
Aligned Structured Sparsity Learning for Efficient
Image Super-Resolution

Yulun Zhang1,† Huan Wang1,†,∗ Can Qin1 Yun Fu1,2

1Department of ECE, Northeastern University
2Khoury College of Computer Science, Northeastern University

Abstract

Lightweight image super-resolution (SR) networks have obtained promising re-
sults with moderate model size. Many SR methods have focused on designing
lightweight architectures, which neglect to further reduce the redundancy of net-
work parameters. On the other hand, model compression techniques, like neural
architecture search and knowledge distillation, typically consume considerable
memory and computation resources. In contrast, network pruning is a cheap and
effective model compression technique. However, it is hard to be applied to SR net-
works directly, because filter pruning for residual blocks is well-known tricky. To
address the above issues, we propose aligned structured sparsity learning (ASSL),
which introduces a weight normalization layer and applies L2 regularization to the
scale parameters for sparsity. To align the pruned filter locations across different
layers, we propose a sparsity structure alignment penalty term, which minimizes
the norm of soft mask gram matrix. We apply aligned structured sparsity learn-
ing strategy to train efficient image SR network, named as ASSLN, with smaller
model size and lower computation than state-of-the-art methods. We conduct ex-
tensive comparisons with lightweight SR networks. Our ASSLN achieves superior
performance gains over recent methods quantitatively and visually.

1 Introduction

Image super-resolution (SR) is a fundamental computer vision application, which aims to recover
a high-resolution (HR) image from its low-resolution (LR) counterpart. In general, image SR is
an ill-posed problem, because there exist many HR candidates for one LR input. To alleviate this
problem, more and more researchers have been investigating plenty of deep convolutional neural
networks (CNNs) [11, 31, 38] to achieve more accurate mapping from LR image to its HR target.

Deep CNN was firstly introduced for image SR in SRCNN [11] and has attracted continuous attention
from both academic and industry communities with its promising SR performance. SRCNN only
consists of three convolutional (Conv) layers, hindering its performance. Kim et al. achieved notable
improvements over SRCNN by increasing the network depth in VDSR [30] with residual learning.
Deeper CNNs could be trained successfully with residual blocks [22]. By utilizing simplified residual
blocks, Lim et al. [38] built a much deeper network EDSR. Zhang et al. [64] proposed a residual
channel attention network (RCAN), which is one of the deepest SR networks. With increased network
size (i.e., deeper and wider), very deep networks, like EDSR [38] and RCAN [64], have achieved
remarkable SR performance. However, they also suffer from some drawbacks, such as heavy model
parameters, number of operations, and inference time. Therefore, it is impractical to directly deploy
them on resource-limited platforms without neural processing units or off-chip memory [36].

†Equal Contribution
*Corresponding author: Huan Wang (wang.huan@northeastern.edu)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

HR (×4) LapSRN [34] MemNet [55] CARN [1] IMDN [27] EDSR [38] ASSLN (ours)
Params/FLOPs 813K/149.4G 677K/2,662.4G 1,592K/90.9G 715K/40.9G 43M/2.9T 708K/40.6G

Figure 1: Visual results, parameter number, and FLOPs comparison for 4× SR on Urban100 [26]
dataset (img_012 and img_020) among lightweight SR networks and a large one EDSR. When
calculating FLOPs, we set output size as 3×1280×720. Our ASSL has the smallest number of
parameters and FLOPs, while achieving comparable or even better results than others.

From this point of view, more and more works turn to design lightweight network architectures
for efficient image SR [1, 27]. Ahn et al. proposed cascading residual network (CARN) [1] by
implementing a cascading mechanism upon a residual network. Hui et al. proposed information multi-
distillation network (IMDN) [27]. Lee et al. introduced knowledge distillation (KD) [25] for image
SR [24, 36] with student and teacher networks. Besides, neural architecture search (NAS) [66, 15]
was also utilized for lightweight SR models, like MoreMNAS [8] and FALSR [7]. However, there
are still several downsides among these networks: (1) The knowledge distillation based methods
usually introduce a large teacher network, which will consume more computation resources during
distillation training. (2) The training in some of these NAS-based methods can also consume heavy
computation resources. For example, 8 Tesla V100 GPUs are needed to train a single network for
about three days in FALSR [7]. (3) Most lightweight SR methods neglect to consider the sparsity or
redundancy in the Conv kernels, which can be optimized to be more efficient. In short, more effective,
resource-friendly, and general lightweight SR networks are still in need.

To further peel off the redundancy of Conv kernels, neural network pruning techniques [50, 53]
are usually introduced to reduce the model complexity. Researchers mainly focus on filter pruning
(a.k.a. structured pruning, e.g., [37]) rather than weight-element pruning (a.k.a. unstructured pruning,
e.g., [18, 17]) for acceleration. Bridging filter pruning with image SR seems a plausible solution
to strike a better performance-complexity trade-off. However, filter pruning methods in image
classification can hardly be transferred to SR networks directly. The main reason is that residual
blocks have become a essential component in state-of-the-art SR networks to ease the training (e.g.,
the deep version of EDSR [38] has 80 residual blocks; RCAN [64] even has 200 residual blocks).
However, it is well-known that residual connections are hard to prune in structured pruning [37].

