
A Geometry of the Sphere

We analyze here briefly some basic notions of the geometry of the sphere that we use in our algorithm
and convergence analysis. We refer the reader to [1, p. 73–76] for a more comprehensive presentation.

Tangent Space: The tangent space of the r-dimensional sphere Sr at a point p is an r-dimensional
vector space, which generalizes the notion of tangent plane in two dimensions. We denote it by TpSr
and a vector v belongs in it, if and only if, it can be written as α̇(0), where α : (−ε, ε) → Sr (for
some ε > 0) is a smooth curve with α(0) = p. The tangent space at p can be given also in an explicit
way, as the set of all vectors in Rr+1 orthogonal to p with respect to the usual inner product. Given
a vector w ∈ Rr+1, we can always project it orthogonally in any tangent space of Sr. Taking all
vectors to be column vectors, the orthogonal projection in TpSr satisfies

Pp(w) = (I − ppT )w.

Geodesics: Geodesics on high-dimensional surfaces are defined to be locally length-minimizing
curves. On the d-dimensional sphere, they coincide with great circles. These can be computed
explicitly and give rise to the exponential and logarithmic maps. The exponential map at a point p is
defined as expp : TpSr → Sr with expp(v) = c(1), with c being the (unique) geodesic (i.e., length
minimizing part of great circle) satisfying c(0) = p and ċ(0) = v. Defining the exponential map in
this way makes it invertible with inverse logp. The exponential and logarithmic map are given by
well-known explicit formulas:

expp(v) = cos(∥v∥)p+ sin(∥v∥) v

∥v∥
, logp(q) = arccos(⟨q, p⟩) Pp(q − p)

∥Pp(q − p)∥
. (5)

The distance between points p and q measured intrinsically on the sphere is

dist(p, q) = ∥ logp(q)∥ = arccos(⟨q, p⟩). (6)

Notice that ⟨q, p⟩ = ∥q∥∥p∥ cos(∠(p, q)) = cos(∠(p, q)), thus the distance of p and q is actually the
angle between them.

The inner product inherited by the ambient Euclidean space Rr+1 provides a way to transport vectors
from a tangent space to another one, parallelly to the geodesics. This operation is called parallel
transport and constitutes an orthogonal isomorphism between the two tangent spaces. We denote Γq

p

for the parallel transport from TpM to TqM along the geodesic connecting p and q. If q = expp(tv),
then parallel transport is given by the formula

Γq
pu =

(
Id + cos(t∥v∥ − 1)

vvT

∥v∥2
− sin(t∥v∥) pv

t

∥v∥

)
u.

Riemannian Gradient: Given a function f : Sr → R, we can define its differential at a point p in a
tangent direction v ∈ TpSr as

df(p)v = lim
t→0

f(α(t))− f(p)

t
,

where α : (−ε, ε) → Sr is a smooth curve defined such that α(0) = p and α̇(0) = v. Using this
intrinsically defined Riemannian differential, we can define the Riemannian gradient at p as a vector
gradf(p) ∈ TpSr, such that

⟨gradf(p), v⟩ = df(p)v,

for any v ∈ TpSr. In the case of the sphere, we can also compute the Riemannian gradient by
orthogonally projecting the Euclidean gradient∇f(p) computed in the ambient space into the tangent
space of p:

gradf(p) = Pp(∇f(p)).

Geodesic Convexity and Smoothness: In this paragraph we define convexity-like properties in the
context of the sphere, which we employ in our analysis.

Definition 11. A subset A ⊆ Sr is called geodesically uniquely convex, if every two points in A are
connected by a unique geodesic.
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Open hemispheres satisfy this definition, thus they are geodesically uniquely convex. Actually, they
are the biggest possible subsets of the sphere with this property.
Definition 12. A smooth function f : A → R is called geodesically γ-smooth if

∥gradf(p)− Γp
qgradf(q)∥ ≤ γ dist(p, q)

for any p, q ∈ A.

Definition 13. A smooth function f : A → R defined in a geodesically uniquely convex subset
A ⊂ Sr is called geodesically a-weakly-quasi-convex (for some a > 0) with respect to a point p ∈ A
if

a(f(x)− f(p)) ≤ ⟨gradf(x),− logx(p)⟩ for all x ∈ A.

