
Appendix A Proof of Lemma 4.1

A.1 Notation

We define new notation that will be utilized across the appendix. Let E be a subset of trajectories
such that for some mapping f : (S ×A)

⊗
H → {0, 1}, let E = {x1:H |f(x1:H) = 1}. Let us define

P∗E(ht) be the maximum probability of getting any final trajectory τ = (x, r)1:H that belongs to E
starting from a history ht = ((x, r)1:t−1, st). That is,

P∗E(ht) = sup
π∈Π

Pπ(x1:H ∈ E|ht). (14)

At the beginning of the episode, h0 = φ and we denote P∗E(φ) to mean supπ∈ΠP
π(x1:H ∈ E). We

often use Pπ(E) instead of Pπ(x1:H ∈ E), omitting x1:H when the context is clear.
We use π1:t for any t ∈ [H] to denote Πt

t′=1π(at′ |ht′). Similarly, with a slight abuse in notation, we
define T0:t := ν(s1) ·Πt

t′=1T (st′+1|st′ , at′) for 1 ≤ t ≤ H − 1. When we define a new RM-MDP
modelMc with a superscript c ∈ N, we add a superscript c for all quantities measured with respect
toMc. For instance, reward probability at state s and action a in themth in a modelMa is denoted
as Rcm(·|s, a), a probability of an event in a modelMa with a policy π is denoted as Pc,π(·).
In order to express the probability of a trajectory without conditioning on the context, we first introduce

a convenient matrix form of probability D(r|x) =

[
R1(r|x) 0

0 R2(r|x)

]
. Probability of observing a

trajectory τ = (x, r)1:H is then

Pπ(τ) =
1

2
π1:tT0:t · 1>

(
ΠH
t=1D(rt|xt)

)
1,

where 1 is the all-one vector [11]>. For any t1, t2 ∈ [H], letDt1:t2 be a short hand for Πt2
t=t1D(rt|xt).

We use (·)t1:t2 in a similar manner for any other symbols. If t = t1 = t2, then we simply use (·)t.

For instance, we use Dt = D(rt|xt) =

[
R1(rt|xt) 0

0 R2(rt|xt)

]
.

A.2 Proof of Lemma 4.1

We provide the outline of the proof in this section. All omitted proofs can be found in Appendix D.
To simplify the presentation, we temporarily assume that we know the transition and initial state
probabilities, i.e., T̂ = T, ν̂ = ν. In Appendix B.4, we provide the full proof without assuming
known transition and initial state probabilities, but intead using ν̂ and T̂ estimated in Algorithm 2.
The analysis begins with the following lemma on the summation of target quantity when differences
in two models are small parameter-wise.

Lemma A.1 Suppose that two 2RM-MDPsM1,M2 have the same transition kernel and initial
distribution, and satisfy ‖(R1

m −R2
m)(r|x)‖1 ≤ εr for some εr > 0 and anym ∈ {1, 2} and x ∈ X

for a given set X ⊆ S ×A. For any subset of length H state-action sequences E ⊆ X
⊗
H , we have

sup
π∈Π

∑
τ :x1:H∈E

|P1,π(τ)− P2,π(τ)| ≤ sup
π∈Π

P1,π(E) ·Hεr,

where Pc,π(·) is a probability measured in an environment modeled byMc for c = 1, 2.

Given Lemma A.1, we first consider surrogate 2RM-MDPs for the true and estimated models which
ignore small differences in reward functions. Specifically, for all x ∈ S × A, we defineM1 that
approximates the true model as:

M1 :p1
m(x) = εl + (1− 2εl)p+(x), m ∈ {1, 2}, if ∆(x) < 2εl,

p1
m(x) = εl + (1− 2εl)pm(x), m ∈ {1, 2}, if ∆(x) ≥ 2εl, (15)

and similarlyM2 for the estimated model:

M2 :p2
m(x) = εl + (1− 2εl)p+(x), m ∈ {1, 2}, if ∆̂(x) < 2εl,
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{
p2

1(x) = εl + (1− 2εl)(p+ + p̂−)(x)

p2
2(x) = εl + (1− 2εl)(p+ − p̂−)(x)