To tackle the above issues, we present aligned structured sparsity learning (ASSL) for efficient image
SR (see Fig. 1). ASSL is essentially a regularization-based filter pruning method. We introduce
a weight normalization layer [51] after each convolutional layer and apply sparsity-inducing L2

regularization to the scale parameters in the weight normalization. Besides, a central problem in
pruning residual networks in image SR is to align the consequent sparsity structure across different
layers (see Fig. 2 constrained Conv layers). In this regard, we propose a novel sparsity structure
alignment regularization term to encourage the pruned filter locations across different layers to be
the same. To the best of our knowledge, our ASSL is the first attempt to leverage filter pruning for
efficient image SR. The main contributions of our work can be summarized as follows:

• We propose aligned structured sparsity learning (ASSL) for efficient image super-resolution
(SR). To the best of our knowledge, jointly optimizing image SR networks with structured
sparsity constraint has received little research attention so far.

• Our ASSL offers a generic framework to structurally prune SR networks with extensive
residual connections. To tackle the pruned filter location mismatch issue, a sparsity structure
alignment penalty term is introduced to align the pruned filter indices across different layers.

• We employ ASSL to train an efficient aligned structured sparsity learning network (ASSLN),
with detailed pruning process visualization for analysis. Our ASSLN achieves superior gains
over SOTA lightweight image SR methods quantitatively and visually.

2 Related Work
Deep Image SR Models. Dong et al. [11] firstly introduced CNN with 3 Conv layers for image
SR. Residual learning was introduced in VDSR [30], reaching 20 Conv layers. Lim et al. [38]

2

Residual Block

Skip Connection

F(i-1) F(i) F(i+1) F(i+2)

W(i) W(i+1)

1

1

3

6 3

6 1

5
7

1

5

7

1

4

7WN

5

5
4

5

4

WN

Figure 2: Illustration of filter pruning within a residual block. Feature maps F are depicted as 3d
cubes. Convolutional kernel W (4d tensor) is expended as a 2d matrix (each row stands for a filter).
Both orange and yellow colors mean the pruned filters: orange represents the pruned filters in free
Conv layers; yellow represents the pruned filters in constrained Conv layers. We add an extra weight
normalization (WN) layer right after each Conv layer. The main point of ASSL is to apply L2

regularization to the unimportant WN scale parameters for sparsity and regularize the indices of
pruned WN scales in the constrained Conv layers to be as close as possible to each other.

proposed EDSR with simplified the residual block [22]. Zhang et al. [64] proposed an even deeper
network RCAN. Liu et al. proposed FRANet [39] to make the residual features more focused on
critical spatial contents. Later, Zhang et al. [65] proposed residual non-local attention for image
restoration, including image SR. Mei et al. proposed CSNLN [45] by combining feature correlations,
and external statistics. Most of them have achieved state-of-the-art results with deeper and wider
networks. However, they suffer from huge model sizes and heavy computation operations.

Lightweight Image SR Models. Of late, lightweight image SR models have attracted rising attention.
Kim et al. firstly introduced recursive learning in DRCN to decrease model size [31]. Ahn et
al. designed a cascading mechanism upon a residual network in CARN [1]. Hui et al. proposed a
lightweight information multi-distillation network (IMDN) [27]. Meanwhile, neural architecture
search was introduced for image SR in FALSR [7]. Besides, model compression techniques, like
knowledge distillation, have been investigated for image SR [24]. Lee et al. trained a teacher network
to distill its knowledge to a student [36]. Although those lightweight networks have achieved great
progress, they still need considerable extra computation resources.

Neural Network Pruning. Pruning removes redundant parameters in a neural network without
performance seriously compromised [50, 53, 5, 6]. Pruning methods can be mainly grouped into
structured pruning (i.e., filter pruning) [37, 60, 23, 58] or unstructured pruning [18, 17]. Structured
pruning produces regular sparsity after pruning, beneficial to acceleration. In contrast, unstructured
pruning results in irregular sparsity, beneficial to compression (i.e., large sparsity) while hard to
leverage for actual acceleration [60, 57]. We focus on filter pruning in this work for acceleration.

Most pruning papers focus on finding a better pruning criterion to select insignificant parameters to
remove [50, 53, 5, 6, 4]. There are two paradigms to resolve this problem: regularization-based and
importance-based. The former selects unimportant weights by adding a sparsity-inducing penalty
term, jointly optimized with the original loss function (e.g., [60, 42]). The latter selects unimportant
weights via certain derived mathematical formula (e.g., [35, 20, 18, 17, 37, 47, 48]). Note, there is no
strict boundary between the two paradigms. Several works [10, 57, 58] select unimportant weights by
some importance criterion and introduce a penalty term for sparsity as well. The proposed method in
this paper falls into the last category (see Sec. 3.2 for more details).

To our best knowledge, no papers before have successfully joined filter pruning with SR for efficient
inference with promising results. We will discuss in length the difficulties within and bridge the gap.

3 Proposed Method
We first give a brief view of the image SR problem setting by using deep CNN. We also observe that
there exists heavy redundancy in the networks. To pursue more efficient image SR networks, we then
propose aligned structured sparsity learning (ASSL) to train lightweight model, resulting in ASSLN.

