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Abstract

Graph Neural Networks (GNNGs) are limited in their expressive power, struggle with
long-range interactions and lack a principled way to model higher-order structures.
These problems can be attributed to the strong coupling between the computational
graph and the input graph structure. The recently proposed Message Passing
Simplicial Networks naturally decouple these elements by performing message
passing on the clique complex of the graph. Nevertheless, these models can be
severely constrained by the rigid combinatorial structure of Simplicial Complexes
(SCs). In this work, we extend recent theoretical results on SCs to regular Cell
Complexes, topological objects that flexibly subsume SCs and graphs. We show
that this generalisation provides a powerful set of graph “lifting” transformations,
each leading to a unique hierarchical message passing procedure. The resulting
methods, which we collectively call CW Networks (CWNs), are strictly more
powerful than the WL test and not less powerful than the 3-WL test. In particular,
we demonstrate the effectiveness of one such scheme, based on rings, when applied
to molecular graph problems. The proposed architecture benefits from provably
larger expressivity than commonly used GNNss, principled modelling of higher-
order signals and from compressing the distances between nodes. We demonstrate
that our model achieves state-of-the-art results on a variety of molecular datasets.

1 Introduction

The operations performed by message passing Graph Neural Networks (GNNs) emulate the structure
of the input graph. While this property has clear computational advantages, it brings with it a series of
fundamental limitations. As observed by Xu et al. [74] and Morris et al. [55] the local neighbourhood
aggregations used by GNNs are at most as powerful as the Weisfeiler-Lehman (WL) test [[71] in
distinguishing non-isomorphic graphs. Therefore, GNNss fail to detect certain higer-order meso-scale
structures such as cliques or (induced) cycles [2}[15]], which are particularly important in applications
dealing with social and biological networks or molecular graphs. At the same time, many such layers
have to be stacked to make long-range interactions in the graph possible. Besides the computational
burden this incurs, deep GNNs typically come with additional problems such as over-smoothing [S1]]
and over-squashing [[1] of the node representations.

* Authors contributed equally.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



To address these problems, we propose a novel message passing procedure based on (regular)
cell complexes, also known as CW complexe topological objects that form the building block
of algebraic topology [38]. When paired with a theoretically-justified “lifting” transformation
augmenting the graph with higher-dimensional constructs called “cells”, our method results in a
multi-dimensional and hierarchical message passing procedure over the input graph. Our approach
generalises and subsumes the recently proposed Message Passing Simplicial Networks (MPSNs) [8],
which operate on simplicial complexes (SCs), topological generalisations of graphs. However, SCs
have a rigid combinatorial structure that significantly limits the range of lifting transformations one
could use to meaningfully modulate the message passing procedure. In contrast, we show that cell
complexes, which in turn generalise simplicial complexes and come with additional flexibility, allow
one to construct new and better ways of decoupling the input and computational graphs.

Main Contributions To summarise, we propose a message passing scheme operating on regular
cell complexes. We call this family of models CW Networks (CWNs) and study their expressive power
using a cellular version of the WL test. We show that for an entire class of “lifting” transformations
CWNs are at least as powerful as the WL test. Furthermore, we prove that for some of the maps in this
class, CWNs can be strictly more powerful than WL, Simplicial WL (SWL) and also not less powerful
than 3-WL. We also express the fundamental symmetries of these models and show how they can be
seen as generalised convolutional operators on cell complexes. Experimentally, we focus our attention
on a particular “lifting” map based on induced cycles. When applied to molecular graphs, it leads to
an intuitive hierarchical message passing procedure involving the atoms, the bonds between them and
the chemical rings of the molecules. We demonstrate that this provably powerful approach obtains
state-of-the-art results on popular large-scale molecular graph datasets and other related tasks. To the
best of our knowledge, this is the first work proposing a cell complex representation for molecules.
Our code is available athttps://github.com/twitter-research/cwn,

2 Background

Definition 1 (Hansen and Ghrist [36]). A regular cell complex (Figure|l) is a topological space X
together with a partition { X, }scpy of subspaces X, of X called cells, and such that

1. For each x € X there exists an open neighbordhood of x that intersects finitely many cells.
2. Forall 0,7 we have that X, N X, #0iff X, C X, where X, is the closure of a cell.

3. Every cell is homeomorphic to R™ for some n.
4

. (Regularity) For every o € Px there is a homeomorphism ¢ of a closed ball in R to X, such
that the restriction of ¢ to the interior of the ball is a homeomorphism onto X .

