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We first provide an overview about techniques used in proving the landscape (Theorem 1), linear
convergence to the ground truth (Theorem 2) and tensor initialization (Lemma 1).

1. Sample complexity scales in {rj}Kj=1: To guarantee the theoretical bounds depend on {rj}Kj=1
instead of d, we define an equivalent empirical risk function as shown in (12) in Appendix A, from
R

∑
j rj to R. Existing concentration theorems and landscape analysis built upon (2) can no longer be

used here, and thus we revised or updated the corresponding lemmas, which can be found in Appendix
G to I. In the initialization methods, for estimating a proper weights that match new empirical risk
function, the construction of high-momenta in Appendix B and corresponding proofs in Appendix J
are updated accordingly as well;

2. Local convex region: In proving Theorem 1 (Appendix C), we first bound the Hessian of the
expectation of the new empirical risk function and then obtain the distance of the Hessian of the
new empirical risk function to its expectation by concentration theorem. By triangle inequality, the
Hessian of the new empirical risk function is characterized in terms of sample size N ;

3. Linear Convergence: In proving Theorem 2 (Appendix D), we first characterize the gradient
descent term by Intermediate Value Theorem (IVT). However, since the empirical risk function is
non-smooth due to the ReLU activation function, IVT is applied in the expectation of the empirical
risk function instead, and we later show the gradient generated by finite number of samples is close
to its expectation. Therefore, the iterates still converge to the ground truth with enough samples.
Further, the linear convergence rate are determined by ‖W (t+1) −W ∗P ‖/‖W (t) −W ∗P ‖, which
turns out to be dependent on β;

4. Initialization via Tensor Method: The major challenge for tensor initialization is to construct the
proper high dimensional momenta. As we mentioned above, if one directly applies the method in
[69], the sample complexity is in Θ(d). In this paper, we select x̃ (see (20) in Appendix B), which is
the sum of the augmented xΩj . In proving Lemma 1, the major idea to bound the estimations of the
directions and magnitudes of wj,Ωj to the ground values, respectively (see in Appendix F).

A Notations

In this section, we first introduce some important notations that will be used in the following proofs,
and the notations are summarized in Table 1.

First, for the convenience of proofs, some notations in main contexts, namely, Ω∗j , r∗j and f̂D will be
re-defined. We emphasize here that the re-definition of these notations will not affect the presentation
of theoretical results in Section 3, and the explanations can be found in the following paragraphs.

Next, given a permutation matrix P , we define a group of sets {Ω∗j}Kj=1 with |Ω∗j | = r∗j , and Ω∗j
denotes the indices of non-zero entries inM∗P , which is also the non-pruned weights of the j-th
neuron in the oracle model with respect to ground truth weightsM∗P , instead ofM∗. Please note
that the sets {Ω∗j}Kj=1 and {r∗j }Kj=1 here are just a permutation of these in the main context. Since
the permutation of {rj}Kj=1 will not change the results in Section 3, we abuse the notations for the
convenience of proofs. Correspondingly, for the learner model, the indices of non-pruned weights of
the j-th neuron is denoted as Ωj , and |Ωj | = rj . Therefore, we have

wT
j x = wT

j,ΩjxΩj , (11)

where zΩj ∈ Rrj is the subvector of z with respect to indices Ωj for any vector z ∈ Rd.

Then, recall the empirical risk function defined in (2), it can be re-written as

f̂D(w̃) :=
1

2N

N∑
n=1

( 1

K

K∑
j=1

φ(wT
j,Ωjxn,Ωj )− yn

)2

, (12)
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Table 1: Table of Notations

Notation Description
N The number of training samples; a scalar in Z
K The number of neurons in the neural network; a scalar in R
d The dimension of input data; a scalar in R
x The input data/features; a vector in Rd
y The output label; a scalar in R
f̂D The empirical risk function defined in (12); a mapping from R

∑
j rj to R

f The population risk function defined as f = EDf̂D; a mapping from R
∑
j rj to R

P The permutation matrix; a binary matrix in {0, 1}K×K
W ∗ The ground truth weights of oracle network; a matrix in Rd×K
M∗ The mask matrix of the oracle network; a binary matrix in {0, 1}d×K
r∗j The number of non-pruned weights in the j-th neuron of oracle network
W The ground truth weights of learner network; a matrix in Rd×K
M The mask matrix of the learner network; a binary matrix in {0, 1}d×K
rj The number of non-pruned weights in the j-th neuron of learner network
rmin The minimal value in {rj}Kj=1

rmax The maximal value in {rj}Kj=1

Ω∗j The indices of non-pruned weights in teacher network; a set with size of r∗j
Ωj The indices of non-pruned weights in learner network; a set with size of rj
w̃ Contains the non-pruned weights of W and equals to

[wT
1,Ω1

,wT
2,Ω2

, · · · ,wT
K,ΩK

]T ; a vector in R
∑
j rj

w̃∗ Contains the non-pruned weights of the oracle model; a vector in R
∑
j rj

δi,j A binary scalar, and the value is 1 if Ωj and Ωk are overlapped and 0 otherwise
r̃ The value of 1

8K4

(∑
k

∑
j(1 + δj,k)(rj + rk)

1
2

)2
σi The i-th largest singular value of W ∗P , and the value equals to the i-th largest

singular value ofW ∗

κ The value of σ1/σK
γ The value of

∏K
i=1 σi/σK

ρ A fixed positive constant in R+

q Some large constant in R

where w̃ = [wT
1,Ω1

,wT
2,Ω2

, · · · ,wT
K,ΩK

]T ∈ R
∑
j rj . Here, we abuse the notation of f̂D to represent

a mapping from R
∑
j rj , instead of RK×d in (2), to R. In fact, under the constriant ofW = M �W ,

the degree of freedom ofW is actually
∑
j rj instead of Kd, and the definition in (2) is a easier way

for us to present the following proofs. Therefore, the optimization problem in (3) is equivalent as

min
w̃

: f̂D(w̃). (13)

Let us define w̃∗ = [w∗T1,Ω1
,w∗T2,Ω2

, · · · ,w∗TK,ΩK ]T ∈ R
∑
j rj , where w∗Tj is the j-th column of

W ∗P . and it is clear that w̃∗ is the global optimal to (13). Additionally, the population risk function,
which is the expectation of the empirical risk function over the data D, is defined as

f(w̃) = EDf̂D(w̃) =ED
1

2N

N∑
n=1

( 1

K

K∑
j=1

φ(wT
j,Ωjxn,Ωj )− yn

)2

=Ex
1

2

( 1

K

K∑
j=1

φ(wT
j,ΩjxΩj )− y

)2

,

(14)

where x ∈ Rd belongs to standard Gaussian distribution, and y = g(W ∗P ∗;x).

Moreover, for the convenience of proofs, we use σi to denote the i-th largest singular value of
W ∗P , and it is clear that σi(W ∗P ) = σi(W

∗) for all i. Then, κ is defined as σ1/σK , and
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γ =
∏K
i=1 σi/σK . Factor ρ is defined in Property 3.2 [69] and a fixed constant for the ReLU

activation function. In addition, without special descriptions, α = [αT1 ,α
T
2 , · · · ,αTK ]T stands for

any unit vector that in R
∑
j rj with αj ∈ Rrj . Therefore, we have

‖∇2f̂D‖2 = max
α
‖αT∇2f̂Dα‖2 = max

α

( K∑
j=1

αTj
∂f̂D
∂wj

)2

. (15)

Finally, since we focus on order-wise analysis, some constant number will be ignored in the majority
of the steps. In particular, we use h1(z) & ( or .,h)h2(z) to denote there exists some positive
constant C such that h1(z) ≥ ( or ≤,=)C · h2(z) when z ∈ R is sufficiently large.

B Initialization via tensor method

In this section, we present the revised tensor initialization based on that in [69]. To reduce the
dependency of input dimension from d to the order of rmax, we need to define x̃ in (20) instead
of directly using x to generate the high order momentum as shown in (21) to (23). In addition, as
wj,Ωj ’s are different in dimensions, we need to define the corresponding augmented weights by
inserting 0 such that augmented wj,Ωj are additive in a sense. The additional notations used in
presenting are summarized in Table 2, and one can skip this part if the focus is only on the local
convexity analysis (Theorem 1) and convergence analysis (Theorem 2). The intuitive reasons for
selecting x̃ mainly lie in two aspects: first, x̃ is much lower dimensional vector considering rj � d;
second, x̃ belongs to zero mean Gaussian distribution, which is rotational invariant and is correlate
with φ(w∗Tj x). Therefore, the magnitude and direction information of {wj,Ωj}Kj=1 are separable
after tensor decomposition, and the dimension of the tensors are at most in the order of rmax.