3.1 Deep CNN for Image SR
Given a low-resolution (LR) image ILR, image super-resolution (SR) aims to reconstruct its high-
resolution (also known as super-resolved) image ISR. Such a process can be described as follows,

ISR = FSR(ILR; Θ), (1)

3

where FSR(·) is the deep image SR network and Θ denotes the network parameters. We also model
the LR image ILR from its HR counterpart as a degradation process

ILR = F↓s(IHR), (2)
where F↓s(·) downscales the original ground truth IHR with scaling factor s. The downscaling
process may introduce additional noise, blurring, compression, and/or other unknown artifacts.
Meanwhile, high-frequency information will be lost, more or less. Image SR models try to recover
high-frequency information as much as possible. Here, we focus on efficient neural networks with
relatively fewer parameters and computation operations, but comparable or even higher performance.

3.2 Aligned Structural Sparsity Learning (ASSL)

In general, our aligned structural sparsity learning method is a regularization-based structured
pruning method for efficient SR networks. In the following, we will explain (1) what parameters are
regularized to obtain sparsity, (2) how to select unimportant parameters to regularize, (3) which is the
specific regularization form, and (4) how to align the sparsity structure for residual networks.

(1) Regularizing Scales in Weight Normalization. The goal of structured pruning is to remove
filters of a convolutional layer based on some established importance criterion. A natural way is to
introduce a gate variable G to control the throughput of each filter (e.g., [40, 33, 29], one filter has a
gate accordingly) – zeroed gate implies the associated filter contributes nothing to the subsequent
layers, thus can be removed. By regularizing the gate variable, we can know which filters are less
important than the others. In classification, previous works [38, 64] have shown regularizing the
scaling factor in BN [28] is a natural materialization of this idea. Unfortunately, BN is well-known
in practice not useful (even harmful) to SR networks (thus not integrated into state-of-the-art SR
networks [38, 64]). Therefore, the existing solutions cannot carry over to SR networks.

To resolve this issue, we resort to weight normalization [51] (WN), which proposes to decouple the
direction learning of a filter from its norm learning. Specifically, in WN, each filter is normalized to
unit length and an extra learnable scale parameter is used to learn the filter magnitude,

Ŵi =
Wi

||Wi||2
, Wi = γiŴi, for i ∈ {1, 2, · · · , N}, (3)

where W ∈ RN×C×H×W represents the 4d convolutional kernel, and γ ∈ RN stands for the
1d trainable scale parameters in WN. With weight normalization, we have the γ akin to the scale
parameters in BN. Then, we can impose certain regularization on γ to induce sparsity.

(2) Pruning Scheme and Criterion. The next question is how to select unimportant γ to enforce
sparsity (so that we can eventually remove the associated filters). Ideally, we demand a selection
mechanism with easy user control. In [41], they sort the BN scales globally (namely, scales from
different layers are compared together). For image SR networks, however, this scheme can hardly
work. The main reason lies in the architecture difference of image SR networks vs. the mainstream
classification networks. Image SR networks (e.g., RCAN [64]) typically have many more residual
connections than those (e.g., ResNet101 [21]) in classification. The global sorting scheme cannot
guarantee the two layers that are added together keep the same number of filters. To resolve this
problem, we turn to adopt a local pruning scheme. For each layer, a pre-defined sparsity level r is
given. Filters in a layer are only compared to each other within that layer.

As for the criterion issue, previous regularization-based pruning methods typically add a sparsity-
inducing penalty term (e.g., L1 regularization [41, 61], L2-norm regularization [60]) to the loss. The
advantage of this paradigm is that the network can learn to select unimportant filters itself without
using a sub-optimal human-defined criterion, yet at a cost – there is no established relation between
the penalty strength and the desired sparsity. It is very common in practice we need to hard tune
the penalty strength hyper-parameter to strike a good balance between obtaining desired sparsity
and not over-penalizing the network [60, 57]. On the other hand, previous pruning works [16, 58] in
classification have shown that the simple L1-norm criterion actually works pretty well in practice.
L1-norm criterion is well-known only crude in terms of characterizing the incurred loss change when
a weight is pruned from the network [35, 20]. However, it is rather simple (no extra acquisition cost
during SGD training) with easy user control. Its crudity can also be compensated by the plasticity of
deep networks [46, 57]. All taken into consideration, we choose L1-norm as the pruning criterion.
Specifically, for l-th layer, we sort the filters by their L1-norms, and set those with the least norms
as unimportant filters, denoted as set S(l). Then, we apply sparsity-inducing regularization to the

4

weight normalization scales corresponding to those unimportant filters. Note, we do not enforce any
constraint to the important filters since they will stay in the network, no need to restrict their learning.

(3) Regularization Form. Here we pin down the sparsity-inducing (SI) regularization form. By
conventional wisdom in machine learning , L1/L0 regularization may be a natural choice for
sparsity [13, 3]. However, it is hard to control the proper penalty strength by our observation. Instead,
we choose to impose L2 regularization on the scale parameters in weight normalization,

LSI = α

L∑
l=1

∑
i∈S(l)

γ2
i , (4)

where α is the scalar loss weight; γi denotes the i-th element of γ; S(l) represents the unimportant
filter index set of l-th layer. As inspired by [57, 58], the L2 regularization strength α grows gradually
(added by a preset constant ∆ every T iterations) during the sparsity learning process, so that the
unimportant filters can be compressed to a negligible amount. As a termination condition, a ceiling
limit τ (a pre-defined constant) is introduced for the regularization co-efficient α. When α for
unimportant filters reaches τ , the pruning process is finished, followed by finetuning.