We note that by condition (2) the indexing set Px has a poset
structure 7 < 0 < X, C X, while condition (4) guarantees
that this poset structure encodes all the topological information
about X . Thus, we can identify a regular cell complex X with
this poset, called face poset of X. We also use 7 < o for the
strict version of this partial order. °

Intuitively, one constructs a cell complex through a hierarchical
gluing procedure. One starts with a set of vertices (0-cells).
Then edges (1-cells) are attached to these by gluing the end-
points of closed line segments to them. We have now only
described a (multi) graph. However, one can generalise this
even further by taking a two-dimensional closed disk and glue
its boundary (i.e. a circle) to any simple cycle in the (multi)
graph previously built as in Figure 2. While we are generally
not concerned with dimensions above two, this can be further
generalised by gluing the boundary of n-dimensional balls to certain (n — 1)—cells in the complex.

Figure 1: A cell complex X and the
corresponding homeomorphisms to
the closed balls for three cells of dif-
ferent dimensions in the complex.

Consider the examples in Figure[3. The shown sphere is a cell complex obtained from two 0-cells
(i.e. vertices), to which two 1-cells (i.e. edges), which form the equator, were attached. The boundary

2We use these terms interchangeably. For the latter, the C stands for “closure-finite”, and the W for “weak”
topology. The term was coined by Whitehead [72].
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Figure 2: Closed two-dimensional disks are glued to the bound- Figure 3: A sphere and an empty
ary of the rings present in the graph (left). The resultis a 2D  tetrahedron. The latter is also a
regular cell complex (right). simplicial complex.

of two 2-dimensional disks (i.e. the two hemispheres) were glued to the equator to form a sphere.
The second example is a tetrahedron with empty interior. It is a particular type of cell complex
called a simplicial complex (SC). The only 2-cells it allows are triangle-shaped. More generally, the
n-dimensional cells of SCs are n-simplices, which makes them slightly more rigid structures.

Definition 2. The k-skeleton of a cell complex X, denoted X %), is the subcomplex of X consisting
of cells of dimension at most k.

This definition is useful for referring for certain parts of the complex. For instance, X (°) contains the
vertices in the complex, while X (1) contains the vertices and the edges (i.e. the underlying graph).

The combinatorial structure of the complex can be more compactly described by an incidence relation
we call the boundary relation, whose reflexive and transitive closure gives the partial order defined
above. The boundary relation describes what cells are on the boundary of other cells. For instance,
the edges of the sphere in Figure [3|are on the boundary of the 2-cells forming the two hemispheres.

Definition 3. We have the boundary relation o < 7 iff o < 7 and there is no cell § such that
o<d<T.

We can use this to define the four types of (local) adjacencies present in cell complexes. These
adjacencies will be the fundamental building block of our message passing procedure. To explain
these in more familiar terms, for each adjacency, we exemplify how it shows up in graphs.

Definition 4 (Cell complex adjacencies). For a cell complex X and a cell o € Px, we define:
1. The boundary adjacent cells B(o) = {7 | 7 < o}. These are the lower-dimensional cells on the
boundary of 0. For instance, the boundary cells of an edge are its vertices.

2. The co-boundary adjacent cell C(0) = {1 | o < 7}. These are the higher-dimensional cells with
o on their boundary. For instance, the co-boundary cells of a vertex are the edges it is part of.

3. The lower adjacent cells N (o) = {7 | 30 such that 6 < o and 6 < 7}. These are the cells of
the same dimension as o that share a lower dimensional cell on their boundary. The line graph
adjacencies between the edges are a classic example of this.

4. The upper adjacent cells Ny(c) = {7 | 36 such that o < 6 and T < &}. These are the cells of
the same dimension as o that are on the boundary of the same higher-dimensional cell as o. The
typical graph adjacencies between vertices are the canonical example here.

3 Cellular Weisfeiler Lehman

Overview The results in this section show how one can transform graphs into higher-dimensional
cell complexes in such a way that performing colour refinement on the resulting cell complexes makes
it easier to test their isomorphism. The message passing model from Section [d] will take advantage of
these theoretical results. All proofs can be found in Appendix [A!