Table 2: Table of Additional Notations for Tensor method

Notation Description
x̃

(j)

Ω̃j
The argumented vector in Rrmax of xΩj by inserting 0; defined in (16)

Fj A linear mapping that generats a augmented vector; defined in (17)
F†j The pseudo inverse of Fj ; a linear mapping
x̃ The value of 1√

K

∑
j x̃

(j)

Ω̃j
;

u∗j The argumented vector in Rrmax of w∗j,Ωj by inserting 0; defined in (19)
u∗j The normalized vector of uj as u∗j/‖u∗j‖2
û
∗
j The estimation of the normalized vector of u∗j

ψ1, ψ2, ψ3 Some fixed constants depends on the distribution of {xΩj}Kj=1

M1 A vector in Rrmax defined in (21)
M̂1 The estimation ofM1

M2 A matrix in Rrmax×rmax defined in (22)
M̂2 The estimation ofM2

M3 A tensor in Rrmax×rmax×rmax defined in (23)
M̂3 The estimation ofM3

V The orthogonal matrix in RK×K that span the sub-space of the convex hull
of {uj}Kj=1

V̂ The estimation of V
M(V̂ , V̂ , V̂ ) A tensor in RK×K×K defined in (29)
M̂(V̂ , V̂ , V̂ ) The estimation ofM(V̂ , V̂ , V̂ )

sj The value of V u∗j ; a vector in RK
ŝj The estimation of sj
αj The value of ‖u∗j‖2; a scalar in R
α̂j The estimation of αj
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First, we define a group of augmented vectors {x̃(j)

Ω̃j
}Kj=1 based on {xΩj}Kj=1 such that Ωj ⊆ Ω̃j

with |Ω̃j | = rmax and

x̃
(j)
i =

{
xi if i ∈ Ωj
0 if i ∈ Ω̃j/Ωj

. (16)

For notation convenience, we use Fj to denote the mapping from Rrj to Rrmax as

Fj(z) = [zT ,0T(j)]
T , (17)

where 0 is a zero vector in Rrmax−rj . Obviously, we have

x̃
(j)

Ω̃j
= Fj(xΩj ). (18)

Correspondingly, the augmented weights {u∗j}Kj=1 are defined as

u∗j = Fj(w∗j,Ωj ) (19)

for j ∈ [K]. The steps above guarantee the augmented weights uj’s are in the same dimension
so that the high order momenta are able to characterize the directions of weights simultaneously.
Additionally, we define

x̃ =
1√
K

K∑
j=1

x̃
(j)

Ω̃j
, (20)

and corresponding high order momenta are defined in the following way instead:

M1 = Ex{yx̃} ∈ Rrmax , (21)

M2 = Ex
[
y
(
x̃⊗ x̃− Exx̃x̃T

)]
∈ Rrmax×rmax , (22)

M3 = Ex
[
y
(
x̃⊗3 − x̃⊗̃Exx̃x̃T

)]
∈ Rrmax×rmax×rmax , (23)

where Ex is the expectation over x and z⊗3 := z ⊗ z ⊗ z defined as

v⊗̃Z =

d2∑
i=1

(v ⊗ zi ⊗ zi + zi ⊗ v ⊗ zi + zi ⊗ zi ⊗ v), (24)

for any vector v ∈ Rd1 and Z ∈ Rd1×d2 .

Following the same calculate formulas in the Claim 5.2 [69], there exist some known constants
ψi, i = 1, 2, 3, such that

M1 =

K∑
j=1

ψ1 · ‖u∗j‖2 · u∗j , (25)

M2 =

K∑
j=1

ψ2 · ‖u∗j‖2 · u∗ju∗Tj , (26)

M3 =

K∑
j=1

ψ3 · ‖u∗j‖2 · u∗⊗3
j , (27)

where u∗j = u∗j/‖u∗j‖2 in (21)-(23) is the normalization of u∗j .

M1, M2 and M3 can be estimated through the samples
{

(xn, yn)
}N
n=1

, and let M̂1, M̂2, M̂3

denote the corresponding estimates. First, we will decompose the rank-k tensor M3 and obtain
the {u∗j}Kj=1. By applying the tensor decomposition method [31] to M̂3, the outputs, denoted

by {û
∗
j}Kj=1, are the estimations of {u∗j}Kj=1. Next, we will estimate ‖u∗j‖2 through solving the

following optimization problem:

α̂ = arg min
α∈RK

:
∣∣∣M̂1 −

K∑
j=1

ψ1αjû
∗
j

∣∣∣, (28)
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Subroutine 1 Tensor Initialization Method
1: Input: training data D = {(xn, yn)}Nn=1;
2: Generate augmented inputs and weights through Fj as shown in (17) and (19);
3: Partition D into three disjoint subsets D1, D2, D3;
4: Calculate M̂1, M̂2 following (21), (22) using D1, D2, respectively;
5: Obtain the estimate subspace V̂ of M̂2;
6: Calculate M̂3(V̂ , V̂ , V̂ ) through D3;
7: Obtain {ŝj}Kj=1 via tensor decomposition method [31] on M̂3(V̂ , V̂ , V̂ );
8: Obtain α̂ by solving optimization problem (28);
9: Return: w(0)

j,Ωj
= F†j

(
|α̂j |V̂ ŝj

)
, j = 1, ...,K.

From (25) and (28), we know that |α̂j | is the estimation of ‖u∗j‖2. Thus, Û is given as[
|α̂1|û

∗
1, · · · , |α̂j |û

∗
j , · · · , |α̂K |û

∗
K

]
.

To reduce the computational complexity of tensor decomposition, one can project M̂3 to a lower-
dimensional tensor [69]. The idea is to first estimate the subspace spanned by {w∗j}Kj=1, and let V̂
denote the estimated subspace.

Moreover, we have

M3(V̂ , V̂ , V̂ ) = Ex
[
y
(
(V̂

T
x̃)⊗3 − (V̂

T
x̃)⊗̃Ex(V̂

T
x̃)(V̂

T
x̃)T

)]
∈ RK×K×K , (29)

Then, one can decompose the estimate M̂3(V̂ , V̂ , V̂ ) to obtain unit vectors {ŝj}Kj=1 ∈ RK . Since
u∗ lies in the subspace V , we have V V Tu∗j = u∗j . Then, V̂ ŝj is an estimate of u∗j . After
we obtain the estimated augmented weights û∗j , the estimated weights can be generated through
ŵ∗j,Ωj = F†j (û∗j ), where F†j is the pseudo inverse of Fj . The initialization process is summarized in
Subroutine 1.

C Proof of Theorem 1

The main idea in proving Theorem 1 is to use triangle inequality as shown in (33) by bounding the
second order derivative of the population risk function and the distance between the empirical risk
and population risk functions. Lemma 3 provides the lower and upper bound for the population risk
function, while Lemma 4 provides the error bound between the second order derivation of empirical
risk and population risk functions.

Lemma 2 (Weyl’s inequality, [7]). SupposeB = A+E be a matrix with dimension m×m. Let
λi(B) and λi(A) be the i-th largest eigenvalues ofB andA, respectively. Then, we have

|λi(B)− λi(A)| ≤ ‖E‖2, ∀i ∈ [m]. (30)

Lemma 3. Let f be the population risk function in (14). AssumeW satisfies (6), then the second-
order derivative of f over w̃ is bounded as

(1− ε0)ρ

11κ2γK2
I ≤ ∇2f(w̃) ≤ 7

K
I, (31)

where w̃ only contains the elements ofW with respect to the indices of non-pruned weights.

Lemma 4. Let f̂D and f be the empirical and population risk function in (12) and (14), respectively,
then the second-order derivative of f̂D is close to its expectation f with an upper bound as:

‖∇2f̂D −∇2f‖2 .
1

K2

K∑
k=1

K∑
j=1

(1 + δj,k)

√
(rj + rk) log q

N
(32)

with probability at least 1− q−rmin .
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Proof of Theorem 1 . Let λ̂max and λ̂min denote the largest and smallest eigenvalues of∇2f̂D, respec-
tively. Also, Let λmax and λmin denote the largest and smallest eigenvalues of∇2fD, respectively.

Then, from Lemma 2, we have

λ̂max ≤ λmax + ‖∇2f̂D −∇2f‖2 (33)

and
λ̂min ≥ λmin − ‖∇2f̂D −∇2f‖2. (34)

When the sample complexity satisfies N & ε−2
1 ρ−2κ4γ2K4

[
1
K2

∑K
k=1

∑K
j=1(1 +

δj,k)
√
rj + rk

]2
log q, then from Lemma 4, we have

‖∇2f̂D −∇2f‖2 ≤
ε1ρ

11κ2γK2
. (35)

Then, from (33), (34) and (35), we have

λ̂max ≤
8

K
, (36)

and

λ̂min ≥
(1− ε0 − ε1)ρ

11κ2γK2
, (37)

which completes the proof.

D Proof of Theorem 2

The major idea in proving Theorem 2 is to first characterize the gradient descent term by intermediate
value theorem. Let w̃(t) be the vectorized iterateW (t) with respect to the non-pruned weights, then
we have

∇f̂Ωt(w̃
(t)) =fΩt(w̃

(t)) +
(
f̂Ωt(w̃

(t))− fΩt(w̃
(t))
)

=〈∇2fΩt(ŵ
(t)), w̃(t) − w̃∗〉+

(
f̂Ωt(w̃

(t))− fΩt(w̃
(t))
)
,

(38)

where ŵ(t) lies in the convex hull of w̃(t) and w̃∗. The reason that intermediate value theorem is
applied on population risk function instead of empirical risk function is the non-smoothness of the
empirical risk functions. Due to the non-smoothness of ReLU activation function at zero point, the
empirical risk function is not smooth, either. However, the expectation of the empirical risk function
over the Gaussian input x is smooth. Hence, compared with smooth empirical risk function, i.e.,
neural networks equipped with sigmoid activation function, we have an additional lemma to bound
∇f̂Dt to its expectation∇f , which is summarized in Lemma 5.