The above local pruning scheme can ensure different layers are pruned by the same number of filters.
However, it cannot guarantee the pruned locations are (close to) the same. This will cause a problem
for pruning residual networks about sparsity structure alignment, as explained next.

(4) Sparsity Structure Alignment. Residual networks [21] are well-known difficult to prune because
the add operations (a.k.a. residual/skip connections) in residual blocks demand the pruned filter
indices to be the same. Filter pruning via the proposed ASSL method within a residual block is shown
in Fig. 2. There are two kinds of convolutional (Conv) layers based on their connection relationship
with each other. One group comprises the layers that can be pruned without any constraint, which we
call as free Conv layers in this work; the other consists of layers in which the filters must be pruned
at the same indices, called constrained Conv layers. For a concrete example, in Fig. 2, the layer W(i)

is a free Conv layer and layer W(i+1) is a constrained Conv layer.

Because of the aforementioned sparsity structure constraint issue, many structured pruning algorithms
in classification simply do not prune the last Conv layer in a residual blocks [37, 9, 58]. However,
this naive solution cannot carry over to the image SR networks. The fundamental reason lies in the
architecture difference between SR networks and their counterparts in classification. First, image SR
networks typically employ many more residual blocks. In some top-performed SR networks (e.g.,
RCAN [64]), there are even residuals in residuals. Second, each block of SR networks typically has
only two Conv layers while ResNets [21] in classification typically have three in a block. Third,
the residual block of ResNets [21] typically possesses a bottleneck structure, where the unpruned
constrained Conv layer is 1×1 Conv, accounting for little FLOPs; while for SR networks, the
constrained Conv layers make up an unignorable portion. To see how serious this problem is, taking
EDSR as an example, it has 32 residual blocks and each block has two Conv layers. If we do not
prune the 2nd Conv layer in a residual block, half of the Conv layers are not pruned. In other word,
we can only achieve 2× theoretical acceleration at best. The real wall-clock speedup probably is
even marginal, seriously hindering its practical application.

Given the issue above, it is necessary to prune all the layers in residual blocks if we seek acceleration
for practical use. Thus, it is straightforward to find a method to align the pruned indices in all
constrained Conv layers. Regularization then is a natural choice considering its wide use in enforcing
sparsity structure priors in neural network pruning [50, 60, 58].

mask matrix M mask matrix MT mask gram matrix

1
2
3
4
5
6
7
8

Figure 3: Regularizing the gram matrix of scale matrix.

Concretely, we propose a sparsity struc-
ture alignment (SSA) regularization term.
For two mask vectors m(i),m(j) (for i-th
and j-th constrained layer, respectively) in
which zero entries suggest which filters are
pruned, if the pruned locations in these
two layers are exactly aligned (namely,
m(i) = m(j)), then the inner-product of
them, m(i) ·m(j), is maximized (e.g., Row
2 and 8 in Fig. 3). Therefore, we see that the inner-product of masks is a good optimization tar-
get to align the pruned filter locations. For multiple layers, the mask vectors make up a matrix

5

M ∈ RNc×Nf (where Nc is the number of constrained layers and Nf is the number of filters in
each constrained layer). The inner-products of all combinations make the gram matrix of M , MMT .
Then the loss term is

LSSA = − 1

K

K∑
k=1

(MMT)k, (5)

where K is the total number of elements in matrix MMT . One problem of this penalty term is
that the 0/1-valued hard mask is not differential. To resolve this, we propose to employ Sigmoid
function to obtain soft masks. Specifically, given a pre-specified sparsity ratio r, we sort the weight
normalization scales γ in ascending order and obtain the threshold scale as γth. Then the soft mask
for the i-th weight normalization scale in l-th layer can be formulated as

m
(l)
i = Sigmoid(γ

(l)
i − γ

(l)
th). (6)

With these soft masks,MMT become differential and the loss Eq. (5) can be integrated plug-and-play
into original SGD optimization (note this penalty term is only imposed on constrained Conv layers).

In the pruning process, this sparsity structure alignment term is jointly optimized with the sparsity
inducing loss (Eq. (4)) for a pre-defined number of iterations t (e.g., we set t=2.56×106). After
that, the sparsity structure is well-aligned and we can apply L1-norm sorting to the scales in weight
normalization to decide the unimportant filters in constrained Conv layers.

To sum, the pipeline of the proposed algorithm is: (1) For free Conv layers, we apply sparsity-
inducing regularization (Eq. (4)) directly; (2) For constrained Conv layers, we apply sparsity-structure
alignment regularization (Eq. (5)) for NSSA (a preset constant) epochs and then apply the sparsity-
inducing regularization to them. We provide the detailed algorithm in the supplementary material.

3.3 Arm Image SR Models with ASSL
The proposed ASSL approach can be applied as a drop-in module to state-of-the-art SR models –
simply add the two penalty terms (Eqs. (4) and (5)) to the original loss function of an SR method.
All the features in the original SR method can stay as they are. The proposed penalty term along
with weight normalization layers can be implemented very easily on any automatic-differentiation
framework for training deep neural networks. When the pruning process is finished, we remove
the unimportant filters, which results in a small model. Then we finetune the small model to regain
performance following the common practice [50]. Note weight normalization is only needed in the
pruning stage. During finetuning, all the weight normalization layers will be removed.