Definition 5. Let c be a colouring of the cells in a complex X with c, denoting the colour assigned
to cell o € Px. Define B(o,7) := B(o)NB(1) and C(o,7) := C(o) NC(7). We define the following
multi-sets of colours:

1. The colours of the boundary cells of o: cg(0) = {c- | 7 € B(o) }}.

2. The colours of the co-boundary cells of o: cc(0) = {e. | 7 € C(o) }.

3. The lower adjacent colours of o: ¢\ (o) = {(cr,c5) | T € Ny(0) and 6 € B(o, 1)}

4. The upper adjacent colours of o: c+(0) = {(¢r,¢5) | 7 € Ny(0) and 6 € C(o, 7)}}
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Figure 4: The CWL colouring procedure for the yellow edge of the cell complex. All cells have
been assigned unique colours to aid the visualisation of the adjacencies. Note that the yellow edge
aggregates long-range information from the light green edge.

Note that unlike in graphs and simplicial complexes, the sets B(c, 7) and C(o, 7) can have more
than one element. For instance, two (closed) 2-cells might intersect in more than one edge (e.g. the
two hemispheres in Figure [3), and conversely, two edges might be on the boundary of the same two
2-cells. This illustrates the more flexible combinatorial structure of cell complexes.

Cellular WL (CWL) We consider CWL, a colour refinement scheme for cell complexes that
generalises the Simplicial WL [8] and WL [71] tests. We use ¢!, to refer to the colour assigned by
CWL to cell o at iteration ¢ of the algorithm. When the input is a simplicial complex, this recovers
the SWL algorithm. A step of the algorithm is graphically depicted in Figure ] for a single cell.

1. Given a regular cell complex X, all the cells o are initialised with the same colour.

2. Given the colour cf, of cell o at iteration ¢, we compute the colour of cell ¢ at the next iteration
¢t by injectively mapping the multi-sets of colours belonging to the adjacent cells of o using a
perfect HASH function: ¢! = HASH(cl,, ci(0), ¢ (o), ¢ (0), ¢4 ().

3. The algorithm stops when a stable colouring is reached. Two cell complexes are considered
non-isomorphic if their colour histograms are different. Otherwise, the test is inconclusive.

First, we state the following theorem from Bodnar et al. [8] involving SWL and simplicial complexes.
This theorem shows that on simplicial complexes, certain adjacencies can be pruned without affecting
the non-isomorphic SCs that can be distinguished. This has important computational implications.

Theorem 6. SWL without coboundary and lower-adjacencies has the same expressive power in
distinguishing non-isomorphic simplicial complexes as SWL with the complete set of adjacencies.

It is not immediately clear whether an equivalent theorem would also hold for cell complexes. This
is because cells, unlike simplices, can have widely different shapes and, as described above, the
adjacencies between them take more complicated forms. Nevertheless, we show that a positive result
can be obtained.

Theorem 7. CWL without coboundary and lower-adjacencies has the same expressive power in
distinguishing non-isomorphic cell complexes as CWL with the complete set of adjacencies.

We note this does not mean that the removed adjacencies are completely redundant in practice. Even
if they are not needed from a (theoretical) colour refinment perspective, they might still include
important inductive biases that make them suitable for certain tasks.

We are now interested in examining various procedures for mapping, or “lifting”, graphs into the
space of regular cell complexes. Such a procedure can be used to test the isomorphism of two graphs
by performing colour refinement on the cell complexes they are mapped to. The hope is that CWL
applied to these cell complexes is more powerful than WL applied to the initial graphs. We will later
show that for a wide range of transformations, this is indeed the case. We start by rigorously defining
what we mean by a “lifting”.

Definition 8. A cellular lifting map is a function f : G — X from the space of graphs G to the
space of regular cell complexes X with the property that two graphs G1, Gy are isomorphic iff the
cell complexes f(G1), f(Gz) are isomorphic.

This property ensures that testing the isomorphism of the two cell complexes is equivalent to testing
the isomorphism in the input graphs. This would not be the case if two non-isomoprhic graphs were
mapped to the same cell complex.



Example 9. It can be verified that the function mapping each graph to its clique complex (i.e. every
(k 4 1)-clique in the graph becomes a k-simplex) is a cellular lifting map.

The clique complex lifting map from Example [9has been used by Bodnar et al. [8] to show that SWL
is strictly more powerful than WL. We restate this result:

Theorem 10. SWL with clique complex lifting is strictly more powerful than WL.

A natural question is what other lifting transformations make CWL strictly more powerful than WL?
We first describe a space of lifting transformations that make CWL at least as powerful as WL.

Definition 11. A lifting map is skeleton-preserving if for any graph G, the 1-skeleton of f(G) and
G are isomorphic as (multi) graphs.