Observe that weak-quasi-convexity implies that any local minimum of f lying in the interior of A is
also a global one.
Definition 14. A function f : A → R is said to satisfy quadratic growth condition with constant µ, if

f(x)− f∗ ≥ µ

2
dist2(x, x∗) for all x ∈ A,

where f∗ is the minimum of f and x∗ the global minimizer of f closest to x.

Quadratic growth condition is slightly weaker than the so-called gradient dominance one:
Definition 15. A function f : A → R is said to be µ-gradient dominated if

f(x)− f∗ ≤ 1

2µ
∥gradf(x)∥2 for all x ∈ A.

Gradient dominance with constant µ implies quadratic growth with the same constant. The proof can
be done by a direct Riemannian adaptation of the argument from [18, p. 13–14].

Tangent Space Distortion: The only non-trivial geometric result we use in this work is that the
geodesics of the sphere spread more slowly than in a flat space. This is a direct application of the
Rauch comparison theorem since the sphere has constant positive curvature.
Proposition 16. Let ∆abc a geodesic triangle on the sphere. Then we have

dist(a, b) ≤ ∥ logc(a)− logc(b)∥.

Notice that in Euclidean space we have equality in this bound.

B Properties of the Cost and Convergence of Single-Node Gradient Descent

In this appendix, we will prove the convergence of Riemannian gradient descent applied to

min
x∈Sd−1

f(x) with f(x) = −xTAx

and A ∈ Rd×d a symmetric and positive definite matrix. In the following, we will denote the
eigenvalues of A by λ1 > λ2 ≥ · · · ≥ λd > 0 and their corresponding orthonormal eigenvectors by
v1, v2, . . . , vd. Denote the spectral gap by δ = λ1 − λ2 > 0.

Let f∗ = −λ1 denote the minimum of f on Sd−1 which is attained at x∗ = v1.
Proposition 1. The function f(x) = −xTAx satisfies

2a(f(x)− f∗) ≤ ⟨gradf(x),− logx(x
∗)⟩

for any x ∈ Ba with a > 0.

Proof. For any x ∈ Ba, we can write

x =

d∑
i=1

αivi, Ax =

d∑
i=1

λiαivi (7)
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for some scalars αi. Recall that α1 ≥ a > 0 by definition (2) of Ba.

With the orthogonal projector Px = I − xxT onto the tangent space TxSd−1, we get from (5) that

⟨gradf(x),− logx(x
∗)⟩ = ⟨Px∇f(x),

dist(x, x∗)

∥Px(x− x∗)∥
Px(x− x∗)⟩

=
dist(x, x∗)

∥Px(x− x∗)∥
⟨Px∇f(x), x− x∗⟩.

because P 2
x = Px.

Direct calculation now gives

⟨Px∇f(x), x− x∗⟩ = −2xTAx+ 2⟨Ax, x∗⟩ − 2f(x)∥x∥2 + 2f(x)⟨x, x∗⟩
= 2f(x) + 2λ1α1 − 2f(x) + 2f(x)α1

= 2α1(f(x) + λ1) = 2α1(f(x)− f∗) ≥ 0.

It is easy to verify that dist(x, x∗) ≥ ∥Px(x− x∗)∥. We thus obtain

⟨gradf(x),− logx(x
∗)⟩ ≥ 2α1(f(x)− f∗),

which gives the desired result since α1 ≥ a.

Proposition 2. The function f(x) = −xTAx satisfies

f(x)− f∗ ≥ δ

4
dist2(x, x∗)

for any x ∈ Ba with a > 0.

Proof. The proof follows the one in [30, Lemma 2]. Using the expansions in (7), we get

xTAx =

d∑
i=1

λiα
2
i = λ1α

2
1 +

d∑
i=2

λiα
2
i ≤ λ1α

2
1 + λ2(1− α2

1)

since ∥x∥2 = 1 =
∑d

i=1 α
2
i . From (6), we have that α1 = cos(dist(x, x∗)) and so

xTAx ≤ λ1 cos
2(dist(x, x∗)) + λ2 sin

2(dist(x, x∗)).

Direct calculation now shows

f(x)− f∗ = −xTAx+ λ1 ≥ λ1 − λ1 cos
2(dist(x, x∗))− λ2 sin

2(dist(x, x∗))

= λ1 sin
2 dist(x, x∗))− λ2 sin

2(dist(x, x∗)) = δ sin2(dist(x, x∗)).