3.4 Implementation Details
Here we elaborate the details about how to apply ASSL to constructing lightweight image SR models.
First, we revise EDSR baseline (i.e., 16 residual blocks) [38] by removing the final Conv layer
to reduce parameters. Same as IMDN [27], the image reconstruction is done via the pixel-shuffle
layer [52]. We set kernel size as 3×3 for convolution kernel in all convolutional (Conv) layers. For
Conv layers with kernel size 3×3 (regardless of channel dimensions), zero-padding strategy is used
to keep size fixed. We set the initial channel number in the revised EDSR baseline as 256 and then
prune it to 48. It should be noted the residual scaling factor in each residual block is set as 1. For ×2,
we compress the parameter number from 19.5M to 692K and the FLOPs from 4,492.5G to 159.1G.

4 Experimental Results
4.1 Experimental Settings
Data and Evaluation. Following most recent works [56, 38, 63, 19], we use DIV2K [56] and
Flickr2K [38] as training data. For testing, we use five standard benchmark datasets: Set5 [2],
Set14 [62], B100 [43], Urban100 [26], and Manga109 [44]. The SR results are evaluated with PSNR
and SSIM [59] on Y channel of transformed YCbCr space. We also provide model size and FLOPs
(a.k.a. Mult-Adds) comparisons. When calculating FLOPs, we set the output size as 3×1280×720.

Training Settings. Following [38, 64], we perform data augmentation on the training images, which
are randomly rotated by 90◦, 180◦, 270◦ and flipped horizontally. Each training batch consists of 16
LR color patches, whose size is 48×48. Our ASSLN model is trained by ADAM optimizer [32] with
β1=0.9, β2=0.999, and ε=10−8. We set the initial learning rate as 10−4 and then decrease it to half
every 2×105 iterations. We use PyTorch [49] to implement our models with a Tesla V100 GPU.*

*Our code and trained models are available at https://github.com/MingSun-Tse/ASSL.

6

https://github.com/MingSun-Tse/ASSL

0.0 0.1 0.3 0.5 0.7 0.9
Pruning ratio

28

30

32

34

36

38

PN
SR

 (d
B

)

37.99

34.7
33.67 33.83 33.52

27.34

37.9937.84 37.85 37.73 37.48

34.23

L1-norm
ASSL (ours)

0 20 40 60 80 100
Iteration (k)

0.0

0.5

1.0

W
N

 m
ea

n
sc

al
e

model.body.8.body.0

Pruned filters
Kept filters

0.0

0.2

0.4

SI
 re

g.
 c

o-
ef

fic
ie

nt

Figure 4: Left: PSNR (dB) comparison of models finetuned for only 1 epoch, pruned by L1-norm
vs. our ASSL. Right: Illustration of the pruning process of Conv layer “model.body.8.body.0” in
EDSR. The WN (weight normalization) mean scale of pruned or kept filters are plotted to the left
y-axis (in black); regularization multiplier α is plotted to the right y-axis (in red).

4.2 Ablation Study
Pruning ratio 0.1 0.3 0.5 0.7 0.9
Params (K) 1,101.8 681.1 381.8 154.2 26.9
FLOPs (G) 254.5 157.7 88.9 36.5 7.3

Scratch 37.85 37.81 37.75 37.56 36.74
L1-norm [37] 37.91 37.81 37.73 37.58 36.87
ASSL (ours) 37.94 37.91 37.82 37.70 37.23

Gain (ours/scr.) +0.09 +0.10 +0.07 +0.14 +0.49
Gain (ours/L1) +0.03 +0.10 +0.09 +0.12 +0.36

Table 1: PSNR (dB) comparison on Set5 (×2)
between ASSL and other two methods to obtain
the same small network. The unpruned model
is EDSR baseline (Params: 1,369.9K, FLOPs:
316.3G, PSNR: 37.99 dB).

For ablation study, we use EDSR baseline (i.e.,
16 residual blocks, 64 features) [38] as back-
bone, because it is a widely used image SR base-
line with public code† and results.

Comparison with Baseline Methods. We first
conduct ablation study to demonstrate the ef-
fectiveness of the proposed ASSL method. We
compare two baseline approaches here: train-
ing from scratch and the L1-norm pruning [37]
(which simply removes filters with the smallest
L1-norms and is the most prevailing filter prun-
ing method now). The results are presented in
Tab. 1. (1) The networks pruned by our method
consistently achieve the best PSNR against different pruning ratios. This shows ASSL is not merely
effective (outperforming the scratch training), but also more effective than naively applying the
existing pruning method in classification to image SR (outperforming L1-norm pruning). (2) Notably,
under a larger pruning ratio, the advantage of ASSL over scratch training and L1-norm pruning is
more evident in general, implying that our approach is more effective in extreme pruning cases. (3)
Another point worth mention is that our method also adopts the L1-norm as pruning criterion, the
same as [37]. However, our results are significantly better than theirs. This is because their method
does not enforce any regularization to the resulted sparsity structure. Thus the remaining feature map
channels are actually misaligned in residual blocks of different layers after pruning. Even with a
small pruning ratio, the incurred performance damage is very significant, as shown in Fig. 4(Left) –
with 0.1 pruning ratio, the network pruned by L1-norm degrades PSNR by 3.29 dB, while ours only
decreases PSNR by 0.15 dB. It also indicates that our ASSL maintains most representation ability.

