x)� f(x)| (57)


✏�me(x)

p
me

p
�

+ �me+1�me(x). (58)

Here, Eq. (57) follows from triangle inequality, and Eq. (58) follows from Lemmas 1 and 2.
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Next, we make the following observation:

max
x2D

�me(x) 
1
me

meX

t=1

�t�1(xt) (59)


1
me

p
me(1 + 2�)�me(k,D) =

s
(1 + 2�)�me(k,D)

me
, (60)

where Eq. (59) follows from the definition of xt (see Eq. (19)) and the fact that �t�1(·) is
non-increasing in t. Finally, we used the result from Lemma 3 to arrive at Eq. (60) together with
�me(k,De)  �me(k,D) since De ✓ D.

By upper bounding �me(x) in the first term in Eq. (58) with maxx2D �me(x), and by using the
upper bound obtained in Eq. (60), we have that for any x 2 De, it holds:

|µ
⇤
me

(x)� f(x)|  �me+1�me(x) + ✏

p
(2 + ��1)�me(k,D). (61)

Elimination. Because the algorithm does not use the "valid" confidence bounds for the best-in-class
f in Eq. (20), it can eliminate its maximum even after the first episode. However, we show that there
always remains a point x̂e that is "close" to the best point (defined below) in every episode e.

Let De denote the remaining points at the beginning of the episode e (in Algorithm 2) and let
x̂e = argmaxx2De

{µ
⇤
me

(x)� �me+1�me(x)}. We note that this point will remain in De+1 accord-
ing to the condition in Eq. (20) for retaining points. Next, we assume the worst-case scenario that the
optimal point x⇤

e = argmaxx2De
f(x) is eliminated at the end of the episode, i.e., x⇤

e /2 De+1. Then
it holds, due to the condition Eq. (20) inside the algorithm that (note that both x̂e and x

⇤
e are in De):

µ
⇤
me
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Next, by applying Eq. (61) to both sides, we obtain
f(x̂e) + ✏
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and by rearranging we obtain
2✏
p
(2 + ��1)�me(D) > f(x⇤

e)� f(x̂e), (64)
which bounds the difference between the function values of the optimal (possibly eliminated from
De+1) point and the one that is retained. We also note that for x⇤

e+1 = argmaxx2De+1
f(x), it holds

2✏
p
(2 + ��1)�me(D) > f(x⇤

e)� f(x⇤
e+1), (65)

since f(x̂e)  f(x⇤
e+1) and both x̂e, x

⇤
e+1 2 De+1.

Regret. We can now proceed to obtain the main regret bound. First, we show the following bound
that holds for every x 2 De. We let x⇤

e = argmaxx2De
f(x). Because both the considered point

x and x
⇤
e belong to De, it means that they are not eliminated in the previous episode. Hence, we have

f(x⇤
e)� f(x)  µ

⇤
me�1

(x⇤
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Here, Eq. (66) follows from applying Eq. (61) twice and using m = me�1. Next, Eq. (67) follows
from the rule in Eq. (20) for retaining points in the algorithm and by noting that x 2 De. Finally,
Eq. (69) follows from Eq. (60).

We proceed to upper bound the total regret of our algorithm. We upper bound R
⇤
T by providing an

upper bound for RT and using the fact that R⇤
T  RT + 2✏T . We also use Re to denote the regret

incurred in episode e, x(e)
t to denote the selected point at time t in episode e, and E  dlog2 T e

to denote the total number of episodes. Finally, we consider f 2 argminf2Fk(D;B) kf � f
⇤
k1 and

denote x
⇤ = argmaxx2D f(x). It follows that
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In Eq. (71), we used m1 = 1 and the fact that bounds on the RKHS norm imply bounds on the
maximal function value if the kernel k(·, ·) is bounded (in our case, k(x, x)  1 for every x):

|f(x)| = |hf, k(x, ·)ik|  kfkkkk(x, ·)kk = kfkkhk(x, ·), k(x, ·)i
1/2
k = B ·k(x, x)1/2  B. (76)

Finally, Eq. (73) follows from Eq. (69), and in Eq. (74) we used that �t is non-decreasing in t, and
�me�1(De�1)  �T (D). To obtain Eq. (75), we used that me = 2me�1.