The momentum term β(W (t) −W (t−1)) plays an important role in determining the convergence
rate, and the recursive rule is obtained in the following way:[

w̃(t+1) − w̃∗

w̃(t) − w̃∗

]
= A(β)

[
w̃(t) − w̃∗

w̃(t−1) − w̃∗

]
, (39)

where A(β) is a matrix with respect to the value of β and defined in (44). Then, we know w̃(t),
which is equivalent to W (t), converges to the ground-truth with a linear rate which is the largest
singular value of matrixA(β). Recall that AGD reduces to GD with β = 0, so our analysis applies to
GD method as well. We are able to show the convergence rate of AGD is faster than GD by proving
the largest singular value ofA(β) is smaller thanA(0) for some β > 0.

Lemma 5. Let f̂D and f be the empirical and population risk function in (12) and (14), respectively,
then the first-order derivative of f̂D is close to its expectation f with an upper bound as:

‖∇f̂D(w̃)−∇f(w̃)‖2 .
1

K2

K∑
k=1

K∑
j=1

(1+δj,k)

√
rk log q

N
‖w̃−w̃∗‖2+

1

K

K∑
k=1

√
rk log q

N
·|ξ| (40)

with probability at least 1− q−rmin , where w̃ only contains the elements ofW with respect to the
indices of non-pruned weights.
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Proof of Theorem 2. Since ‖W (t) −W ∗‖F = ‖w̃(t) − w̃∗‖2, we can explore the converges of
{w̃(t)}Tt=1 instead. Recall that

w̃(t+1) =w̃(t) − η∇f̂Dt(w̃
(t)) + β(w̃(t) − w̃(t−1))

=w̃(t) − η∇f(w̃(t)) + β
(
w̃(t) − w̃(t−1))

+ η
(
∇f(w̃(t))−∇f̂Dt(w̃

(t))
)
.

(41)

Since∇2f is a smooth function, by the intermediate value theorem, we have

w̃(t+1) = w̃(t) − η∇2f(ŵ(t))(w̃(t) − w̃∗) + β(w̃(t) − w̃(t−1))

+ η
(
∇f(w̃(t))−∇f̂Dt(w̃

(t))
)
,

(42)

where ŵ(t) lies in the convex hull of w̃(t) and w̃∗.
Next, we have [

w̃(t+1) − w̃∗

w̃(t) − w̃∗

]
=

[
I − η∇2f(ŵ(t)) + βI βI

I 0

] [
w̃(t) − w̃∗

w̃(t−1) − w̃∗

]

+ η

[
∇f(w̃(t))−∇f̂Dt(w̃

(t))
0

] (43)

Let

A(β) =

[
I − η∇2f(ŵ(t)) + βI βI

I 0

]
, (44)

so we have∥∥∥∥∥
[
w̃(t+1) − w̃∗

w̃(t) − w̃∗

]∥∥∥∥∥
2

= ‖A(β)‖2

∥∥∥∥∥
[
w̃(t) − w̃∗

w̃(t−1) − w̃∗

]∥∥∥∥∥
2

+ η

∥∥∥∥[∇f(w̃(t))−∇f̂Dt(w̃
(t))

0

]∥∥∥∥
2

. (45)

From Lemma 5, we know that

η
∥∥∥∇f(w̃(t))−∇f̂Dt(w̃

(t))
∥∥∥

2
≤ C5η

K2

K∑
k=1

K∑
j=1

(1 + δj,k)

√
rk log q

Nt
‖w̃ − w̃∗‖2

+
C5η

K

K∑
k=1

√
rk log q

Nt
· |ξ|

(46)

for some constant C5 > 0. Then, we have

‖w̃(t+1) − w̃∗‖2 ≤
(
‖A(β)‖2 +

C5η

K2

K∑
k=1

K∑
j=1

(1 + δj,k)

√
rk log q

Nt

)
‖w̃(t) − w̃∗‖2

+
C5η

K

K∑
k=1

√
rk log q

Nt
· |ξ|

:=ν(β)‖w̃(t) − w̃∗‖2 +
C5η

K

K∑
k=1

√
rk log q

Nt
· |ξ|.

(47)

Let ∇2f(ŵ(t)) = SΛST be the eigendecomposition of∇2f(ŵ(t)). Then, we define

A(β) :=

[
ST 0
0 ST

]
A(β)

[
S 0
0 S

]
=

[
I − ηΛ + βI βI

I 0

]
(48)

Since
[
S 0
0 S

] [
ST 0
0 ST

]
=

[
I 0
0 I

]
, we knowA(β) andA(β) share the same eigenvalues.

Let λi be the i-th eigenvalue of ∇2f(ŵ(t)), then the corresponding i-th eigenvalue of (48), denoted
by δi(β), satisfies

ν2
i − (1− ηλi + β)δi + β = 0. (49)
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Then, we have

δi(β) =
(1− ηλi + β) +

√
(1− ηλi + β)2 − 4β

2
, (50)

and

|δi(β)| =

{√
β, if β ≥

(
1−
√
ηλi
)2
,

1
2

∣∣∣(1− ηλi + β) +
√

(1− ηλi + β)2 − 4β
∣∣∣ , otherwise.

(51)

Note that the other root of (49) is abandoned because the root in (50) is always larger than or at least
equal to the other root with |1− ηλi| < 1. By simple calculation, we have

δi(0) > δi(β), for ∀β ∈
(
0, (1− ηλi)2

)
, (52)

and specifically, δi achieves the minimum δ∗i = |1−
√
ηλi| when β =

(
1−
√
ηλi
)2

.
Let us first assume w̃(t) satisfies (6), then from Lemma 3, we know that

0 <
(1− ε0)

11κ2γK2
≤ λi ≤

7

K

provided that Nt & ε−2
0 ρ−1κ2γK3

[
1
K2

∑
j

∑
k(1 + δj,k)

√
rk + rj

]2
log q. Let γ1 = ρ(1−ε0)

11κ2γK2 and
γ2 = 7

K . If we choose β such that

β∗ = max
{

(1−√ηγ1)2, (1−√ηγ2)2
}
, (53)

then we have β ≥ (1−
√
ηλi)

2 for any i and δi = max
{
|1−√ηγ1|, |1−

√
ηγ2|

}
for any i.

Let η = 1
2γ2

, then β∗ equals to
(

1−
√

γ1
2γ2

)2

. Then, for any ε0 ∈ (0, 1
2 ) we have

‖A(β∗)‖2 = max
i
δi(β

∗) = 1−
√

γ1

2γ2
=1−

√
1− ε0

154ρ−1κ2γK

≤1− 1− 3/4 · ε0√
154ρ−1κ2γK

.

(54)

Then, let
C5η

K2

K∑
k=1

K∑
j=1

(1 + δj,k)

√
rk log q

Nt
≤ ε0

4
√

154ρ−1κ2γK
, (55)

we need Nt & ε−2
0 ρ−1κ2γK3

[
1
K2

∑
j

∑
k(1 + δj,k)

√
rk
]2

log q.

Combine (54) and (55), we have

ν(β∗) ≤ 1− 1− ε0√
154ρ−1κ2γK

. (56)

While let β = 0, we have

ν(0) ≥ ‖A(0)‖2 = 1− 1− ε0

154ρ−1κ2γK
(57)

and
ν(0) ≤ 1− 1− 2ε0

154ρ−1κ2γK
(58)

if Nt & ε−2
0 ρ−1κ2γK4

[
1
K2

∑
j

∑
k(1 + δj,k)

√
rk + rj

]2
log q.

In conclusion, with η = 1
2γ2

and β =
(
1− γ1

2γ2

)2
, we have

‖w̃(t+1) − w̃∗‖2 ≤
(

1− 1− ε0√
154κ2γK

)
‖w̃(t) − w̃∗‖2 +

Cη

K

K∑
k=1

√
rk log q

Nt
|ξ|. (59)

if w̃(t+1) satisfies (6) and Nt & ε−2
0 ρ−1κ2γK4

[
1
K2

∑
j

∑
k(1 + δj,k)

√
rk + rj

]2
log q.
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Then, we can start mathematical induction of (59) over t.

Base case: (6) holds for w̃(0) naturally from the assumption in Theorem 2. Since (6) holds and the
number of samples exceeds the required bound in (59), we have (59) holds for t = 0.

Induction step: Assume (59) holds for t, to make sure the mathematical induction of (59) holds, we
need w̃(t+1) satisfies (6). That is

K∑
k=1

η

K

√
rk log q

Nt
.