Intuitively, skeleton-preserving liftings ensure that the additional structure added by the lifting map
comes from attaching cells of dimension at least two to the graph. These mappings keep the 0-cells
and 1-cells intact and are, therefore, restricted from making modifications to the input graph structure.
An important remark is that for simplicial complexes, attaching simplices based on cliques present
in the graph is the only possible skeleton preserving transformation. Once again, this illustrates the
limitations of simplicial complexes for adding useful higher-dimensional structures to the graph.

Example 12. The function from Example[9is also skeleton-preserving because the 1-skeleton of the
clique complex of a graph is trivially isomorphic to the graph. A lifting function mapping each graph
to a multi-graph where each edge is doubled by a parallel edge is not skeleton-preserving (Figure 3).

We now show that all the maps in the skeleton-preserving class

have the following desirable property:

Theorem 13. Let f be a skeleton-preserving lifting map. Then

CWL(f) (i.e. CWL using lifting f) is at least as powerful as
WL in distinguishing non-isomorphic graphs.

Figure 5: A graph, its clique com-
To prove that some of these make CWL strictly more powerful  plex and the graph with duplicated
than WL, it is sufficient to find a pair of graphs that cannotbe edges. The first map is skeleton-
distinguished by WL, but can be distinguished by CWL. The preserving, while the second is not.
following result gives examples of such maps.
Definition 14. Let k-CL, k-I1C, k-C be the lifting maps attaching cells to all the cliques, induced
cycles and simple cycles, respectively, of size at most k.

Corollary 15. For all k > 3, CWL(k-CL), CWL(k-1C) and CWL(k-C) are strictly more powerful
than WL.

We note that this is not a complete list. For instance, the result can also be extended to combinations
of the above or other transformations. We can also relate CWL to the higher-order 3-WL test.

Theorem 16. There exists a pair of graphs indistinguishable by 3-WL but distinguishable by CWL(k-
CL) with k > 4, CWL(k-1C) with k > 4 and CWL(k-C) with k > 8.

Finally, we conclude this section by showing how CWL can achieve a superior expressive power
compared to SWL. This result is proven by Corollary [31]in the Appendix.

Theorem 17. Let k-CL U k-1C and k-CL U k-C denote combined liftings attaching cells to the
union of the specified substructures. CWL(k1-CL U ko-1C) and CWL(k1-CL U k3-C) are strictly
more powerful than SWL(k1-CL) for all ko > 5.

4 Molecular Message Passing with CW Networks

We now describe CW Networks with an applied focus on molecular graphs to ground the discussion.
Therefore, from now on we assume the use of the skeleton-preserving lifting transformation that
attaches 2-cells to all the induced cycles (i.e. chordless cycles) in the graph as in Figure 2. This
leads to a message passing procedure involving atoms (vertices / 0-cells), the bonds between atoms
(edges / 1-cells) and chemical rings (induced cycles / 2-cells). Additionally, in virtue of Theorem
[7, we consider only the boundary and upper adjacencies between these cells without sacrificing the
expressive power. The equations for the other adjacencies, which we do not use, can be found in
Appendix[A] We note however, that the theoretical results in this section are general and not particular
to these specific choices of adjacencies and lifting transformation.



Molecular Message Passing The cells in our CW Network receive two types of messages:

M (0) = AGG,en (o secto.n) (M (R, HE,BE) ).

The first specifies messages from atoms to bonds and from bonds to rings. The second type of
message, specifies messages between atoms connected by a bond and messages between bonds
that are part of the same ring (Figure [6). Note that for the second type of adjacency, when two
atoms communicate, we include the features of the bond between them. Similarly, when two bonds
communicate, we include the features of the ring they communicate through. The update operation
takes into account these two types of incoming messages and updates the features of the cells:

mi ™ (0) = AGGep(o) (MB (i, htr))

(D

To obtain a global embedding for a cell complex X from a model with L layers, the readout function
takes as input the separate multi-sets of features corresponding to the atoms, bonds and the rings:

hx = READOUT({h% B dim(oy=0, {hE Baim(or=1. L1k B aim(o)=2)- )

Bt = U (L, mi(0), m " ().

Expressivity Naturally, the ability of CWNss to distinguish non-isomorphic
regular cell complexes is bounded by CWL. Similarly to GNNs and WL,
CWNs can also be shown to be as powerful as CWL as long as they are
equipped with a sufficient number of layers and the parametric local aggre-
gators they use can learn to be injective. Multiple such multi-set aggregators
[20, [74] are known to exist and can be directly employed in our model. 4

Theorem 18. CW Networks are at most as powerful as CWL. Additionally,
T
[ [}
[ ] 5/.

when using injective neighbourhood aggregators and a sufficient number of
layers, CWNs are as powerful as CWL.
o —p 0

Corollary [I5 states that CWL is strictly more powerful than the standard
WL when the lifting procedure attaches 2-cells to induced cycles of size
k > 3. As a consequence of Theorem@ this result also holds for molecular
message passing CWNs equipped with injective aggregators. In practice, k
is to be considered as a standard hyperparameter, and its choice can either be
driven by validation set performance, or by domain knowledge (if available).