Since x ∈ Ba with a > 0, we have that x and x∗ are in the same hemisphere and thus d =
dist(x, x∗) ≤ π/2. The desired result follows using sin(ϕ) ≥ ϕ/2 for 0 ≤ ϕ ≤ π/2.

Proposition 3. A function f : Sd−1 → R which satisfies quadratic growth with constant µ > 0 and
is 2a-weakly-quasi-convex with respect to a minimizer x∗ in a ball of this minimizer, satisfies for any
x in the same ball the inequality

f(x)− f∗ ≤ 1

a
⟨gradf(x),− logx(x

∗)⟩ − µ

2
dist2(x, x∗).

Proof. From quadratic growth and weak-quasi-convexity, we have

µ

2
dist2(x, x∗) ≤ f(x)− f∗ ≤ 1

2a
⟨gradf(x),− logx(x

∗)⟩.

Now, again by weak-quasi-convexity

f(x)− f∗ ≤ 1

2a
⟨gradf(x),− logx(x

∗)⟩+ µ

2
dist2(x, x∗)− µ

2
dist2(x, x∗)

≤ 1

a
⟨gradf(x),− logx(x

∗)⟩ − µ

2
dist2(x, x∗)

by substituting the previous inequality.
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Proposition 4. The function f(x) = −xTAx satisfies

∥gradf(x)∥2 ≥ δa2(f(x)− f∗)

for any x ∈ Ba with a > 0.

Proof. By Proposition 3, we have

f(x)− f∗ ≤ 1

a
⟨gradf(x),− logx(x

∗)⟩ − δ

4
dist2(x, x∗)

since, in our case, µ = δ/2. Using ⟨x, y⟩ ≤ 1
2 (∥x∥

2 + ∥y∥2) for all x, y ∈ Rd, we can write for any
positive ρ that

⟨gradf(x),− logx(x
∗)⟩ ≤ ρ

2
∥gradf(x)∥2 + 1

2ρ
∥ logx(x∗)∥2.

Combining with ρ = 2
aδ and using (6), we get

f(x)− f∗ ≤ 1

a

1

aδ
∥gradf(x)∥2 + 1

a

aδ

4
dist2(x, x∗)− δ

4
dist2(x, x∗) =

1

a2δ
∥gradf(x)∥2.

Proposition 5. The function f(x) = −xTAx is geodesically 2λ1-smooth on the sphere.

Proof. The proof can be found also in [14, Lemma 1]. For p ∈ Sd−1 and v ∈ TpSd−1 with ∥v∥ = 1,
we have that the Riemannian Hessian of f satisfies

⟨v,∇2f(p)v⟩ = ⟨v,−(I − ppT )2Av + pT 2Apv⟩ = −2vTAv + 2pTAp ≤ 2λ1

because vTAv ≥ 0 (since A is symmetric and positive semi-definite) and pTAp ≤ λ1, by the
definition of eigenvalues and ∥p∥ = 1. We have also used that ∥v∥ = 1 and ⟨p, v⟩ = 0. Notice
now that the largest eigenvalue of the Hessian is the maximum of ⟨v,∇2f(p)v⟩ over all v ∈ TpSr
with ∥v∥ = 1, thus less or equal than 2λ1. This result easily implies Def. 12, since the Riemannian
Hessian is the covariant derivative of the Riemannian gradient.

Proposition 6. An iterate of Riemannian gradient descent for f(x) = −xTAx starting from a point
x(t) ∈ Ba and with step-size η ≤ a/γ where γ ≥ 2λ1, produces a point x(t+1) that satisfies

dist2(x(t+1), x∗) ≤ (1− aµη) dist2(x(t), x∗) for µ = δ/2.

Proof. By definition of x(t+1), we have logx(t)(x(t+1)) = −η gradf(x(t)). Applying Proposition 16,
we can thus write

dist2(x(t+1), x∗) ≤ ∥ − η gradf(x(t))− logx(t)(x∗)∥2

= η2∥gradf(x(t))∥2 + ∥logx(t)(x∗)∥2 + 2η⟨gradf(x(t)), logx(t)(x∗)⟩.

By Proposition 3 and 5, we have

1

a
⟨gradf(x(t)), logx(t)(x∗)⟩ ≤ f∗ − f(x(t))− µ

2
dist2(x(t), x∗)

≤ − 1

2γ
∥gradf(x(t))∥2 − µ

2
dist2(x(t), x∗).