1− ε0√
132κ2γK

· ε0σK
44κ2γK2

. (60)

Hence, we need

Nt & ε−2
0 κ8γ3K6

( 1

K

∑
k

√
rk

)2

log q. (61)

In addition, with (6) and (59) hold for all t ≤ T , the following equation∥∥∥∥∥
[
w̃(t+1) − w̃∗

w̃(t) − w̃∗

]∥∥∥∥∥
∞

= ‖A(β)‖2

∥∥∥∥∥
[
w̃(t) − w̃∗

w̃(t−1) − w̃∗

]∥∥∥∥∥
∞

+ η

∥∥∥∥[∇f(w̃(t))−∇f̂Dt(w̃
(t))

0

]∥∥∥∥
∞
(62)

holds as well, and ‖A(β)‖2 is bounded by ν(β). Hence, (59) also holds in infinity norm as

‖w̃(t+1) − w̃∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)
‖w̃(t) − w̃∗‖∞ + 2Cη

√
r log q

Nt
|ξ|. (63)

In conclusion, when Nt & ε−2
0 κ8γ3K6

(
1
K2

∑
k

∑
j(1 + δj,k)

√
rk + rj

)2

log d, we know that (59)

holds for all 1 ≤ t ≤ T with probability at least 1−K2T · q−rmin . By simple calculation, we can
obtain

‖w̃(T ) − w̃∗‖2 ≤
(

1− 1− ε0√
132κ2γK

)T
‖w̃(0) − w̃∗‖2 +

C

K

K∑
k=1

√
κ2γK2rk log q

Nt
· |ξ|. (64)

for some constant C > 0.

E Obtaining a proper learner network via magnitude pruning

In this section, we show that how one can combine Algorithm 1 and magnitude pruning to find a
proper learner network such that rj ≥ r∗j and Ωj ⊇ Ω∗j from a fully-connected network under some
assumptions. Suppose the number of samples is at least Ω

(
K6d log q log(1/ε)

)
, we train directly on

the fully-connected dense network using Algorithm 1. The number of iteration in line 2 of Algorithm
1 is set as T1 = Θ

(
log(2Ŵmax/Ŵmin)

)
, where Ŵmin and Ŵmax denote the smallest and largest

value ofW ∗, respectively. From (63), after T1 iterations, the returned model, denote byW (T1), is
close to the ground-truthW ∗. Specifically, ifW ∗

i,j 6= 0 andW ∗
i′,j′ = 0, thenW (T1)

i,j >W
(T1)
i′,j′ for

any i, j, i′, j′. Then we sort the weights based on their absolute values and prune them sequentially
starting from the least absolute value. As long as the ratio of pruned weights is at most

(
1−

∑
j rj

Kd

)
,

all the weights are removed correctly, leading to a proper learner network. In fact, if we remove
exactly 1 −

∑
j rj

Kd fraction of weights, the pruned network has the same architecture as the oracle
network.

Specifically, supposeM (t) to denote the mask matrix by truncating the smallest
(

1−
∑
j rj

Kd

)
fraction

of entries in iterateW (t). LetM∗ denote the ground-truth mask matrix for the oracle network, the
following corollary holds from Theorem 2.
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Corollary 1. Suppose the noise |ξ| ≤ Ŵ ∗min and the number of samples satisfies N =

Ω
(
K6d log q log(1/ε)

)
. Let {W (t1)}T1

t1=1 be the iterates generated from Algorithm 1 by setting
r = d. Then, for any T1 ≥ log(Ŵ ∗max/Ŵ

∗
min), we have

M (T1) = M∗. (65)

Proof of Corollary 1. If we train on the dense network, from (63), we know that

‖W (t+1) −W ∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)
‖W (t) −W ∗‖∞ + 2Cη

√
d log q

Nt
|ξ|. (66)

Hence, we have

‖W (T1) −W ∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)T1

‖W (0) −W ∗‖∞ + 2Cη

√
d log q

Nt
|ξ|. (67)

With T1 ≥ log(2Ŵ ∗max/Ŵ
∗
min), we have(

1− 1− ε0√
154κ2γK

)T1

‖W (0) −W ∗‖∞ ≤
1

4
Ŵ ∗min ·

‖W (0) −W ∗‖∞
‖W ∗‖∞

≤ 1

4
Ŵ ∗min. (68)

Since N = Ω
(
K6d log q log(1/ε)

)
and |ξ| ≤ Ŵ ∗min, we have

2Cη

√
d log q

Nt
|ξ| ≤ 1

4
Ŵ ∗min. (69)

From (68) and (69), we know that

‖W (T1) −W ∗‖∞ ≤
1

2
Ŵ ∗min. (70)

Therefore, for any entry in W (T1)
i,j , if the corresponding entry in augmented ground-truth weights

W ∗ is zero, we have

|W (T1)
i,j | ≤

1

2
Ŵ ∗min; (71)

if the corresponding entry inW ∗ is non-zero, we have

|W (T1)
i,j | ≥ |Ŵ

∗
i,j | −

1

2
Ŵ ∗min ≥

1

2
Ŵ ∗min. (72)

As we know that there are only
∑
j rj/(Kd) fraction of non-zero weights in the ground-truth model,

M (T1) = M∗ holds.

F Proof of Lemma 1

Instead of providing the proof for Lemma 1, we turn to prove a more general bound for the perfor-
mance of tensor initialization method as shown in Lemma 6. One can easily verify that Lemma 1
holds naturally from Lemma 6.

Recall that in Appendix B, the estimation of w∗j,Ωj are converted into estimate the augmented vector
u∗j . Further, the estimation of u∗j are divided into estimating three parts: (1) the estimation of the
magnitude of u∗j , which is denoted as α̂j ; (2) the estimation of the subspace of u∗j , which is denoted
as V̂ ; (3) the estimation of the representation of u∗j on subspace V , which is denoted as ŝj . Hence,
the major idea of proving Lemma 6 is to characterize the difference of these three estimations to its
ground-truth, which are summarized in Lemmas 7, 8 and 9, respectively.

Lemma 6. Assume the noise level |ξ| ≤ Kσ1 and the number of samples N & κ8K5rmax log6 q

with some large constant q, the tensor initialization method in Subroutine 1 outputsW (0) such that

‖W (0) −W ∗‖2 . κ6

√
Krmax log q

N
(σ1 + |ξ|) (73)

with probability at least 1− q−rmax .
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F.1 Proof of Lemma 6

Lemma 7. Suppose M2 is defined as in (22) and M̂2 is the estimation of M2 by samples D =
{(xn, yn)}Nn=1. Then, with probability 1− q−rmax , we have

‖M̂2 −M2‖ .
√
rmax log q

N
(σ1 + |ξ|), (74)

provided that N & rmax log4 q.

Lemma 8. Let V̂ be generated by step 4 in Subroutine 1. SupposeM3(V̂ , V̂ , V̂ ) is defined as in (29)
and M̂3(V̂ , V̂ , V̂ ) is the estimation of M3(V̂ , V̂ , V̂ ) by samples D = {(xn, yn)}Nn=1. Further,

we assume V ∈ Rr×K is an orthogonal basis of {u∗j}Kj=1 and satisfies ‖V V T − V̂ V̂
T
‖ ≤ 1/4.

Then, provided that N & K5 log6 d, with probability at least 1− q−rmax , we have

‖M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )‖ .
√

log q

N
(σ1 + |ξ|). (75)

Lemma 9. Suppose M1 is defined as in (21) and M̂1 is the estimation of M1 by samples D =
{(xn, yn)}Nn=1. Then, with probability 1− q−rmax , we have

‖M̂1 −M1‖ .
√
rmax log q

N
(σ1 + |ξ|) (76)

provided that N & rmax log4 d.
Lemma 10 ([53], Theorem 1.6). Consider a finite sequence {Zk} of independent, random matrices
with dimensions d1 × d2. Assume that such random matrix satisfies

E(Zk) = 0 and ‖Zk‖ ≤ R almost surely.
Define

δ2 := max
{∥∥∥∑

k

E(ZkZ
∗
k)
∥∥∥,∥∥∥∑

k

E(Z∗kZk)
∥∥∥}.

Then for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t
}
≤ (d1 + d2) exp

( −t2/2
δ2 +Rt/3

)
.

Lemma 11 ([69], Lemma E.6). Let V ∈ Rr×K be an orthogonal basis of w̃∗ and V̂ be generated
by step 4 in Subroutine 1. Assume ‖M̂2 −M2‖2 ≤ σK(M2)/10. Then, we have

‖V V T − V̂ V̂
T
‖2 ≤

‖M2 − M̂2‖
σK(M2)

. (77)

Lemma 12 ([69], Lemmas E.13 and E.14). Let V ∈ Rr×K be an orthogonal basis of w̃∗ and V̂
be generated by step 4 in Subroutine 1. Assume M1 can be written in the form of (25) with some
constant ψ1, and let M̂1 be the estimation of M1 by samples D = {xn, yn}Nn=1. Let α̂ be the
optimal solutions of (28) with û

∗
j = V̂ ŝj . Then, for each j ∈ {1, 2, · · · ,K}, if

T1 := ‖V V T − V̂ V̂
T
‖2 ≤

1

κ2
√
K
,

T2 := ‖û∗j − V̂
T
ŝj‖2 ≤

1

κ2
√
K
,

T3 := ‖M̂1 −M1‖2 ≤
1

4
‖M1‖2,

(78)

then we have ∣∣∣α∗j − α̂j∣∣∣ ≤ (κ4K
3
2

(
T1 + T2

)
+ κ2K

1
2T3

)
|α∗j |, (79)

where α∗j = ‖u∗j‖2.
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Proof of Lemma 1. By simple calculation, we have

‖u∗j − |α̂j |V̂ ŝj‖2

≤
∥∥∥u∗j − ‖u∗j‖2V̂ ŝj + ‖u∗j‖2V̂ ŝj − |α̂j |V̂ ŝj

∥∥∥
2

≤
∥∥∥u∗j − ‖u∗j‖2V̂ ŝj∥∥∥

2
+
∥∥∥‖u∗j‖2V̂ ŝj − |α̂j |V̂ ŝj∥∥∥

2

≤‖u∗j‖2‖u∗j − V̂ ŝj‖2 +
∣∣∣‖u∗j‖2 − |α̂j |∣∣∣‖V̂ ŝj‖2

≤σ1

(
‖u∗j − V̂ V̂

T
u∗j‖2 + ‖V̂

T
u∗j − ŝj‖2

)
+
∣∣∣‖u∗j‖2 − |α̂j |∣∣∣

:=σ1

(
I1 + I2

)
+ I3.