Figure 6: Hierarchi-

Symmetries Given a graph G with adjacency matrix A and feature ma- cal depiction of the

trix X, a function f is (node) permutation equivariant if Pf(A, X) =
f(PAPT PX), for any permutation matrix P. GNN layers respect this
equation, which ensures they compute the same functions up to a permutation
(i.e. relabeling) of the nodes. Similarly, it can be shown that CW Networks
are equivariant with respect to permutations of the cells and corresponding
permutations of the boundary relations o < 7 between cells. We define this
notion of equivariance more formally in Appendix

message passing pro-
cedure. ar-
rows indicate bound-
ary messages received
by cells o and 7, while
blue ones show upper
messages received by
cells 7 and 4.

Theorem 19. CW Network layers are cell permutation equivariant.

Long-Range Interactions Several graph-related tasks require the ability to capture long-range
interactions between nodes. For instance, certain molecular properties depend on atoms placed on the
opposite sides of a ring [31,160]]. As a consequence of the coupling between the input and computa-
tional graphs, L message passing operations are necessary in GNNs to let a node receive information
from an L-hops distant node. In contrast, our hierarchical message passing scheme requires at most
L layers since 2-cells create shortcuts. For example, a constant number of CWN layers (3) is enough
to capture dependencies between atoms on the opposite sides of a ring, independently of the ring size.
In Section (5.1 we verify this in a controlled scenario. Additional experiments on real world graphs in
Section nﬁrm that it can achieve state-of-the-art performance with a limited number of layers.

Anisotropic Filters Due to the lack of a canonical ordering between neighbours, many common
GNN s use symmetric convolutional kernels, resulting in isotropic filters treating neighbours equally.
Recent works have proposed to address this limitation by employing additional structural informa-
tion [6, [10]. CWNs also implicitly achieve this form of anisotropy by integrating information from
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Figure 7: Results on the RingTransfer and SR synthetic benchmarks.

the higher-order cells and their associated substructures into the message passing procedure. For
instance, bond features can learn to encode their membership to a ring and also communicate directly
with other bonds present in the ring. Consequently, the messages between atoms connected through
these bonds are modulated by the presence of the ring as well as by the presence of other nodes and
bonds part of that ring.

CWNs as Generalised Convolutions Our message passing scheme can be seen a (non-linear)
generalisation of linear diffusion operators on cell complexes. Recent works [13] 23] have introduced
convolutional operators on SCs by employing the Hodge Laplacian [63]], a generalisation of the graph
Laplacian. By leveraging on the cellular Sheaf Laplacian [36], a similar construction can be extended
to cell complexes to define cellular convolutional operators. In Appendix [D we discuss this approach
and show that our cellular message passing scheme subsumes it. This represents a promising avenue
for studying CWNs from a spectral perspective, an endeavour we leave for future work.

Computational Complexity When considering cells of a constant maximum dimension and bound-
ary size, the computational complexity of the message passing scheme is linear in the size of the
input complex. For the molecular applications we are interested in, the average number of rings per
molecule is upper bounded by a small constant (e.g. three for MOLHIV), so the size of the complex
is approximately the same as the size of the graph. Therefore, in this setting, the computational
complexity of the model is similar to that of message passing GNNs. Separately of this, the one-time
preprocessing step of computing the lifting of the graphs should also be considered. The C' induced
cycles in a graph can be listed in O((|E| + |V|C) polylog |V'|) time [26]. Again, given that C' is
upper bounded by a small constant for the molecular datasets of interest in this work, the complexity
of the lifting procedure is also almost linear in the size of the graph. A more detailed analysis backed
up by wall-clock time experiments is given in Appendix [B]

5 Experiments

In this section we validate the theoretical and empirical properties of our proposed message passing
scheme in controlled scenarios as well as in real-world graph classification problems, with a focus on
large scale molecular benchmarks. For simplicity, in all experiments we employ a model which stacks
CWN layers with local aggregators as in GIN [74]. We name our architecture “Cell Isomorphism
Network” (CIN). O-cells are always endowed with the original node features; higher-dimensional cells
are populated in a benchmark specific manner. See Appendix [E for details on feature initialisation,
message passing and readout operations, hyperparameters, implementation and benchmark statistics.