Multiplying with 2ηa and using η ≤ a/γ, we get

2η⟨gradf(x(t)), logx(t)(x∗)⟩ ≤ −ηa

γ
∥gradf(x(t))∥2 − µηa dist2(x(t), x∗)

≤ −η2∥gradf(x(t))∥2 − µηa dist2(x(t), x∗).

Substituting to the first inequality, we get the desired result.
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C Convergence of Distributed Gradient Descent on the Sphere

Lemma 8. If η ≤ cos(D)
γ , the previous quantized gradient descent algorithm produces iterates x(t)

and quantized gradients q(t) that satisfy

dist2(x(t), x∗) ≤ ξtD2, ∥q(t)i − gradfi(x(t))∥ ≤ θR(t)

2n
, ∥q(t) − gradf(x(t))∥ ≤ θR(t).

Proof. We do the proof by induction. We start from the case that t = 0. The first inequality is direct
by the definition of D.

For the second one we have

∥gradfi(x(0))− gradfi0(x
(0))∥ ≤ ∥gradfi(x(0))∥+ ∥gradfi0(x

(0))∥ ≤ 2γπ

and by the definition of quantization, we get

∥gradfi(x(0))− q
(0)
i ∥ ≤

θR(0)

2n
.

Similarly for the third one, we have

∥gradf(x(0))− r(0)∥ ≤
n∑

i=1

∥gradfi(x(0))− q
(0)
i ∥ ≤

θR(0)

2
.

Then,

∥r(0) − gradfi(x(0))∥ ≤ ∥r(0) − gradf(x(0))∥+ ∥gradf(x(0))− gradfi(x(0))∥ ≤ θR(0)

2
+ 2πγ.

By the definition of the quantization, we have

∥q(0) − gradf(x(0))∥ ≤ θR(0)

2
≤ θR(0).

We assume now that the inequalities hold for t and we wish to prove that they continue to hold for
t+ 1.

We start with the first one and denote by x̃(t+1) the iteration of exact gradient descent starting from
x(t). Since dist(x(t), x∗) ≤ D, we have that x(t) ∈ Ba with a = cos(D).

We have

dist(x(t+1), x∗) ≤ dist(x(t+1), x̃(t+1)) + dist(x̃(t+1), x∗) ≤ ∥ηgradf(x(t))− ηq(t)∥+
√
σdist(x(t), x∗).

We have the last inequality, because dist(x̃(t+1), x∗) ≤
√
σdist(x(t), x∗) by Proposition 6 and

dist(x(t+1), x̃(t+1)) ≤ ∥ logx(t)(x(t+1))− logx(t)(x̃(t+1))∥ = ∥ηgradf(x(t))−ηq(t)∥ by Proposition
16.

Thus

dist(x(t+1), x∗) ≤ a

γ
θR(t) +

√
σ(
√
ξ)tD ≤ θK(

√
ξ)tD +

√
σ(
√

ξ)tD ≤ (θK +
√
σ)(
√

ξ)tD ≤ (
√
ξ)t+1D

which concludes the induction for the first inequality.

For the second inequality, we have

∥gradfi(x(t+1))− Γx(t+1)

x(t) q
(t)
i ∥ ≤ ∥gradfi(x(t+1))− Γx(t+1)

x(t) gradfi(x(t))∥+ ∥Γx(t+1)

x(t) gradfi(x(t))− Γx(t+1)

x(t) q
(t)
i ∥

≤ γidist(x(t+1), x(t)) + ∥gradfi(x(t))− q
(t)
i ∥

≤ 2
γ

n
(
√
ξ)tD + θ

R(t)

n
= 2

γ

n
(
√

ξ)tD + θγK(
√

ξ)tD/n

= (2/K + θ)Kγ(
√

ξ)tD/n ≤ (
√
σ + θK)Kγ(

√
ξ)tD/n =

R(t+1)

n
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and by the definition of the quantization scheme, we have

∥gradfi(x(t+1))− q
(t+1)
i ∥ ≤ θR(t+1)

2n
.