Regularization Visualization. To figuratively understand how ASSL works, in Fig. 4(Right) we plot
the regularization multiplier α and the mean scale in a weight normalization (WN) layer of EDSR
baseline during the ASSL training. The mean scale is split into two parts, pruned and kept. As seen,
the regularization multiplier linearly arises against the training epochs as we design. Meanwhile, the
mean WN scale of the pruned filters decreases little by little as the penalty becomes stronger. One
interesting point is that, note the L1-norms of the mean scale of the kept filters goes up themselves
(no regularization term is employed to encourage them to grow larger). It means the network learns to
protect itself from the pruning process, reminiscent of the compensation effect in human brain [14].

4.3 Comparisons with Lightweight SR Networks
We compare our lightweight network ASSLN with representative lightweight SR networks: SRCNN
[11], FSRCNN [12], VDSR [30], DRCN [31], LapSRN [34], DRRN [54], MemNet [55], CARN [1]
and IMDN [27]. We show extensive quantitative comparisons in Tabs. 2, 3 and visual ones in Fig. 5.

Performance Comparisons. Tab. 2 shows PSNR/SSIM comparisons for ×2, ×3, and ×4 SR.
IMDN [27] ranks the second best except for ×4 SR on Manga109. When compared to all other

†https://github.com/sanghyun-son/EDSR-PyTorch

7

https://github.com/sanghyun-son/EDSR-PyTorch

Method Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [11] ×2 36.66 0.9542 32.42 0.9063 31.36 0.8879 29.50 0.8946 35.60 0.9663
FSRCNN [12] ×2 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020 36.67 0.9710
VDSR [30] ×2 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
DRCN [31] ×2 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133 37.63 0.9740
LapSRN [34] ×2 37.52 0.9590 33.08 0.9130 31.80 0.8950 30.41 0.9100 37.27 0.9740
DRRN [54] ×2 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 37.92 0.9760
MemNet [55] ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740
CARN [1] ×2 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9764
IMDN [27] ×2 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.87 0.9773
ASSLN (ours) ×2 38.12 0.9608 33.77 0.9194 32.27 0.9007 32.41 0.9309 39.12 0.9781

SRCNN[11] ×3 32.75 0.9090 29.28 0.8209 28.41 0.7863 26.24 0.7989 30.48 0.9117
FSRCNN [12] ×3 33.16 0.9140 29.43 0.8242 28.53 0.7910 26.43 0.8080 31.10 0.9210
VDSR [30] ×3 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 32.01 0.9340
DRCN [31] ×3 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276 32.31 0.9360
DRRN [54] ×3 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378 32.74 0.9390
MemNet [55] ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369
CARN [1] ×3 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9539
IMDN [27] ×3 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9444
ASSLN (ours) ×3 34.51 0.9280 30.45 0.8439 29.19 0.8069 28.35 0.8562 34.00 0.9468

SRCNN[11] ×4 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.52 0.7221 27.58 0.8555
FSRCNN [12] ×4 30.71 0.8657 27.59 0.7535 26.98 0.7150 24.62 0.7280 27.90 0.8610
VDSR [30] ×4 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8870
DRCN [31] ×4 31.53 0.8854 28.02 0.7670 27.23 0.7233 25.14 0.7510 28.98 0.8870
LapSRN [34] ×4 31.54 0.8850 28.19 0.7720 27.32 0.7280 25.21 0.7560 29.09 0.8900
DRRN [54] ×4 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638 29.46 0.8960
MemNet [55] ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942
CARN [1] ×4 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.46 0.9083
IMDN [27] ×4 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
ASSLN (ours) ×4 32.29 0.8964 28.69 0.7844 27.66 0.7384 26.27 0.7907 30.84 0.9119

Table 2: PSNR/SSIM comparisons. Best and second best results are colored with red and blue.

Method ×2 ×3 ×4
Params Mult-Adds Params Mult-Adds Params Mult-Adds

SRCNN [11] 57K 52.7G 57K 52.7G 57K 52.7G
FSRCNN [12] 12K 6.0G 12K 5.0G 12K 4.6G
VDSR [30] 665K 612.6G 665K 612.6G 665K 612.6G
DRCN [31] 1,774K 17,974.3G 1,774K 17,974.3G 1,774K 17,974.3G
LapSRN [34] 813K 29.9G N/A N/A 813K 149.4G
DRRN [54] 297K 6,796.9G 297K 6,796.9G 297K 6,796.9G
MemNet [55] 677K 2,662.4G 677K 2,662.4G 677K 2,662.4G
CARN [1] 1,592K 222.8G 1,592K 118.8G 1,592K 90.9G
IMDN [27] 694K 158.8G 703K 71.5G 715K 40.9G
ASSLN (ours) 692K 159.1G 698K 71.2G 708K 40.6G

Table 3: Model size and Mult-Adds comparisons of lightweight SR networks with different scales.

methods, our ASSLN performs the best on all the datasets across all scaling factors. Specifically, let’s
take the challenging ×4 SR as an example. Our ASSLN obtains about 0.23 dB on Urban100 and
0.38 dB on Manga109 PSNR gains over the second best method, respectively. These comparisons
show the effectiveness of ASSLN, which learns the aligned structured sparsity. Different from careful
network designs as most compared methods have done, we start with the existing EDSR baseline [38]
and prune it to a much smaller network. We make better use of the internal sparsity of the network
and increase the efficiency of the learned network parameters.