(80)

From Lemma 11, we have

I1 = ‖u∗j − V̂ V̂
T
u∗j‖2 ≤‖V V

T − V̂ V̂
T
‖2 ≤

‖M̂2 −M2‖2
σK(M2)

, (81)

where the last inequality comes from Lemma 7. Then, from (26), we know that

σK(M2) . min
1≤j≤K

‖u∗j‖2 = min
1≤j≤K

‖w̃∗j,Ωj‖2 . σK . (82)

From Theorem 3 in [31], we have

I2 =‖V̂
T
u∗j − ŝj‖2 .

κ

σK
‖M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )‖2. (83)

To guarantee the condition (78) in Lemma 12 hold, according to Lemmas 7 and 8, we need N &
κ3Krmax log q. Then, from Lemma 12, we have

I3 =
(
κ4K3/2(I1 + I2) + κ2K1/2‖M̂1 −M1‖

)
σ1. (84)

When rmax � K, according to Lemmas 7, 8 and 9, we have∥∥u∗j − |α̂j |V̂ ŝj∥∥2
. κ6

√
rmax log q

N
(σ1 + |ξ|) (85)

provided that N & K3rmax log4 d.

In conclusion, we have

‖W (0) −W ∗‖F = ‖w̃∗ − w̃(0)‖2 ≤
√
K ·

∥∥w∗j,Ωj −w(0)
j,Ωj

∥∥
2

=
√
K ·

∥∥F†j (u∗j − û
∗
j )
∥∥

2

≤
√
K ·

∥∥u∗j − û∗j∥∥2

=
√
K ·

∥∥u∗j − |α̂j |V̂ ŝj∥∥2

.κ6

√
Krmax log q

N
(σ1 + |ξ|).

(86)

G Additional proof of the lemmas in Appendix C

G.1 Proof of Lemma 3

The eigenvalues of ∇2f at any fixed point w̃ is bounded through the ones at the ground truth w̃∗ by
using Lemma 2. The eigenvalues of∇2f at ground truth w̃∗ is bounded in (89) and (90).
Lemma 13. Let f be the population risk function in (14) and w̃ satisfy (6), then we have

‖∇2f(w̃)−∇2f(w̃∗)‖2 ≤
4‖w̃∗ − w̃‖2

σK
. (87)
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Proof of Lemma 3. Let λmax(w̃) and λmin(w̃) denote the largest and smallest eigenvalues of ∇2fD
at point w̃, respectively. Then, from Lemma 2, we have

λmax(w̃) ≤ λmax(w̃∗) + ‖∇2f(w̃)−∇2f(w̃∗)‖2,
and λmin(w̃) ≥ λmin(w̃∗)− ‖∇2f(w̃)−∇2f(w̃∗)‖2.

(88)

Next, we provide the the lower bound of Hessian of population function at ground truth w̃∗. Then,
we have

min
‖α‖2=1

αT∇2f(w̃∗)α =
1

K2
min
‖α‖2=1

Ex
( K∑
j=1

αTj xΩjφ
′(w∗Tj,ΩjxΩj )

)2

=
1

K2
min

‖α̃‖2=1, supp(α̃j)= supp(w∗j )
Ex
( K∑
j=1

α̃Tj xφ
′(w∗Tj x)

)2

≥ 1

K2
min
‖α̃‖2=1

Ex
( K∑
j=1

α̃Tj xφ
′(w∗Tj x)

)2

≥ ρ

11κ2λK2
,

(89)

where α̃ ∈ RKd with α̃j ∈ Rd, and the last inequality comes from Lemma D.6 [69].

Next, the upper bound of Hessian of population function at ground truth w̃∗ can be bounded in the
following way. For any α, we have

αT∇2f(w̃∗)α =
1

K2
Ex
( K∑
j=1

αTj xΩjφ
′(w∗Tj,ΩjxΩj )

)2

≤ 2

K2
· Ex

K∑
j=1

(
αTj xΩjφ

′(w∗Tj,ΩjxΩj )
)2

=
2

K2

K∑
j=1

Ex
(
αTj xΩjφ

′(w∗Tj,ΩjxΩj )
)2

≤ 2

K2

K∑
j=1

(
Ex(αTj xΩj )

4Ex|φ′|4
) 1

2

≤ 2

K2
·K · 3 =

6

K
.

(90)

Then, from Lemma 13, when w̃ satisfies (6), we have that

‖∇2f(w̃)−∇2f(w̃∗)‖2 ≤
ε0ρ

11κ2γ
. (91)

Hence, from (88) and (91), we have that

(1− ε0)ρ

11κ2γK2
I ≤ ∇2f(w̃) ≤ 7

K
I. (92)

G.2 Proof of Lemma 4

We first show that the second order derivative of f̂D is a sum of several random sub-exponential
variables as shown in (101) and (102). Then, by concentration theory, i.e., Chernoff bound, we can
show that the error bound of∇2f̂D to its expectation.
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Definition 1 (Definition 5.7, [54]). A random variable X is called a sub-Gaussian random variable
if it satisfies

(E|X|p)1/p ≤ c1
√
p (93)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2‖X‖
2
ψ2
s2 (94)

for all s ∈ R and some constant c2 > 0, where ‖X‖φ2
is the sub-Gaussian norm of X defined as

‖X‖ψ2 = supp≥1 p
−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional
marginal αTX is sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm of X is defined as
‖X‖ψ2

= sup‖α‖2=1 ‖αTX‖ψ2
.

Definition 2 (Definition 5.13, [54]). A random variable X is called a sub-exponential random
variable if it satisfies

(E|X|p)1/p ≤ c3p (95)
for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4‖X‖
2
ψ1
s2 (96)

for s ≤ 1/‖X‖ψ1
and some constant c4 > 0, where ‖X‖ψ1

is the sub-exponential norm of X defined
as ‖X‖ψ1 = supp≥1 p

−1(E|X|p)1/p.

Lemma 14 (Lemma 5.2, [54]). Let B(0, 1) ∈ {α
∣∣‖α‖2 = 1,α ∈ Rd} denote a unit ball in Rd.

Then, a subset Sξ is called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be approximated to within
ξ by some point α ∈ B(0, 1), i.e. ‖z −α‖2 ≤ ξ. Then the minimal cardinality of a ξ-net Sξ satisfies

|Sξ| ≤ (1 + 2/ξ)d. (97)

Lemma 15 (Lemma 5.3, [54]). LetA be an d1 × d2 matrix, and let Sξ(d) be a ξ-net of B(0, 1) in
Rd for some ξ ∈ (0, 1). Then

‖A‖2 ≤ (1− ξ)−1 max
α1∈Sξ(d1),α2∈Sξ(d2)

|αT1Aα2|. (98)

Proof of Lemma 4. Recall the definition of f and f̂ in (14) and (12), we have

∂2f

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f̂D
∂wj1,Ωj1

∂wj2,Ωj2

=Ex
[
φ′(wT

j1,Ωj1
xΩj1

)φ′(wT
j2,Ωj2

xΩj2
)xΩj1

xTΩj2

− 1

N

N∑
n=1

φ(wT
j1,Ωj1

xn,Ωj1 )φ′(wT
j2,Ωj2

xn,Ωj2 )xn,Ωj1x
T
n,Ωj2

]
.

(99)

For any α, we have

‖∇2f −∇2f̂D‖2

= max
‖α‖2=1

∣∣∣αT (∇2f −∇2f̂D)α
∣∣∣

=

K∑
j1=1

K∑
j2=1

max
‖α‖2=1

∣∣∣∣∣αTj1( ∂2f

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f̂D
∂wj1,Ωj1

∂wj2,Ωj2

)
αj2

∣∣∣∣∣
=

1

K2

K∑
j1=1

K∑
j2=1

max
‖α‖2=1

Ex
[
φ′(wT

j1,Ωj1
xΩj1)φ′(wT

j2,Ωj2
xΩj2)αTj1xΩj1α

T
j2xΩj2

− 1

N

N∑
n=1

φ′(wT
j1,Ωj1

xn,Ωj1)φ′(wT
j2,Ωj2

xn,Ωj2)αTj1xn,Ωj1α
T
j2xn,Ωj2

]
.