For the third inequality, we have

∥r(t+1) − gradf(x(t+1))∥ ≤
n∑

i=1

∥q(t+1)
i − gradfi(x(t+1))∥ ≤ θR(t+1)

2

and

∥r(t+1) − Γx(t+1)

x(t) q(t)∥ ≤ ∥r(t+1) − gradf(x(t+1))∥+ ∥gradf(x(t+1))− Γx(t+1)

x(t) gradf(x(t))∥

+ ∥Γx(t+1)

x(t) gradf(x(t))− Γx(t+1)

x(t) q(t)∥

≤ θR(t+1)

2
+ γdist(x(t+1), x(t)) + θR(t)

≤ θR(t+1)

2
+R(t+1) =

(
1 +

θ

2

)
R(t+1)

by using again the argument for deriving the second inequality. The last inequality implies that

∥gradf(x(t+1))− q(t+1)∥ ≤ θR(t+1)

2

by the definition of quantization. Summing the two last inequalities completes the induction.

Theorem 9. Let η ≤ cos(D)
γ . Then, the previous quantized gradient descent algorithm needs at most

b = O
(
nd

1

cos(D)δη
log

(
n

cos(D)δη

)
log

(
D

ϵ

))
bits in total to estimate the leading eigenvector with an accuracy ϵ measured in intrinsic distance.

Proof. For computing the cost of quantization at each step, we use Proposition 7.

The communication cost of encoding each gradfi at t = 0

O

(
d log

2γπ
θR(0)

2n

)
= O

(
d log

4nγπ

θγKπ

)
≤ O

(
d log

2n

θ

)
.

Now we use that σ ≥ 1
2 and have

1

θ
=

4√
σ(1−

√
σ)
≤ 12

1− σ
=

12

cos(D)ηµ
.

Thus, the previous cost becomes

O

(
d log

2γπ
θR(0)

2n

)
= O

(
d log

n

cos(D)ηµ

)
.

The communication cost of deconding each q
(0)
i in the master node is

O

(
d log

2γπ + θR(0)

2
θR(0)

2

)
≤ O

(
d log

2γπ
θR(0)

2

)
= O

(
d log

1

cos(D)ηµ

)
.

This is because 2γπ ≥ θR(0)

2 .

Thus, the total communication cost at t = 0 is

O
(
nd log

n

cos(D)ηµ

)
.
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For t > 0, the cost of encoding gradfi’s is

O
(
nd log

R(t+1)/n

θR(t+1)/2n

)
= O

(
nd log

2

θ

)
= O

(
nd log

1

cos(D)ηµ

)
.

as before.

The cost of decoding in the master node is

O
(
nd log

(1 + θ/2)R(t+1)

θR(t+1)/2

)
= O

(
nd log

1

θ

)
= O

(
nd log

1

cos(D)ηµ

)
.

because θ/2 ≤ 1.

Thus, the cost in each round of communication is in general bounded by

O
(
nd log

(1 + θ/2)R(t+1)

θR(t+1)/2

)
= O

(
nd log

n

cos(D)ηµ

)
.

Our algorithm reaches accuracy a in function values if

dist(x(t), x∗) ≤ ϵ.

We can now write

dist2(x(t), x∗) ≤ ξtD2 ≤ e−(1−ξ)tD2.

Thus, we need to run our algorithm for

O
(

1

1− ξ
log

D

ϵ

)
≤ O

(
1

cos(D)µη
log

D

ϵ

)
many iterates to reach accuracy a.

The total communication cost for doing that is

O
(

1

cos(D)µη
log

D

ϵ
nd log

n

cos(D)ηµ

)
= O

(
nd

1

cos(D)µη
log

n

cos(D)µη
log

D

ϵ

)
Substituting

µ =
δ

2
by Proposition 2, we get

O
(
nd

1

cos(D)δη
log

n

cos(D)δη
log

D

ϵ

)
many bits in total.

D Initialization

D.1 Uniformly Random Initialization

We estimate numerically the constant c that is used in (3) of Section 5.1.

Let x(0) be chosen from a uniform distribution on the sphere Sd−1. We are interested in α1 = vT1 x
(0)

for some fixed v1 ∈ Sd−1. By spherical symmetry, α1 is distributed in the same way as the first
component of x(0). Let Ad(h) be the surface of the hyperspherical cap of Sd−1 with height h ∈ [0, 1].
Then it is obvious that

P(|α1| ≥ a) = Ad(1− a)/Ad(1) = I1−a2(d−1
2 , 1

2 ),

where we used the well-known formula for Ad(h) in terms of the regularized incomplete Beta function
Ix(a, b); see, e.g., [21]. Solving the above expression2 for a when it equals a given probability 1− p,

2This can be conveniently done using https://docs.scipy.org/doc/scipy/reference/generated/
scipy.special.betaincinv.html
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we can calculate the interval [−1,−a]∪ [a, 1] in which α1 will lie for a random x(0) up to probability
1− p.