Model Size and Mult-Adds. Tab. 3 provides parameter number and Multi-Adds comparison with
different scales. Although some previous lightweight SR models (e.g., SRCNN and FSRCNN) cost
very small number of parameters and FLOPs, they also have limited performance. Compared with
recent popular works (e.g., DRRN, MemNet, CARN, and IMDN), our ASSLN has the least parameter
number. We also provide operations number with Mult-Adds. Our ASSLN operates least Mult-Adds
than most compared methods except for the FLOPs for ×2. When we consider Tabs. 2, 3 together,
we find that our ASSLN achieves a better trade-off between performance and resource consumption.
Those comparisons indicate that ASSLN reduces parameters and operations efficiently.

Visual Comparisons. We further provide visual comparisons (×4) in Fig. 5 for challenging cases.
For example, in img_008, we can observe that most of the compared methods cannot recover structural
details with proper directions and/or suffer from blurring artifacts. In contrast, our ASSLN can better
alleviate the blurring artifacts and recover more structural details. Similar observations can be found
in other cases. These visual comparisons are consistent with the quantitative results, demonstrating
the superiority of our method. Our ASSLN learns the aligned structured sparsity from a large network
and prunes it to a much smaller one, but still maintains most representation ability.

8

Urban100: img_008 (×4)

HQ Bicubic SRCNN [11] FSRCNN [12] VDSR [30]

LapSRN [34] MemNet [55] CARN [1] IMDN [27] ASSLN (ours)

Urban100: img_058 (×4)

HQ Bicubic SRCNN [11] FSRCNN [12] VDSR [30]

LapSRN [34] MemNet [55] CARN [1] IMDN [27] ASSLN (ours)

Urban100: img_073 (×4)

HQ Bicubic SRCNN [11] FSRCNN [12] VDSR [30]

LapSRN [34] MemNet [55] CARN [1] IMDN [27] ASSLN (ours)

Urban100: img_089 (×4)

HQ Bicubic SRCNN [11] FSRCNN [12] VDSR [30]

LapSRN [34] MemNet [55] CARN [1] IMDN [27] ASSLN (ours)

Figure 5: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.

4.4 Comparisons with Other Model Compression Methods

Method Params Mult-Adds Set5 B100
MoreMNAS-A [8] 1,039K 238.6G 37.63 31.95
FALSR-A [7] 1,021K 234.7G 37.82 32.12
CARN+KD [36] 1,592K 222.8G 37.82 32.08
ASSLN (ours) 692K 159.1G 38.12 32.27

Table 4: Model size, Mult-Adds, and PSNR com-
parisons (×2) among model compression methods.

To further show the effectiveness of our network
pruning method, we compare our ASSLN with
representative model compression techniques
for image SR. Specifically, we compare with
neural architecture search (NAS) based meth-
ods (i.e., MoreMNAS-A [8] and FALSR-A [7])
and knowledge distillation (KD) based methods
(i.e., CARN+KD [36]). We provide quantitative
results in Tab. 4. The results of compared methods are copied from their papers directly. Our ASSLN
obtains the best performance with the least parameter number and Mult-Adds. With our aligned
structured sparsity learning strategy, we do not have to search lots of architectures or train a teacher
network, which usually consume plenty of extra computation resources.

5 Conclusion
Lately, researchers have been investigating lightweight image super-resolution (SR) networks and
achieving promising results with moderate model size and FLOPs. Meanwhile, model compression
techniques, like neural architecture search and knowledge distillation, have also been introduced
for efficient SR network design. However, they usually consume expensive computation resources.
Network pruning is another popular model compression technique, but it is hard to train lightweight
SR networks directly because of extensive residual connections in SR. To address these issues, we
propose aligned structured sparsity learning (ASSL), which introduces a weight normalization layer
and imposes L2 regularization to the scale parameters for sparsity. We further propose a sparsity
structure alignment penalty term to align the locations across different layers. We employ such
an aligned structured sparsity to train efficient image SR network (ASSLN). Our ASSLN achieves
superior performance over recent state-of-the-art methods quantitatively and qualitatively.

Acknowledgments. This research is supported by the U.S. Army Research Office Award W911NF-17-1-0367.

9

References
[1] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-resolution

with cascading residual network. In ECCV, 2018. 2, 3, 7, 8, 9

[2] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012. 6

[3] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006. 5

[4] Davis Blalock, Jose Javier Gonzalez, Jonathan Frankle, and John V Guttag. What is the state of neural
network pruning? In MLSys, 2020. 3

[5] Jian Cheng, Pei-song Wang, Gang Li, Qing-hao Hu, and Han-qing Lu. Recent advances in efficient
computation of deep convolutional neural networks. Frontiers of Information Technology & Electronic
Engineering, 19(1):64–77, 2018. 3

[6] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep neural
networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 35(1):126–136,
2018. 3

[7] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and Qingyuan Li. Fast, accurate and lightweight
super-resolution with neural architecture search. arXiv preprint arXiv:1901.07261, 2019. 2, 3, 9

[8] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Hailong Ma. Multi-objective reinforced evolution in mobile
neural architecture search. arXiv preprint arXiv:1901.01074, 2019. 2, 9

[9] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and Chenggang Yan. Approximated oracle
filter pruning for destructive cnn width optimization. In ICML, 2019. 5