(100)
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Then, define Zn(j1, j2) = φ(wT
j1,Ωj1

xn,Ωj1)φ′(wT
j2,Ωj2

xn,Ωj2)αTj1xn,Ωj1α
T
j2
xn,Ωj2 , and we say Z

belongs to sub-Exponential distribution by Definition 2. If |Ωj1 ∩Ωj2 | 6= ∅, namely, Ωj1 and Ωj2 are
not disjointed, we have

(
E|Zn|p

)1/p ≤(E∣∣∣∣(αTj1xn,Ωj1) · (αTj2xn,Ωj2)∣∣∣∣p)1/p

≤
(
E
∣∣∣(αTj1xn,Ωj1)∣∣∣2p)1/(2p)

·
(
E
∣∣∣(αTj2xn,Ωj2)∣∣∣2p)1/(2p)

≤Cx ·
√

2p · Cx
√

2p

=2C2
x · p.

(101)

While if |Ωj1 ∩ Ωj2 | = ∅, namely, Ωj1 and Ωj2 are disjointed, we have

(
E|Zn|p

)1/p ≤(E∣∣∣∣(αTj1xn,Ωj1) · (αTj2xn,Ωj2)∣∣∣∣p)1/p

=

(
E
∣∣∣(αTj1xn,Ωj1)∣∣∣p)1/(p)

·
(
E
∣∣∣(αTj2xn,Ωj2)∣∣∣p)1/(p)

≤Cx ·
√
p · Cx

√
p

=C2
x · p.

(102)

Then, we have

EZnes(Zn−EZn) ≤ e−C‖Zn‖
2
ψ1
s2 (103)

for some constant C > 0 and any s ∈ R. From Chernoff bound, we have

Prob
{∣∣∣ 1

N

N∑
n=1

(Zn − EZn)
∣∣∣ < t

}
≤ 1− e−C‖Zn‖

2
ψ1
·Ns2

eNst
. (104)

Let us select t = ‖Zn‖ψ1

√
(rj1+rj2 ) log q

N and s =
√

2
C‖zn‖2ψ1

· t, then we have

∣∣∣ 1

N

N∑
n=1

(
Zn(j1, j2)− EZn(j1, j2)

)∣∣∣ ≤ ‖Zn‖ψ1

√
(rj1 + rj2) log q

N
(105)

with probability at least 1− q−(rj1+rj2 ).

Hence, from Lemma 15, we have

max
‖αj1‖2≤1,‖αj2‖2≤1

∣∣∣∣∣αTj1( ∂2f

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f̂D
∂wj1,Ωj1

∂wj2,Ωj2

)
αj2

∣∣∣∣∣
≤2
∣∣∣ 1

N

N∑
n=1

(Zn − EZn)
∣∣∣ (106)

with probability at least 1−
(
|S 1

2
(rj1)| · |S 1

2
(rj2)|

)
· q−(rj1+rj2 ), where S 1

2
(rj1) and S 1

2
(rj2) are

the covering sets defined in Lemma 14. From Lemma 14, we know that |S 1
2
(rj1)| · |S 1

2
(rj2)| ≤

5(rj1+rj2 ). As long as q is a constant that is larger than 5, (106) holds with the probability at least
1−

(
q
5

)−(rj1+rj2 )
. For notation simplification, we use probability 1− q−(rj1+rj2 ) instead.

From (101) and (102), we know that

‖Zn(j1, j2)‖ψ1
≤
{

2C2
x, if Ωj1 and Ωj2 are joint sets

C2
x, if Ωj1 and Ωj2 are disjoint sets

. (107)
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Hence, we have

‖∇2f(w̃)−∇2f̂Ω(w̃)‖2

≤
K∑
j1=1

K∑
j2=1

max
‖α‖2=1

∣∣∣∣∣αTj1( ∂2f

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f̂D
∂wj1,Ωj1

∂wj2,Ωj2

)
αj2

∣∣∣∣∣
≤ 2

K2

K∑
j1=1

K∑
j2=1

max
‖α‖2=1

∣∣∣ 1

N

N∑
n=1

(
Zn(j1, j2)− EZn(j1, j2)

)∣∣∣
.

1

K2

K∑
j1=1

K∑
j2=1

√
(1 + δj1,j2)2(rj1 + rj2) log q

N

(108)

with probability at least 1 − q−rmin , where δj1,j2 equals to 0 if Ωj1 and Ωj2 are disjoint and 1
otherwise.

H Proof of Lemma 5

Proof of Lemma 5. The first-order derivative of the empirical risk function is written as

∂f̂D
∂wk,Ωk

=
1

K ·N

N∑
n=1

(
yn −

1

K

K∑
j=1

φ(wT
j,Ωjxn,Ωj )

)
xn,Ωkφ

′(wT
k,Ωk

xn,Ωk)

=
1

K2 ·N

N∑
n=1

K∑
j=1

(
φ(w∗Tj,Ωjxn,Ωj )− φ(wT

j,Ωjxn,Ωj )
)
xn,Ωkφ

′(wT
k,Ωk

xn,Ωk)

+
1

K ·N

K∑
j=1

ξnxn,Ωkφ
′(wT

k,Ωk
xn,Ωk)

(109)

Define zn(j, k) =
(
φ(w∗Tj,Ωjxn,Ωj )− φ(wT

j,Ωj
xn,Ωj )

)
φ′(wT

k,Ωk
xn,Ωk)xn,Ωk . Then, for any αk ∈

Rr, we have

p−1
(
Ex
∣∣αTk zn∣∣p) 1

p

=p−1
(
Ex
∣∣(αTk xn,Ωk)

(
φ(w∗Tj,Ωjxn,Ωj )− φ(wT

j,Ωjxn,Ωj )
)
φ′(wT

k,Ωk
xn,Ωk)

∣∣p) 1
p

≤p−1
(
Ex
∣∣(αTk xn,Ωk)

(
φ(w∗Tj,Ωjxn,Ωj )− φ(wT

j,Ωjxn,Ωj )
)∣∣p) 1

p

.

(110)

If Ωj and Ωk are joint, then

p−1
(
Ex
∣∣αTk zn∣∣p) 1

p

≤p−1
(
Ex|αTk xn,Ωk |2p

) 1
2p ·

(
Ex
∣∣φ(w∗Tj,Ωjxn,Ωj )− φ(wT

j,Ωjxn,Ωj )
∣∣2p) 1

2p

≤p−1
(
Ex|αTk xn,Ωk |2p

) 1
2p ·

(
Ex
∣∣(w∗j,Ωj −wj,Ωj )

Txn,Ωj
∣∣2p) 1

2p

≤2‖w∗j,Ωj −wj,Ωj‖2 ≤ 2‖w̃∗ − w̃‖2.

(111)

If Ωj and Ωk are disjoint, then

p−1
(
Ex
∣∣αTk zn∣∣p) 1

p

≤p−1
(
Ex|αTj xn,Ωj |p

) 1
p ·
(
Ex
∣∣φ(w∗Tj,Ωjxn,Ωj )− φ(wT

j,Ωjxn,Ωj )
∣∣p) 1

p

≤p−1
(
Ex|αTj xn,Ωj |p

) 1
p ·
(
Ex
∣∣(w∗j,Ωj −wj,Ωj )

Txn,Ωj
∣∣p) 1

p

≤‖w∗j,Ωj −wj,Ωj‖2 ≤ ‖w̃
∗ − w̃‖2.

(112)
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Following similar steps in (104), by Chernoff bound, we have

∥∥∥ 1

N

N∑
n=1

(zn − Exzn)
∥∥∥

2
. ‖zn(j, k)‖ψ1

√
rj log q

N
· ‖w∗j,Ωj −wj,Ωj‖2 (113)

with probability at least 1− q−rj , where

‖zn(j, k)‖ψ1 =

{
2‖w̃ − w̃∗‖2, if Ωk and Ωj are joint,
‖w̃ − w̃∗‖2, if Ωk and Ωj are disjoint

(114)

That is ‖zn(j, k)‖ψ1
= (1 + δj,k)‖w̃ − w̃∗‖2. Also, we know that xn,Ωkφ

′(wT
k,Ωk

xn,Ωk) belongs
to sub-Gaussian distribution as well. Then, by Chernoff bound, we have

∥∥∥ 1

N

N∑
n=1

ξnxn,Ωkφ
′(wT

k,Ωk
xn,Ωk)

∥∥∥
2
.|ξ| ·

∥∥∥ 1

N

N∑
n=1

xn,Ωkφ
′(wT

k,Ωk
xn,Ωk)

∥∥∥
2

.|ξ| ·
√
rk log q

N

(115)

with probability at least q−rk .