It remains to upper bound the term that corresponds to misspecified elimination, i.e.,PE
e=2 me(f(x⇤) � f(x⇤

e)). First, we note that by Eq. (65) and monotonicity of �t(D) both
in t and D, we have

f(x⇤)� f(x⇤
e) = f(x⇤)� f(x⇤

2) + f(x⇤
2)� · · ·� f(x⇤

e�1) + f(x⇤
e�1)� f(x⇤

e) (77)

<

e�1X

i=1

2✏
p

(2 + ��1)�mi(D) (78)



eX

i=2

2✏
p

(2 + ��1)�me(D) = 2(e� 1)✏
p
(2 + ��1)�me(D). (79)

Hence, we obtain
EX

e=2

me(f(x
⇤)� f(x⇤

e))  2✏
p
(2 + ��1)�mE (D)

EX

e=2

me(e� 1) (80)

 6✏T (log T )
p
(2 + ��1)�T (D) (81)
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Finally, by combining Eq. (75) with Eq. (81), we obtain

RT = O

✓
✏T (log T )

p
�T (D) + �T

p
T�T (D)

◆
. (82)

The final result follows by upper-bounding �T as in Eq. (30).

E Contextual misspecified setting results

To show the main result of section Section 4 (i.e., Proposition 1), we make use of the following
theorem established in [32]. We recall it here for the sake of completeness.
Theorem 3 (Theorem 5.5 in [32]). Let the regret bounds for all base learners i 2 [M ] be of the
form:

Ri(t) = min{c1
p

t+ c2✏̂it, t},

where ✏̂i 2 (0, 1] and c1, c2 > 1 are quantities that do not depend on ✏̂i and t. The regret of
Algorithm 3 is bounded for all T with probability at least 1� �:

R
⇤
T = O

⇣
Mc1

p

T

q
ln M lnT

� +Mc2✏̂i⇤T

q
ln M lnT

� +Mc
2
1

⌘
. (83)

Here, i⇤ is any consistent base algorithm, i.e., ✏̂i  ✏̂i⇤ for all inconsistent algorithms.

To apply this theorem together with our EC-GP-UCB algorithm, we note that the bound obtained for
EC-GP-UCB in Theorem 1 is of the following form:

R̃i(t) = min{c01(B
p
�t + �t)

p

t+ c
0
2✏i

p
�tt, t}. (84)

In Algorithm 3, we make use of the following candidate upper bound instead:

Ri(Ni(t)) = min{c01(B
p
�T + �T )

p
Ni(t) + c

0
2✏i

p
�TNi(t), t}, (85)

where Ni(t) is the number of times algorithm i was played up to time t. Here, due to monotonicity and
t  T , we have that �T � �Ni(t), and hence we can replace �Ni(t) with �T in R̃i(Ni(t)). Moreover,
we set c1 = c

0
1(B

p
�T + �T ) and c

0
2
p
�T in Theorem 3. Both c1 and c2 are then independent of

Ni(t). We also note that we can suitably set � (in Eq. (39)) such that c1, c2 > 1.

Hence, we can use the result of Theorem 3 to obtain the following regret bound:

R
⇤
T = O

⇣
Mc

0
1(B

p
�T + �T )

p

T + c
0
2
p
�T ✏̂i⇤T )

q
ln M lnT

� +M(c01)
2(B

p
�T + �T )

2
⌘
. (86)

We can then set M = d1 + log2(
p
T/�T )e and ✏̂i = 21�i

p
�T

, because we have for ✏̂1 = 1p
�T

that

Ri(t) = t (which always holds) and, for ✏̂M we have RM (t)  2c01(B
p
�T + �T )

p
T which is only

a constant factor away from the bound when ✏ = 0. Hence, by taking a union bound over events that
consistent and inconsistent candidate regret bounds hold and do not hold, respectively, we can then
state that with probability at least 1�M�, it holds that

R
⇤
T = Õ

⇣
(B

p
�T + �T )

p

T + ✏T
p
�T + (B

p
�T + �T )

2
⌘
. (87)
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