5.1 Synthetic Benchmarks

CSL Circular Skip Link dataset was first introduced in [57] and has been recently adopted as a
reference benchmark to test the expressivity of GNNs [24]. It consists of 150 4-regular graphs from
10 different isomorphism classes, which we need to predict. Unsolvable by the WL test and message
passing approaches [14}157], we use it to validate the expressive power of CWNs.

Table 1: Classification accuracy on CSL.  We follow the same evaluation setting as Dwivedi et al.
[24]: 5-fold cross validation procedure and 20 different
Method Mean Min Max random weight initialisations. For our model, we set
MP-GNNs  10.000£0.000  10.000  10.000  the maximum ring size k = 8. In Table|l|we follow the
g&%%ﬁﬁ 917%)00(?;%%0106 ég:ggg 1100(5%0000 common practice on this dataset and report the mean,
CIN (Omrs) 100.000£0.000  100.000 100,000 minimum and maximum test accuracy obtained by CIN
over the 100 runs, along with the results by the baselines
presented in Dwivedi et al. [24]. MP-GNN:s, that is classic message passing GNNs (GAT [69],
MoNet [54]], GIN [74], etc.), and RingGNN [14] perform as random guessers. In contrast, our model
is able to identify the isomorphism class of each test graph in every run while featuring only a fraction
of the computational complexity of 3WLGNN, the best performing reference baseline [24, 53]

SR Similarly to Bodnar et al. [8] and [LO], we consider Strongly Regular graphs within the same
family as hard examples of non-isomorphic graphs we seek to distinguish. Any pair of graphs within
the same family cannot provably be distinguished by 3-WL test [8} [10]. We reproduce the same
experimental setting of Bodnar et al. [8]. In particular, we consider 9 distinct SR familie and run
our model untrained on the cell complex lifting of each graph, with & = 4,5,6. 0-cells (nodes)
are initialised with a constant unitary signal, while 1- and 2-cells are initialised with the sum of
the contained 0-cells. We additionally run an MLP baseline with sum readout to appreciate the
contribution of message passing. We report the percentage of non-distinguished pairs in Figure [7b.
Contrary to 3-WL, both CIN and the MLP baseline are able to distinguish many pairs across all
families, with better performance attained for larger k. For & = 6, we observed CIN to disambiguate
all pairs in all families (0.0% failure rate). Despite the strong results achieved by the baseline, we
found CIN to always distinguish a larger number of non-isomorphic pairs for the same values of k,
this confirming the importance of cellular message passing.

RingTransfer In order to empirically validate the ability of CIN to capture long-range node
dependencies, we additionally design a third synthetic benchmark dubbed as ‘RingTransfer’. Graphs
in this dataset are chordless cycles (rings) of size k. In each graph we mark two special nodes
as target and source, always placed at distance ng The task is for target to output the one-hot
encoded label assigned to source. All other nodes in the ring are assigned a unitary constant feature
vector. A model has to learn to transfer the information contained in source to the opposite side
of the ring, where target resides. We initialise 1- and 2-dimensional cells with a null signal. In
Figure [7a]we show the performance of a 3-layer CIN as a function of the ring size k, along with that
of GIN [74] baselines equipped with L%J stacked layers. We observe that our model learns to solve
the task with only 3 computational steps, independent of k. As for GIN, we observed degradation in
the performance for k& > 24, up to complete failure. We hypothesise this to be due to the difficulties
of training such a deep GNN (> 12 layers). We further verify the (theoretically expected) failure of

GIN (not included) when endowed with less than | £ | layers.

5.2 Real-World Graph Benchmarks

TUD We test our model on 8 TUDataset benchmarks [56] with small and medium sizes from
biology (PROTEINS [9, 23]]), chemistry (i.e. molecules — MUTAG [45, |61]], PTC, NCI1 and
NCI109 [70]) to social networks (IMDB-B, IMDB-M, RDT-B). We consider induced cycle of size
up to k = 6 for our graph lifting procedure. We initialise node (and 0-cell) features as described
in Xu et al. [74]], and higher dimensional cells by averaging or summing the features of the included
0-cells. The training setting and evaluation procedure follow those in Xu et al. [74]. We report the
results in Table[2] CIN compares more than favourably with the baselines, displaying strong empirical
performance on all benchmarks. The mean accuracy of CIN ranks top on four out of eight datasets.