In conclusion, we have

‖∇f̂D −∇f‖2 ≤
K∑
k=1

∥∥∥ ∂f̂D
∂wk

− ∂f

∂wk

∥∥∥
2

≤
K∑
k=1

1

K2

K∑
j=1

∥∥∥ 1

N

N∑
n=1

(zn(j, k)− Exzn(j, k))
∥∥∥

2

+

K∑
k=1

1

K

∥∥∥ 1

N

N∑
n=1

ξnxn,Ωkφ
′(wT

k,Ωk
xn,Ωk)

∥∥∥
2

.
1

K2

K∑
k=1

K∑
j=1

√
(1 + δj,k)2rk log q

N
‖w̃∗ − w̃‖2 +

1

K

K∑
k=1

√
rk log q

N
· |ξ|.

(116)

I Proof of Lemma 13

Proof of Lemma 13. Recall the definition of population risk function, we have

∂2f(w∗)

∂wj1,Ωj1
∂wj2,Ωj2

=
1

K2
Exφ′(w∗Tj1,Ωj1xΩj1)φ′(w∗Tj2,Ωj2xΩj2)xΩj1x

T
Ωj2 (117)

and

∂2f(w)

∂wj1,Ωj1
∂wj2,Ωj2

=
1

K2
Exφ′(wT

j1,Ωj1
xΩj1)φ′(wT

j2,Ωj2
xΩj2)xΩj1x

T
Ωj2 (118)
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Then, we have

∂2f(w∗)

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f(w)

∂wj1,Ωj1
∂wj2,Ωj2

=
1

K2
Ex
[
φ′(w∗Tj1,Ωj1xΩj1)φ′(w∗Tj2,Ωj2xΩj2)− φ′(wT

j1,Ωj1
xΩj1)φ′(wT

j2,Ωj2
xΩj2)

]
xΩj1x

T
Ωj2

=
1

K2
Ex
[
φ′(w∗Tj1,Ωj1xΩj1)

(
φ′(w∗Tj2,Ωj2xΩj2)− φ′(wT

j2,Ωj2
xΩj2)

)
+ φ′(wT

j2,Ωj2
xΩj2)

(
φ′(w∗Tj1,Ωj1xΩj1)− φ′(wT

j1,Ωj1
xΩj1)

)]
xΩj1x

T
Ωj2

=
1

K2

[
Exφ′(w∗Tj1,Ωj1xΩj1)

(
φ′(w∗Tj2,Ωj2xΩj2)− φ′(wT

j2,Ωj2
xΩj2)

)
xΩj1x

T
Ωj2

+ Exφ′(wT
j2,Ωj2

xΩj2)
(
φ′(w∗Tj1,Ωj1xΩj1)− φ′(wT

j1,Ωj1
xΩj1)

)
xΩj1x

T
Ωj2

]
:=

1

K2
(I1 + I2).

(119)

For any αj1 ∈ Rrj1 and αj2 ∈ Rrj2 , we have

max
‖αj1‖2,‖αj2‖2=1

αTj1I1αj2

= max
‖αj1‖2,‖αj2‖2=1

Exφ′(w∗Tj1,Ωj1xΩj1)
(
φ′(w∗Tj2,Ωj2xΩj2)− φ′(wT

j2,Ωj2
xΩj2)

)
· (αTj1xΩj1) · (αTj2xΩj2)

≤ max
‖a‖2=1

Exφ′(w∗Tj2 x)
(
φ′(w∗Tj2 x)− φ′(wT

j2x)
)
· (aTx)2,

(120)

where a ∈ Rd. Let I = φ′(w∗Tj1 x)
(
φ′(w∗Tj2 x)−φ′(wT

j2
x)
)
· (aTx)2. It is easy to verify there exists

a basis such that B = {a, b, c,a⊥4 , · · · ,a⊥d } with {a, b, c} spans a subspace that contains a,wj2

and w∗j2 . Then, for any x, we have a unique z = [z1 z2 · · · zd]
T such that

x = z1a+ z2b+ z3c+ · · ·+ zda
⊥
d .

Also, since x ∼ N (0, Id), we have z ∼ N (0, Id). Then, we have

I =Ez1,z2,z3 |φ′
(
wT
j2x
)
− φ′

(
w∗Tj2 x

)
| · |aTx|2

=

∫
|φ′
(
wT
j2x
)
− φ′

(
w∗Tj2 x

)
| · |aTx|2 · fZ(z1, z2, z3)dz1dz2dz3,

where x = z1a+z2b+z3c and fZ(z1, z2, z3) is probability density function of (z1, z2, z3). Next, we
consider spherical coordinates with z1 = Rcosφ1, z2 = Rsinφ1sinφ2, z3 = z2 = Rsinφ1cosφ2.
Hence,

I =

∫
|φ′
(
wT
j2x
)
− φ′

(
w∗Tj2 x

)
| · |r cosφ1|2 · ·fZ(R,φ1, φ2)R2 sinφ1dRdφ1dφ2. (121)

It is easy to verify that φ′
(
wT
j2
x
)

only depends on the direction of x and

fZ(R,φ1, φ2) =
1

(2π)
3
2

e
x21+x22+x23

2 =
1

(2π)
3
2

e
R2

2
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only depends on R. Then, we have

I(i2, j2)

=

∫
|φ′
(
wT
j2(x/R)

)
− φ′

(
w∗Tj2 (x/R)

)
| · |R cosφ1|2 · fZ(R)R2 sinφ1dRdφ1dφ2

=

∫ ∞
0

r4fz(R)dR

∫ π

0

∫ 2π

0

| cosφ1|2 · sinφ1 · |φ′
(
wT
j2(x/R)

)
− φ′

(
w∗Tj2 (x/R)

)
|dφ1dφ2

≤
√

8

π

∫ ∞
0

R2fz(R)dR

∫ π

0

∫ 2π

0

sinφ1 · |φ′
(
wT
j2(x/R)

)
− φ′

(
w∗Tj2 (x/R)

)
|dφ1dφ2

=

√
8

π
Ez1,z2,z3

∣∣φ′(wT
j2x
)
− φ′

(
w∗Tj2 x

)
|

=

√
8

π
Ex
∣∣φ′(wT

j2x
)
− φ′

(
w∗Tj2 x

)
|.

(122)

Define a set A1 = {x|(w∗Tj2 x)(wT
j2
x) < 0}. If x ∈ A1, then w∗Tj2 x and wT

j2
x have different signs,

which means the value of φ′(wT
j2
x) and φ′(w∗Tj2 x) are different. This is equivalent to say that

|φ′(wT
j2x)− φ′(w∗Tj2 x)| =

{
1, if x ∈ A1

0, if x ∈ Ac1
. (123)

Moreover, if x ∈ A1, then we have

|w∗Tj2 x| ≤|w
∗T
j2 x−wj2

Tx| ≤ ‖w∗j2 −wj2‖ · ‖x‖. (124)

Define a set A2 such that

A2 =
{
x
∣∣∣ |w∗Tj2 x|‖w∗j2‖‖x‖

≤
‖w∗j2 −wj2‖
‖w∗j2‖

}
=
{
θx,w∗j2

∣∣∣| cos θx,w∗j2
| ≤
‖w∗j2 −wj2‖
‖w∗j2‖

}
. (125)

Hence, we have that

Ex|φ′(wT
j2x)− φ′(w∗Tj2 x)|2 =Ex|φ′(wT

j2x)− φ′(w∗Tj2 x)|
=Prob(x ∈ A1)

≤Prob(x ∈ A2).

(126)

Since x ∼ N (0, I), θx,w∗j2 belongs to the uniform distribution on [−π, π], we have

Prob(x ∈ A2) =
π − arccos

‖w∗j2−wj2‖
‖w∗j2‖

π
≤ 1

π
tan(π − arccos

‖w∗j2 −wj2‖
‖w∗j2‖

)

=
1

π
cot(arccos

‖w∗j2 −wj2‖
‖w∗j2‖

)

≤ 2

π

‖w∗j2 −wj2‖
‖w∗j2‖

=
2

π

‖w∗j2,Ωj2 −wj2,Ωj2
‖

‖w∗j2,Ωj2 ‖

≤ 2

π

‖w̃∗ − w̃‖
σK

.

(127)

Hence, (122) and (127) suggest that

I ≤ 6

π

‖w̃∗ − w̃‖
σK

. (128)
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The same bound that shown in (128) holds for I2 as well.

Therefore, we have

‖∇2f(w̃)−∇2f(w̃∗)‖2

≤
K∑
j1=1

K∑
j2=1

∥∥∥∥∥ ∂2f(w̃∗)

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f(w̃)

∂wj1,Ωj1
∂wj2,Ωj2

∥∥∥∥∥
2

≤‖I1 + I2‖2 ≤ ‖I1‖2 + ‖I2‖2

≤12

π

‖w̃∗ − w̃‖2
σK

(129)

J Additional proofs of lemmas in Appendix F

J.1 Error bound for the second-order moment

Proof of Lemma 7. For M̂2 −M2, we have

M̂2 −M2

=
1

N

N∑
n=1

yn(x̃n ⊗ x̃n − Ex̃nx̃Tn )− Ex y(x̃⊗ x̃− Ex̃x̃T )

=
1

N

N∑
n=1

( 1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j + ξn

)
(x̃n ⊗ x̃n − Ex̃nx̃Tn )

− Ex
1

K

K∑
j=1

φ(u∗j
T x̃Ω̃j

)(x̃⊗ x̃− Ex̃x̃T )

=
1

K ·N

N∑
n=1

K∑
j=1

(
φ(u∗j

T x̃n,Ω̃j )(x̃n ⊗ x̃n − Ex̃nx̃Tn )− Ex φ(u∗j
T x̃Ω̃j

)(x̃⊗ x̃− Ex̃x̃T )
)

+
1

N

N∑
n=1

ξn(x̃n ⊗ x̃n − Ex̃nx̃Tn )

(130)

Following the notations in Lemma E.2 of [40], we denote

B2(xn) :=
1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j )(x̃n ⊗ x̃n − Ex̃nx̃Tn ). (131)

Following the similar calculations of (I) - (III) in Lemma E.2 [40], we know that

‖B2(x)‖2 . σ1rmax log
3
2 q,

‖ExB2(x)‖2 . σ1,

‖ExB2
2(x)‖2 .