, if ∆̂(x) ≥ 2εl. (16)

Recall that reward models are determined byRcm(r = 1|x) = pcm(x) andRcm(r = 0|x) = 1− pcm(x)
for m = 1, 2 and c = 1, 2. In the above construction, note that for the average value we use the
same quantity p+ from the true model to ignore small differences in averaged rewards. In particular,
note that p1

m(x) = p2
m(x) for any x with ∆(x) < 2εl and ∆̂(x) < 2εl. For both models, we use

true transition and initial state distribution models T and ν. By constructionM1 andM2 well
approximateM∗ and M̂ respectively:

Lemma A.2 For allm ∈ {1, 2} and ∀x : ∃(xi, xj) ∈ Xl s.t. x = xi or xj , we have

‖(Rm −R1
m)(r|x)‖1 ≤ 4εl, ‖(R̂m −R2

m)(r|x)‖1 ≤ 4εl.

Then using Lemma A.1, we have∑
τ :x1:H∈E′l

|Pπ(τ)− P̂π(τ)| ≤ sup
π∈Π

Pπ(E ′l ) ·O(Hεl) +
∑

τ :x1:H∈E′l

|P1,π(τ)− P2,π(τ)|,

where we recall that E ′l is defined as E ′0 = E0, and E ′l = Ecl−1 ∩ El for l ≥ 1.

Nowwe continue the discussion in Section 4.1. We divide a set of trajectories E ′l bywhether the number
of δl-distinguishable pairs in a trajectory τ : x1:H ∈ E ′l is less than 3, i.e.,

∑H
t=1 1 {∆(xt) ≥ δl}

being ≤ 2 or ≥ 3:

El,2 =

{
x1:H ∈ E ′l

∣∣∣ H∑
t=1

1 {∆(xt) ≥ δl} ≤ 2

}
,

El,3 =

{
x1:H ∈ E ′l

∣∣∣ H∑
t=1

1 {∆(xt) ≥ δl} ≥ 3

}
. (17)

We handle each case separately and show that
∑
τ :x1:H∈E |P

1,π(τ)− P2,π(τ)| ≤ supπ∈ΠP
π(E) ·

O(Hεl) for E = El,2 and El,3 respectively.

A.2.1 Case I: El,3.

For any τ : x1:H ∈ El,3, let any t1, t2, t3 ∈ [H] such that ∆(xti) ≥ δl for i = 1, 2, 3. From
Lemma 4.3, we obtain a corollary on parameters of all state-actions that appear in τ : x1:H ∈ El,3:

Corollary 1 For any τ : x1:H ∈ El,3 and for every t ∈ [H], let t∗ = arg maxt∈[H] ∆(xt), and
t∗2 = argmaxt∈[H],t6=t∗ ∆(xt). Then we have

|∆̂(xt)−∆(xt)| ≤ 3εl ∀t 6= t∗,
∣∣∣∆̂(xt∗)−∆(xt∗)

∣∣∣ ≤ ∆t∗

∆t∗2

εl/2.

That is, in all trajectories in El,3, all visited state-actions have good estimates of reward probabilities
within O(εl)-error (except at most one state-action xt∗ , which needs an extra care). In particular,
we work with the fact that |∆1(xt)−∆2(xt)| < O(εl) for most of t ∈ [H]. This case is handled in
Appendix A.4.

A.2.2 Case II: El,2.

In this case, the following lemma is the key result to bound the error in this case.

Lemma A.3 For any x1:H ∈ El,2, we have
∑H
t=1 1

{
∆(xt) ≥ εl ∪ ∆̂(xt) ≥ 2εl

}
≤ 2.