3Data available at: http://users.cecs.anu.edu.au/ bdm/data/graphs.html.
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Table 2: TUDatasets. The first section of the table includes the accuracy of graph kernel methods,
while the second includes GNNs. The top three are highlighted by First, Second, Third.

Dataset | MUTAG PTC PROTEINS  NCI1 NCI109 | IMDB-B IMDB-M  RDT-B
RWK [29] 79.2+£2.1 559403  59.6%+0.1 >3 days N/A N/A N/A N/A

GK (k =3) [64] | 81.4£1.7 55.7+0.5 714+0.31 62.5+03 624403 | N/A N/A N/A

PK [58] 76.0£2.7  59.5+2.4  73.7£0.7 82.5+0.5 N/A N/A N/A N/A

WL kernel [65] | 90.4+5.7 599443  75.0£3.1 86.0£1.8 N/A 73.8£39  50.94+3.8  81.0£3.1
DCNN [3] N/A N/A 61.3+1.6 56.6+1.0 N/A 49.1£14  33.5+14 N/A
DGCNN [76] 85.8+1.8  58.6£2.5  75.5+09 74.4+£05 N/A 70.0£09  47.8409 N/A

IGN [52] 83.9+13.0 585469  76.6+5.5 743427  72.8+15 | 72.04+55  48.74£34  N/A

GIN [74] 89.4+£5.6  64.6£7.0 76.2+2.8 82.7£1.7 N/A 75.1£5.1 523428 924425
PPGNSs [53] 90.6+8.7  66.2+6.6  77.24+4.7 83.2+1.1 82.2+14 | 73.0+£5.8  50.54+3.6 N/A
Natural GN [21] | 89.4+1.6  66.8+1.7  71.7+1.0 82.4£13 N/A 73.5+£2.0 51.3%£15 N/A

GSN [10] 922+75 682+72 76.6+50 835+20 NA 778 £33 543+33 N/A

SIN [8] N/A N/A 76.4+33 827+21 NA 75.6 £32 524+£29 922+1.0
CIN (Ours) | 927+6.1 682+56 77.0+43 83.6+14 84.0+1.6|756+37 527+3.1 924421

Table 3: ZINC (MAE), ZINC-FULL (MAE) and Mol-HIV (ROC-AUC).

Method ZINC | ZINC-FULL | MOLHIV 1
No Edge Feat. With Edge Feat. ~ All methods  All methods
GCN [47] 0.469+0.002 N/A N/A 76.061+0.97
GAT [69] 0.463+0.002 N/A N/A N/A
GatedGCN [11] 0.422+0.006 0.363+0.009 N/A N/A
GIN [74] 0.408+0.008 0.252+0.014 0.088+0.002  77.07£1.49
PNA [20] 0.320+£0.032 0.188+0.004 N/A 79.05+1.32
DGN (6] 0.219+0.010 0.168+0.003 N/A 79.70+0.97
HIMP [27] N/A 0.151=£0.006 0.036+£0.002  78.80+0.82
GSN [10] 0.139+0.007 0.108+0.018 N/A 77.99£1.00
CIN-small (Ours)  0.139+0.008 0.094+0.004 0.044+0.003  80.55+1.04
CIN (Ours) 0.115+0.003 0.079+0.006 0.0221+0.002  80.94+0.57

On the remaining datasets, CIN achieves the second place. We observe that the best results are on
datasets from the biological and chemical domains, where rings play a relevant role.

ZINC We study the effectiveness of cellular message passing on larger scale molecular benchmarks
from the ZINC database [68]. ZINC (12k graphs) and ZINC-FULL (250k graphs) [24} 133} 143/ [75]
are two graph regression task datasets for drug constrained solubility prediction. In these experiments,
we consider rings up to size £k = 18. We follow the training and evaluation procedures in [24]]. Our
experiments encompass different scenarios, examine the impact of ablating edge features and of
constraining the parameter budget of the architecture to 100k. All results are illustrated in Table[3]
where we also include the results for ZINC-FULL obtained by the same exact architectures. Our
model exhibits particularly strong performance on these benchmarks: it attains state-of-the-art results
on both the two dataset variants, outperforming other models by a significant margin. CIN attains
strong results even when constrained by the parameter budget. It still achieves state-of-the-art
performance on ZINC and is on-par with the best unconstrained baseline under edge-feature ablation.