[10] Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. Auto-balanced filter pruning for efficient
convolutional neural networks. In AAAI, 2018. 3

[11] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for
image super-resolution. In ECCV, 2014. 1, 2, 7, 8, 9

[12] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional neural
network. In ECCV, 2016. 7, 8, 9

[13] David L Donoho. Compressed sensing. TIT, 2006. 5

[14] H Duffau, L Capelle, D Denvil, N Sichez, P Gatignol, M Lopes, MC Mitchell, JP Sichez, and R Van Effen-
terre. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of
brain compensation. Journal of Neurology, Neurosurgery & Psychiatry, 74(7):901–907, 2003. 7

[15] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. JMLR, 2019.
2

[16] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019. 4

[17] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In ICLR, 2016. 2, 3

[18] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for efficient
neural network. In NeurIPS, 2015. 2, 3

[19] Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukita. Deep back-projection networks for super-
resolution. In CVPR, 2018. 6

[20] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon. In
NeurIPS, 1993. 3, 4

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 4, 5

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016. 1, 3

[23] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
ICCV, 2017. 3

10

[24] Zibin He, Tao Dai, Jian Lu, Yong Jiang, and Shu-Tao Xia. Fakd: Feature-affinity based knowledge
distillation for efficient image super-resolution. In ICIP, 2020. 2, 3

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In NeurIPS
Workshop, 2014. 2

[26] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In CVPR, 2015. 2, 6

[27] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. Lightweight image super-resolution with
information multi-distillation network. In ACM MM, 2019. 2, 3, 6, 7, 8, 9

[28] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015. 4

[29] Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable masks. In
ICML, 2020. 4

[30] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In CVPR, 2016. 1, 2, 7, 8, 9

[31] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for image
super-resolution. In CVPR, 2016. 1, 3, 7, 8

[32] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 6

[33] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, and
Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In ICML, 2020. 4

[34] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep laplacian pyramid networks
for fast and accurate super-resolution. In CVPR, 2017. 2, 7, 8, 9

[35] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In NeurIPS, 1990. 3, 4

[36] Wonkyung Lee, Junghyup Lee, Dohyung Kim, and Bumsub Ham. Learning with privileged information
for efficient image super-resolution. In ECCV, 2020. 1, 2, 3, 9

[37] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. In ICLR, 2017. 2, 3, 5, 7

[38] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In CVPRW, 2017. 1, 2, 4, 6, 7, 8

[39] Jie Liu, Wenjie Zhang, Yuting Tang, Jie Tang, and Gangshan Wu. Residual feature aggregation network
for image super-resolution. In CVPR, 2020. 3

[40] Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hayden KH So. Dynamic sparse training: Find
efficient sparse network from scratch with trainable masked layers. In ICLR, 2020. 4

[41] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In ICCV, 2017. 4

[42] Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through l_0
regularization. In ICLR, 2018. 3

[43] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring ecological statistics. In
ICCV, 2001. 6

[44] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu
Aizawa. Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and Applications, 2017.
6

[45] Yiqun Mei, Yuchen Fan, Yuqian Zhou, Lichao Huang, Thomas S Huang, and Humphrey Shi. Image
super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In CVPR,
2020. 3

[46] Deepak Mittal, Shweta Bhardwaj, Mitesh M Khapra, and Balaraman Ravindran. Recovering from random
pruning: On the plasticity of deep convolutional neural networks. In WACV, 2018. 4

11

[47] P. Molchanov, S. Tyree, and T. Karras. Pruning convolutional neural networks for resource efficient
inference. In ICLR, 2017. 3

[48] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In CVPR, 2019. 3

[49] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017. 6

[50] R. Reed. Pruning algorithms – a survey. IEEE Transactions on Neural Networks, 1993. 2, 3, 5, 6

[51] Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In NeurIPS, 2016. 2, 4

[52] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In CVPR, 2016. 6

[53] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural networks:
A tutorial and survey. Proceedings of the IEEE, 2017. 2, 3

[54] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep recursive residual network. In
CVPR, 2017. 7, 8

[55] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Memnet: A persistent memory network for image
restoration. In ICCV, 2017. 2, 7, 8, 9

[56] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang, Bee Lim, Sanghyun Son,
Heewon Kim, Seungjun Nah, Kyoung Mu Lee, et al. Ntire 2017 challenge on single image super-resolution:
Methods and results. In CVPRW, 2017. 6

[57] Huan Wang, Xinyi Hu, Qiming Zhang, Yuehai Wang, Lu Yu, and Haoji Hu. Structured pruning for efficient
convolutional neural networks via incremental regularization. IEEE Journal of Selected Topics in Signal
Processing, 14(4):775–788, 2019. 3, 4, 5

[58] Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In ICLR,
2021. 3, 4, 5

[59] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. TIP, 2004. 6

[60] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In NeurIPS, 2016. 3, 4, 5

[61] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative assumption
in channel pruning of convolution layers. In ICLR, 2018. 4

[62] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-representations.
In Proc. 7th Int. Conf. Curves Surf., 2010. 6

[63] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a single convolutional super-resolution network for
multiple degradations. In CVPR, 2018. 6

[64] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution
using very deep residual channel attention networks. In ECCV, 2018. 1, 2, 3, 4, 5, 6

[65] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. Residual non-local attention networks for
image restoration. In ICLR, 2019. 3

[66] Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In ICLR, 2017. 2

12