Lemma A.3 ensures that for any x1:H ∈ El,2, except at most for some two time steps t1, t2 ∈ [H],
we have ∆(xt), ∆̂(xt) indistinguishable for all t 6= t1, t2. For such t 6= t1, t2, since an average of
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rewards can be well-estimated, i.e., p+(xt) ≈ p̂+(xt), let us for now ignore the difference at xt:
Rm(·|xt) ≈ R̂m(·|xt) form = 1, 2. Then for any τ = (x, r)1:H for which x1:H belongs to El,2:

|Pπ (τ)− P̂π(τ)| ∝ Pπ(τ) · |µ(xt1 , xt2)− µ̂(xt1 , xt2)| ≤ O(εl),

where µ(xt1 , xt2) is from equation (1), and the last inequality is due to the construction of M̂ which
is designed to match in second-order correlations. Building upon the above idea, we show that∑
τ :x1:H∈El,2 |P

π(τ)− P̂π(τ)| ≤ O(Hεl) · supπ∈ΠP
π(El,2). This case is handled in Appendix A.5.

Once we prove for El,2 and El,3 such that∑
τ :x1:H∈El,3

|P1,π(τ)− P2,π(τ)| ≤ O(Hεl) · sup
π∈Π

Pπ(El,3), (18)

∑
τ :x1:H∈El,2

|P1,π(τ)− P2,π(τ)| ≤ O(Hεl) · sup
π∈Π

Pπ(El,2), (19)

then, since El,2 ∪ El,3 = E ′l , we obtain
∑
τ :x1:H∈E′l

|Pπ(τ) − P̂π(τ)| ≤ O(Hεl) · supπ∈ΠP
π(E ′l ),

which concludes Lemma 4.1.

A.3 Proof of Lemma A.1

By the definition of P∗E(·) defined in (14), we have the following inequalities: for any length t history
ht = ((s, a, r)1:t−1, st), action at and any history-dependent policy π, we have

P∗E(ht) ≥
∑
at

P∗E(ht, at)π(at|ht), t < H, (20)

P∗E(ht, at) ≥
∑
st+1

P∗E(ht+1)T (st+1|st, at), t < H, (21)

P∗E(hH) ≥
∑
aH

1 {x1:H ∈ E}π(aH |hH), t = H. (22)

Also, since PE∗ = supπ P
π(τ ∈ E) only depends on the occurance of x1:H , any two 2RM-MDP

models with the same transition and initial distribution have the same value for PE∗ :

P∗E(h) = sup
π∈Π

P1,π(x1:H ∈ E|h) = sup
π∈Π

P2,π(x1:H ∈ E|h).

Hence when we consider the same transition model, we often omit 1 and 2 in superscript from
P1,π(E|h) or P2,π(E|h).

Proof. Now we prove Lemma A.1. Our target is to analyze the difference in the following:

Pc,π(τ) = ν(s1)
(
ΠH
t=1π(at|ht)

)
·
(
ΠH−1
t=1 T (st+1|st, at)

)
· 1

2
1>Dc

H:11,

for c = 1, 2 for all τ : x1:H ∈ E .
We prove the lemma by backward induction. Let us denote ht = ((s, a, r)1:t−1, st). Note that we
assume here for any xt = (st, at) that appear in a trajectory x1:H ∈ E at any time t ∈ [H] satisfies
‖D1(rt|xt)−D2(rt|xt)‖1 < εr. Hence,

2 ·
∑

τ :x1:H∈E
|P1,π(τ)− P2,π(τ)|

=
∑
hH

∑
aH ,rH

1 {x1:H ∈ E}π(aH |hH)π1:H−1T0:H−1|1>(D1
H:1 −D2

H:1)1|

≤
∑
hH

∑
aH ,rH

1 {x1:H ∈ E}π(aH |hH)π1:H−1T0:H−1‖(D1
H −D2

H) ·D1
H−1:11‖1

+
∑
hH

∑
aH

1 {x1:H ∈ E}π(aH |hH)π1:H−1T0:H−1‖D2
H(D1

H−1:1 −D2
H−1:1)1‖1
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≤
∑
hH

∑
aH

1 {x1:H ∈ E}π(aH |hH)π1:H−1T0:H−1‖D1
H−1:11‖1εr

+
∑
hH

∑
aH

1 {x1:H ∈ E}π(aH |hH)π1:H−1T0:H−1‖(D1
H−1:1 −D2

H−1:1)1‖1

≤ εr
∑
hH

P∗E(hH)P1,π(hH) +
∑
hH

P∗E(hH)π1:H−1T0:H−1‖(D1
H−1:1 −D2

H−1:1)1‖1.