Mol-HIV  We additionally test our model on the molecular ogbg-molhiv dataset from the Open
Graph Benchmark [40] (41k graphs). The task is to predict the capacity of compounds to inhibit HIV
replication. Rings of size up to k = 6 are considered as 2-cells. We take the architecture in [27]] as
reference and replicate the same hyperparameter setting in our model, including the use of only 2
message passing layers. We report the mean of test ROC-AUC metrics at the epoch of best validation
performance for 10 random weight initialisations. Similarly to ZINC, we experiment with a “small”
model whose number of parameters is constrained in the order of 100k. Table[3]displays the results.
CIN significantly outperforms other strong GNN baselines, even when constrained by the parameter
budget. Consistently with [27], we observe that only two layers are sufficient when performing
hierarchical message passing across meso-scale structures such as rings.



6 Related Work, Discussion and Conclusion

Cell complex models Recent works have proposed the generalisation of GNNs to simplicial
complexes [13, 25, 132} 135]. All these simplicial methods are subsumed by the model in Bodnar
et al. [8]], which CWNs in turn subsume. To the best of our knowledge, Hajij et al. [34] is the only
other example of message passing on cell complexes, but this work does not study the expressive
power of the proposed scheme, neither it experimentally validates its performance. In contrast, our
work comprehensively characterises the expressiveness of cellular message passing, and introduces a
theoretically grounded and empirically effective framework to apply it on graph structured data in a
way to address several limitations of standard Graph Neural Networks.

Molecular substructures A few other works have extended GNNs to account for molecular
substructures. Junction Trees (JT), which conveniently represent singletons, bonds and rings as
supernodes in a tree, have been used in molecular graph generation [43}44]. JTs are also used in the
recent work of Fey et al. [27], who employs them to design a hierarchical message passing scheme
based on the tree structure. However, this hierarchy has a different configuration than the one cell
complexes provide. Information about cycles is also used in GSNs [10] to augment the node features,
but the model retains the usual message passing procedure of GNNs. These last two models are of
particular relevance to the present work, since they utilise information about chemical rings. It is
important to remark that CWNs compare favourably with both of them in all our benchmarks.

Higher-order GNNs A related line of work has studied lifting graphs into k-dimensional tensor
representations that can be processed by provably expressive k-GNNs [4} 52, 53]]. With higher values
of k, these models achieve higher-expressivity, but due to the computational complexity this incurs,
values of k > 3 are of little use in practice. Therefore, unlike CWNs, these models cannot explicitly
represent in practice chemical rings of common sizes (e.g. five or six). Furthermore, by being
upper-bounded by 3-WL, the 2-GNN models cannot count the number of induced cycles of size
greater than four (see Appendix [A for details). In contrast, CWNs can easily count these important
chemical substructures through the readout operation it performs on the 2-cells.

Limitations The main limitations of the model are of computational nature. While the compu-
tational complexity of the message passing procedure and its preprocessing step is suitable for
molecular and geometric graphs, the number of rings (and more generally simple cycles) in general
graphs can be exponential in the number of nodes. In that case, one has to resort to smaller 2-cells like
triangles, which can be found efficiently in general graphs. Moreover, one has to typically use weights
specific for each dimension of the cell complex, increasing the number of parameters compared to
GNNs. However, we have shown that our model can compensate this increase with a reduced number
of layers and still achieve state-of-the-art results on some of the molecular benchmarks.

From a theoretical point of view, this work is concerned only with regular cell complexes. Adopting
this restriction is useful from multiple perspectives: regular cell complexes are easier to analyse, their
combinatorial structure completely describes their topology and convolutions can be defined on them
through the Sheaf Laplacian (see Appendix [D). Nonetheless, some of our theoretical results could be
extended to non-regular complexes, which could be obtained by lifting transformations not studied in
this work, such as attaching 2-cells to paths in the graph. We leave addressing non-regular complexes
and their trade-offs to future developments of this work.

Societal Impacts Most of our paper is theoretical in nature and we do not see immediate direct
negative societal impacts. Within the scope of social network applications, we do not yet have
sufficient evidence of performance improvement on related benchmarks to justify obvious adoption in
such a domain. In contrast, the empirical performance on molecular benchmarks suggests it may have
a positive impact on applications of immediate interest in pharmaceutics, such as drug discovery [30].

Conclusion We have proposed a provably powerful message passing procedure on cell complexes
motivated by a novel colour refinement algorithm to test their isomorphism. This allows us to consider
flexible lifting operations on graphs to implement more expressive architectures which benefit from
decoupling the computational and input graphs. Our methods show excellent performance on diverse
synthetic and real-world molecular benchmarks.
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