In the figure below, we have plotted these values of a divided by p/
√
d for p =

10−1, 10−2, 10−3, 10−4. Numerically, there is strong evidence that a ≥ cp/
√
d with c = 1.25.
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D.2 Initialization in the Leading Eigenvector of the Master

Proposition 10. Assume that our data are i.i.d. and sampled from a distribution D bounded in ℓ2
norm by a constant h. Given that the eigengap δ, the number of machines n and the total number of
data points m satisfy

δ ≥ Ω

(
√
m
√
n

√
log

d

p

)
, (4)

we have that the previous quantization costs O(nd) many bits and ⟨x(0), x∗⟩ is lower bounded by a
constant with probability at least 1− p.

Proof. By Lemma 3 in [14] we have that∥∥∥∥∥Ai0 −
1

m

n∑
i=1

Ai

∥∥∥∥∥
2

≤
32 log

(
d
p

)
h2

mi0

which implies that∥∥∥∥∥mAi0 −
n∑

i=1

Ai

∥∥∥∥∥
2

≤ 32
m2

mi0

log

(
d

p

)
h2 = 32mn log

(
d

p

)
h2

with probability at least 1− p. Of course
∑n

i=1 Ai = A.

From this bound we can derive a bound for the distance between the eigenvectors of the two matrices.
Indeed, using Lemmas 5 and 8 in [14], we can derive

1− ⟨vi0 , x∗⟩ ≤

√
128mn log

(
d
p

)
h

δ

and

⟨vi0 , x∗⟩ ≥ 1−

√
128mn log

(
d
p

)
h

δ
with probability at least 1 − p (note that the leading eigenvector of Ai0 is equal to the leading
eigenvector nAi0 ). This is because ⟨vi0 , x∗⟩ ≤ 1, which implies that ⟨vi0 , x∗⟩2 ≤ ⟨vi0 , x∗⟩.
We notice that the squared distance of vi0 and x∗ is

∥vi0 − x∗∥2 = ∥vi0∥2 + ∥x∗∥2 − 2⟨vi0 , x∗⟩ = 2(1− ⟨vi0 , x∗⟩) ≤ 2

√
128mn log

(
d
p

)
h

δ
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which is upper bounded by a constant by Assumption 4. The same holds for ∥vi − x∗∥, thus, by
triangle inequality we have an upper bound on ∥vi0 − vi∥ to be at most double of the upper bound
for ∥vi0 − x∗∥, thus it is still upper bounded by a constant. Since ⟨vi0 , x∗⟩ is lower bounded by
a constant, again by Assumption 4, we have that the ratio of the input to the output variance in
the quantization of vi0 is upper bounded by a constant. Thus, the total communication cost of this
quantization is O(nd).
By the definition of the quantization scheme, we get

∥x̃(0) − vi0∥ ≤ ⟨vi0 , x∗⟩
2(
√
2 + 2)

=: ζ.

For the projected vector x(0), we have

∥x(0) − vi0∥ ≤ ∥x̃(0) − vi0∥+ ∥x̃(0) − x(0)∥ ≤ 2∥x̃(0) − vi0∥ ≤ 2ζ

because x(0) is the closest point to x̃(0) belonging to the sphere and vi0 belongs also to the sphere.

By the triangle inequality, we have

∥x(0) − x∗∥ ≤ ∥vi0 − x∗∥+ ∥x(0) − vi0∥

which is equivalent to √
2(1− ⟨x(0), x∗⟩) ≤

√
2(1− ⟨vi0 , x∗⟩) + 2ζ.

Thus

⟨x(0), x∗⟩ ≥ ⟨vi0 , x∗⟩ −
√
2(1− ⟨vi0 , x∗⟩)ζ − 2ζ2 ≥ ⟨vi0 , x∗⟩ −

√
2ζ − 2ζ

= ⟨vi0 , x∗⟩ − (
√
2 + 2)ζ = ⟨vi0 , x∗⟩ − (

√
2 + 2)

⟨vi0 , x∗⟩
2(
√
2 + 2)

=
⟨vi0 , x∗⟩

2

with probability at least 1− p.

Since ⟨vi0 , x∗⟩ is lower bounded by a constant, ⟨x(0), x∗⟩ is also lower bounded by a constant and
we get the desired result.
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