The first term in the last inequality above can be bounded as the summation over all possible length
H histories such that for any policy π ∈ Π, we have

P∗E(φ) = sup
π
Pπ(E) = sup

π

∑
hH

Pπ(E , hH) = sup
π

∑
hH

Pπ(E|hH)Pπ(hH) = sup
π

∑
hH

P∗E(hH)Pπ(hH).

Then we can proceed from time step t = H to t = H − 1:∑
hH

P∗E(hH)π1:H−1T0:H−1‖(D1
H−1:1 −D2

H−1:1)1‖1

≤
∑
hH−1

∑
aH−1,rH−1,sH

P∗E(hH)π(aH−1|hH−1)T (sH |xH−1)π1:H−2T0:H−2‖(D1
H−1 −D2

H−1) ·D1
H−2:11‖1

+
∑
hH−1

∑
aH−1,sH

P∗E(hH)π(aH−1|hH−1)T (sH |xH−1)π1:H−2T0:H−2‖(D1
H−2:1 −D2

H−2:1)1‖1

≤ εr ·
∑
hH−1

P1,π(hH−1)
∑

aH−1,sH

P∗E(hH)π(aH−1|hH−1)T (sH |xH−1)

+
∑
hH−1

π1:H−2T0:H−2‖(D1
H−2:1 −D2

H−2:1)1‖1
∑

aH−1,sH

P∗E(hH)π(aH−1|hH−1)T (sH |xH−1)

≤ P∗E(φ)εr +
∑
hH−1

P∗E(hH−1)π1:H−2T0:H−2‖(D1
H−2:1 −D2

H−2:1)1‖1,

where the last inequality comes from (22). We can repeat this procedure until we reach t = 1 in
backwards. Note that P∗E(φ) = supπ P

π(E), which gives Lemma A.1. �

A.4 Analysis for Case I: El,3 (equation (18))

A.4.1 Equivalence in Signs

Before we start the proof, we need to point out one important fact. For any x1:H ∈ El,3, for all
x ∈ {xt}Ht=1 such that ∆(x) ≥ 2εl, either one of the two is true: sign(p−(x)) = sign(p̂−(x)) or
sign(p−(x)) = −sign(p̂−(x)). This then implies sign(p1

−(x)) = sign(p2
−(x)) or sign(p1

−(x)) =
−sign(p2

−(x)) whenever |p1
−(x)| > 0 and |p2

−(x)| > 0 consistently for all state-actions x of interest.
This can be shown by a simple contradiction argument: suppose there exists t1, t2 ∈ [H] such that
t1 6= t2 and ∆(xt1),∆(xt2) ≥ 2εl. If sign(p̂−(xt1)p̂−(xt2)) 6= sign(p−(xt1)p−(xt2)), then this
implies

|p−(xt1)p−(xt2)− p̂−(xt1)p̂−(xt2)| ≥ max(δ2, 4ε2l ) > εlδl.

This violates the confidence interval constraint (7) since n(xt1 , xt2) ≥ nl ≥ C · ι2δ−2
l ε−2

l and thus
b(xt1 , xt2) < 0.01δlεl, which forces |p−(xt1)p−(xt2)− p̂−(xt1)p̂−(xt2)| < δlεl.
Now if this is the case, then without loss of generality, we can assume sign(p1

−(x)) = sign(p2
−(x))

for x : |p1
−(x)|, |p2

−(x)| > 0 since

P2,π(τ) =
1

2
π1:HT0:H−11

>D2
H:11

=
1

2
π1:HT0:H−1

(
ΠH
t=1(p2

+(xt) + p2
−(xt)) + ΠH

t=1(p2
+(xt)− p2

−(xt))
)
,

remains the same after we replace p2
−(x) by −p2

−(x) for all x ∈ {xt}Ht=1. This means, regardless
of the sign of p2

−(x), the probability of any trajectories, which we eventually need, remains the
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same. Hence now, without loss of generality, we assume that sign(p1
−(x)) = sign(p2