1

K
σ2

1rmax

(132)

hold with probability at least 1− q−rmax .

Define Z2,n = 1
N

(
B2(xn)− ExB2(x)

)
for xn with n ∈ [N ], and it is obvious Z2,n is zero mean.

Also, we have

R2 = ‖Z2,n‖2 ≤
1

N

(
‖B2(xn)‖2 + ‖ExB2(x)‖2

)
.

1

K

K∑
j=1

N−1σ1rk log
3
2 q, (133)
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and

δ2
2 =

∥∥∥ N∑
n=1

EZ2
2,n

∥∥∥2

2
≤
∥∥∥ N∑
n=1

1

N2

(
EB2

2(xn)−
(
EB2(xn)

)2)∥∥∥
2

≤ 1

N

(
‖EB2

2(xn)‖2 + ‖EB2(xn)‖22
)

.N−1σ2
1rmax.

(134)

Next, let t = Θ(σ1

√
rmax log q

N ). To make sure δ2
2 ≥ R2t/3, we need N & rmax log4 q. Then, by

Lemma 10, we have

Prob
{∥∥∥∑

n

Z2,n

∥∥∥
2
≥ t
}
≤2r exp

( −t2/2
δ2
2 +R2t/3

)
≤ 2r exp

(−t2
4δ2

2

)
. (135)

That is ∥∥∥ N∑
n=1

Z2,n

∥∥∥
2
. σ1

√
rmax log q

N
(136)

with probability at least 1− q−rmax . Because x̃n belongs to the sub-Gaussian distribution, we know
that ∥∥∥ 1

N

N∑
n=1

(x̃n ⊗ x̃n − Ex̃nx̃Tn )
∥∥∥

2
.

√
rmax log q

N
(137)

with probability at least 1− q−rmax .

In conclusion, we have

‖M̂2 −M2‖
1

K

K∑
k=1

. (σ1 + |ξ|)
√
rmax log q

N
(138)

with probability at least 1− q−rmax provided that N & rmax log4 q.

J.2 Error bound for the third-order moment

Proof of Lemma 8. For M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ ), we have

M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )

=
1

N

N∑
n=1

yn
[
(V̂

T
x̃n)⊗3 − (V̂

T
x̃n)⊗(E(V̂

T
x̃n)(V̂

T
x̃n)T )

]
− Ex y

[
(V̂

T
x̃)⊗3 − (V̂

T
xT )⊗E(V̂

T
x̃n)(V̂

T
x̃n)T

]
=

1

N

N∑
n=1
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K
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φ(u∗j
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)
·
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T
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T
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K
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φ(u∗j
T x̃Ω̃j

)
[
(V̂

T
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T
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T
x̃)(V̂

T
x̃)T )

]
=

1

K ·N

N∑
n=1

K∑
j=1

[
φ(u∗j

T x̃n,Ω̃j ) ·
[
(V̂

T
x̃n)⊗3 − (V̂

T
x̃n)⊗(E(V̂

T
x̃n)(V̂

T
x̃n)T )

]
− Exφ(u∗j

T x̃Ω̃j
)
[
(V̂

T
x̃)⊗3 − (V̂

T
x̃)⊗(E(V̂

T
x̃)(V̂

T
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+

1

N
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T
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T
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T
x̃)(V̂

T
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(139)
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Following the notations in Lemma E.8 of [40], we define

T (x) :=
1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j ) ·

[
(V̂

T
xn)⊗3 − (V̂

T
xn)⊗(E(V̂

T
xn)(V̂

T
xn)T )

]
. (140)

Then, B3(x) ∈ RK×K2

is defined as flattening the tensor T (x) along the first dimension. Hence,
we have

‖B3(x)‖2 .max
j
|u∗j x̃Ω̃j

| ·
(
‖V̂

T
xn‖32 + 3K‖V̂

T
xn‖2

)
.σ1K

3
2 log

5
2 q

(141)

with probability at least 1− q−K .

Following the similar calculations of (II) and (III) in Lemma E.8 of [40], we know that

‖ExB3(x)‖2 . σ1,

max

{∥∥Ex[B3(x)TB3(x)]
∥∥

2
,
∥∥Ex[B3(x)TB3(x)]

∥∥
2

}
. K2σ2

1 .
(142)

Define Z3,n = 1
N

(
B3(xn) − ExB3(x)

)
for (xn, yn) ∈ D, and it is obvious Z3,n is zero mean.

Also, we have

R3 = ‖Z3,n‖2 ≤
1

N

(
‖B3(xn)‖2 + ‖ExB3(x)‖2

)
.N−1σ1K

3
2 log

5
2 q,

(143)

and

δ2
3 =

{∥∥∥ N∑
n=1

EZ3,nZ
T
3,n

∥∥∥
2
,
∥∥∥ N∑
n=1

EZ3,nZ
T
3,n

∥∥∥
2

}
≤ 1

N

(
‖EB2

3(xn)‖2 + ‖EB3(xn)‖22
)

.N−1K2σ2
1 .

(144)

Similar to (135), by applying Lemma 10, we have∥∥∥ N∑
n=1

Z3,n

∥∥∥
2
. σ1

√
log q

N
(145)

with probability at least 1− q−K provided that N & K5 log6 q.

Similar to (141), we define B by flattening the tensor
∑N
n=1

[
(V̂

T
x̃)⊗3 −

(V̂
T
x̃)⊗(E(V̂

T
x̃)(V̂

T
x̃)T )

]
along the first dimension. Then, we know that

‖B‖2 ≤
∥∥∥ N∑
n=1

V̂
T
x̃n

∥∥∥3

2
+ 3K

∥∥∥ N∑
n=1

V̂
T
x̃n

∥∥∥
2
.

(
K−4 log q

N

) 3
2

+ 3K

(
K−4 log q

N

) 1
2

.

(
log q

N

) 1
2

+

(
log q

N

) 1
2

.

√
log q

N
,

(146)

provided that N & K5 log q.

In conclusion, we have∥∥∥M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )
∥∥∥ . (σ1 + |ξ|)

√
log q

N
(147)

with probability at least 1− q−K provided that N & K3 log6 q.
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J.3 Error bound for the first-order moment

Proof of Lemma 9. For M̂1 −M1, we have

M̂1 −M1 =
1

N

N∑
n=1

ynx̃n − Ex yx̃

=
1

N

N∑
n=1

( 1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j ) + ξn

)
x̃n − Ex

K∑
j=1

1

K
φ(u∗j

T x̃Ω̃j
)x̃

=
1

K ·N

K∑
j=1

N∑
n=1

(
φ(u∗j

T x̃n,Ω̃j )x̃n − Ex φ(u∗j
T x̃Ω̃j

)x̃
)

+
1

N

N∑
n=1

ξn · x̃n.

(148)

DefineB1(x) := 1
K

∑K
j=1 φ(u∗j

T x̃n,Ω̃j )x̃n, then we have

‖B1(x)‖2 .
1

K

K∑
k=1

σ1rk log
3
2 q;

‖ExB1(x)‖2 . σ1;{∥∥Ex[B1(x)B1(x)T ]
∥∥

2
,
∥∥Ex[B1,j(x)TB1(x)]

∥∥
2

}
. σ2

1 .

(149)

Next, define Z1,n = 1
N

(
B1,j(xn)− ExB2(x)

)
for (xn, yn) ∈ D, by calculation, we can obtain

R1 = ‖Z1,n‖2 . N−1σ1rmax log
3
2 q, (150)

and

δ2
1 = max

{∥∥∥ N∑
n=1

EZ1,nZ
T
1,n

∥∥∥2

2
,

∣∣∣∣ N∑
n=1

ZT1,nZ1,n

∣∣∣∣} . N−1σ2
1rmax. (151)

By applying Lemma 10, we have ∥∥∥∥∥
N∑
n=1

Z1,n

∥∥∥∥∥
2

. σ1

√
rmax log q

N
(152)

with probability at least 1 − q−rmax provided that N & rmax log4 q. Since x ∈ Rr belongs to the
Gaussian distribution, we have ∥∥∥ 1

N

N∑
n=1

x̃n

∥∥∥
2
.

√
rmax log q

N
(153)

with probability at least 1− q−rmax .

In conclusion, we have

‖M̂1 −M1‖ . (σ1 + |ξ|)
√
rmax log q

N
(154)

with probability at least 1− q−rmax , provided that N & rmax log4 q.
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