−(x)) for all
x ∈ {xt}Ht=1 for any x1:H ∈ El,3. (Note that for non-uniform mixing weights, we need an extra care
since P2,π(τ) is no more symmetric in signs of p2

−(x). See Appendix E to see the discussion on
handling non-uniform priors).
Once the above holds, we can claim that

‖D1(r = 1|x)−D2(r = 1|x)‖1 ≤ O(εl),

where ‖ · ‖1 is a matrix l1 norm here, for all x ∈ {xt}Ht=1. To see this, first note that

|R1
1(r = 1|x)−R2

1(r = 1|x)| = |p1
1(x)− p2

1(x)|
= |(p1

+(x) + p1
−(x))− (p2

+(x) + p2
−(x))| = |p1

−(x)− p2
−(x)|,

where the last equality comes from the construction (15), (16) such that p1
+(x) = p2

+(x). Since the
sign of p1

−(x) is equal to the sign of p2
−(x), we have

|p1
−(x)− p2

−(x)| = |∆1(x)−∆2(x)|.

The same argument holds for r = 0. Note that (again from the construction), |∆1(x)−∆2(x)| ≤
|∆(x)− ∆̂(x)|+ 4εl and thus whenever ∆̂(x) is close to ∆(x), we have small error in D1(r|x) and
D2(r|x) as well.

A.4.2 Notation

Before we proceed, we define a few more notation here. We occasionally use R+(r|x) = 1
2 (R1

1 +

R1
2)(r|x), andRc−(r|x) = 1

2 (Rc1−Rc2)(r|x) for c = 1, 2. LetD+(r|x) andD−(r|x) for all r ∈ {0, 1}
and x ∈ S ×A as

D+(r|x) :=
1

2
(D1 +D2)(r|x) = R+(r|x)

[
1 0
0 1

]
, (23)

D−(r|x) :=
1

2
(D1 −D2)(r|x) =

1

2
(R1
− −R2

−)(r|x)

[
1 0
0 −1

]
, (24)

We also let t∗, t∗2 as defined in Corollary 1:

t∗ = arg max
t∈[H]

∆(xt), t∗2 = arg max
t∈[H]/{t∗}

∆(xt).

Let us consider a set of state-actions Xl,3 such that for all τ ∈ El,3, they are always the only maximum
distinguishable state-actions whenever they are included in a trajectory. Formally, we consider

Xl,3 = {x|∀x1:H ∈ El,3 : x /∈ {xt}Ht=1 or ∃t∗ ∈ [H] s.t. xt∗ = x and ∆(xt) ≤ ∆(x)/2, ∀t 6= t∗}.
(25)

Note that for all other state-actions that are not in Xl,3 and appear in any trajectories in El,3, the error
between true ∆ and estimated ∆̂ is less than 2εl by Corollary 1. We define a set of trajectories

El,4 = {x1:H ∈ El,3|∃t∗ ∈ [H], xt∗ ∈ Xl,3}, (26)

that contains one of state-actions inXl,3. For any x1:H ∈ El,3, we replaceD1(·|xt∗) withD+(·|xt∗)+
D−(·|xt∗) and D2(·|xt∗) with D+(·|xt∗)−D−(·|xt∗).

A.4.3 Main Proof

Now we focus on bounding the sum of errors in predictions of trajectories in El,3. Our strategy is first
to split trajectories into El,4 and El,3 ∩ Ecl,4:

2 ·
∑
τ∈El,3

|P1,π(τ)− P2,π(τ)| =
∑

(x,r)1:H

1 {x1:H ∈ El,3}T0:H−1π1:H |1>(D1
H:1 −D2

H:1)1|

=
∑

(x,r)1:H

1
{
x1:H ∈ El,3 ∩ Ecl,4

}
T0:H−1π1:H |1>(D1

H:1 −D2
H:1)1|
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+
∑

(x,r)1:H

1 {x1:H ∈ El,4}T0:H−1π1:H |1>(D1
H:1 −D2

H:1)1|.

For the first term, by Corollary 1 for all r ∈ {0, 1} and x /∈ Xl,3 we have

‖D1(r|x)−D2(r|x)‖1 = max
m∈{1,2}

|R1
m(r|x)−R2

m(r|x)|

= |∆1(x)−∆2(x)| ≤ |∆(x)− ∆̂(x)|+ 4εl ≤ 8εl.

Now, since all trajectories in El,3 ∩ Ecl,4 does not contain any state-actions in Xl,3, we can use Lemma
A.1 to show that the first term is less than P∗El,3∩Ecl,4(φ) ·O(Hεl). Therefore we focus on bounding
the second term, the sum of errors in predictions of trajectories in El,4.
We introduce the following five new quantities:

D1,0(·|x) =

{
D+(·|x), if x ∈ Xl,3
D1(·|x), otherwise

, D2,0(·|x) =

{
D+(·|x), if x ∈ Xl,3
D2(·|x), otherwise

,

D1,1(·|x) =

{
D−(·|x), if x ∈ Xl,3
D1(·|x), otherwise

, D2,1(·|x) =

{
D−(·|x), if x ∈ Xl,3
D2(·|x), otherwise

,

D3(·|x) =

{
D−(·|x), if x ∈ Xl,3
D+(·|x), otherwise

.

Then we can decompose the target quantity into three:∑
x1:H∈El,4,r1:H

T0:H−1π1:H |1>(D1
H:1 −D2

H:1)1| ≤
∑

x1:H∈El,4,r1:H

T0:H−1π1:H |1>(D1,0
H:1 −D

2,0
H:1)1|

+
∑

x1:H∈El,4,r1:H

T0:H−1π1:H |1>(D1,1
H:1 −D

3
H:1)1|

+
∑

x1:H∈El,4,r1:H

T0:H−1π1:H |1>(D2,1
H:1 −D

3
H:1)1|.

(27)

Since ‖D1,0
t −D

2,0
t ‖1 ≤ O(εl) for all t, the first term can be bounded by supπ P

∗
El,4 ·O(Hεl) similarly

to the case in Section A.3. For the second term, we proceed as the following:∑
x1:H∈El,4,r1:H

T0:H−1π1:H |1>(D1,1
H:1 −D

3
H:1)1|

≤
∑
hH

∑
aH ,rH

1 {x1:H ∈ El,4}π(aH |hH)π1:H−1T0:H−1‖(D1,1
H −D

3
H) ·D3

H−1:11‖1︸ ︷︷ ︸
(i)

+
∑
hH

∑
aH ,rH

1 {x1:H ∈ El,4}π(aH |hH)π1:H−1T0:H−1‖D1,1
H · (D

1,1
H−1:1 −D

3
H−1:1)1‖1︸ ︷︷ ︸

(ii)

.

We first aim to handle the term (i). Here we can divide the cases such that when xH /∈ Xl,3 and when
xH ∈ Xl,3. In the former case, we first note that for any x /∈ Xl,3, we have

‖D1(r|x)−D+(r|x)‖1 =
1

2
|R1

1(r|x)−R1
2(r|x)| = ∆1(x) ≤ ∆(x),

where the last inequality is followed by the construction ofM1. From the above, we have∑
rH

1 {x1:H ∈ El,4}π(aH |hH)‖(D1,1
H −D

3
H)D3

H−1:11‖1 ≤ ∆(xH)1 {x1:H ∈ El,4}π(aH |hH)‖D3
H−1:11‖1.

In the latter case xH ∈ Xl,3, we have D1,1
H −D3

H = 0 by construction. Therefore (i) can be bounded
as

(i) ≤
∑
hH

π1:H−1T0:H−1‖D3
H−1:11‖1

∑
aH :xH /∈Xl,3

1 {x1:H ∈ El,4}∆(xH)π(aH |hH)
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≤ 2
∑

hH :{xt}H−1
t=1 ∩Xl,3 6=∅

π1:H−1T0:H−1P
∗
El,4(hH)εl‖(D+)H−1:11‖1 ≤ 2εlP

∗
El,4(φ). (28)

The last inequality follows from the fact that since we consider trajectories in El,4, if xH /∈ Xl,3, then

there is a unique t∗ ≤ H − 1 such that D3
t∗ = ct∗

[
1 0
0 −1

]
for ct∗ that satisfies

ct∗ ≤
1

2
|∆1(xt∗)−∆2(xt∗)| ≤

1

2
|∆(xt∗)− ∆̂(xt∗)|+ 2εl ≤ 2εl ·

∆(xt∗)

∆(xH)
≤ 2εl

∆(xH)
,

where the last inequality follows from Corollary 1. Furthermore, for all other t 6= t∗ ≤ H − 1 by

construction we have D3
t = (R+)t

[
1 0
0 1

]
. Therefore we have ‖D3

H−1:11‖1 = ct∗‖(D+)H−1:11‖1.

We plug this into (28) and apply the bound on ct∗ .
For the second term (ii), we split into two cases when xH /∈ Xl,3 and xH ∈ Xl,3, or equivalently,
{xt}H−1

t=1 ∩ Xl,3 6= ∅ and {xt}
H−1
t=1 ∩ Xl,3 = ∅. In the former case, we simply reduce (ii) such that∑

rH

1 {x1:H ∈ El,4} ‖D1,1
H (D1,1

H−1:1 −D
3
H−1:1)1‖1 ≤ 1 {x1:H ∈ El,4} ‖(D1,1

H−1:1 −D
3
H−1:1)1‖1.

In order to handle the case xH ∈ Xl,3, let us define mt := maxt′<t ∆(xt′) for t ≥ 2 and m1 = 1.

Since D1,1
H = (D−)H = cH

[
1 0
0 −1

]
for some cH ≤ 2εl/mH , we have

∑
rH

1 {x1:H ∈ El,4} ‖D1,1
H (D1,1

H−1:1 −D
3
H−1:1)1‖1 ≤ 2εl ·

1 {x1:H ∈ El,4}
mH

‖(D1,1
H−1:1 −D

3
H−1:1)1‖1.

From the fact above, we can reduce (ii) as the following:

(ii) ≤ 2εl
∑

hH :{xt}H−1
t=1 ∩Xl,3=∅

π1:H−1T0:H−1

P∗El,4(hH)

mH
‖(D1,1

H−1:1 −D
3
H−1:1)1‖1

+
∑

hH :{xt}H−1
t=1 ∩Xl,3 6=∅

π1:H−1T0:H−1P
∗
El,4(hH)‖(D1,1

H−1:1 −D
3
H−1:1)1‖1.

In order to proceed to the next time step, we need the following recursive relation for any 2 ≤ t ≤ H:

2εl
∑

ht:{xt′}
t−1

t′=1
∩Xl,3=∅

π1:t−1T1:t−1

P∗El,4(x1:t−1, st)

mt
‖(D1,1

t−1:1 −D3
t−1:1)1‖1

+
∑

ht:{xt′}
t−1

t′=1
∩Xl,3 6=∅

π1:t−1T1:t−1P
∗
El,4(x1:t−1, st)‖(D1,1

t−1:1 −D3
t−1:1)1‖1

≤ 4εlP
∗
El,4(φ) + 2εl

∑
ht−1:{xt′}

t−2
t=1∩Xl,3=∅

π1:t−2T1:t−2

P∗El,4(x1:t−2, st−1)

mt−1
‖(D1,1

t−2:1 −D3
t−2:1)1‖1

+
∑

ht−1:{xt′}
t−2
t=1∩Xl,3 6=∅

π1:t−2T1:t−2P
∗
El,4(x1:t−2, st−1)‖(D1,1

t−2:1 −D3
t−2:1)1‖1. (29)

By applying (29) recursively until t = 2, we conclude that (ii) ≤ 4Hεl ·P∗El,4(φ). Plugging this back
to (27) (with a similar bound for the final term), we have∑

x1:H∈El,4,r1:H

ν(s1)T1:H−1π1:H |1>(D1
H:1 −D2

H:1)1| ≤ O(Hεl)P
∗
El,4(φ).

We conclude that
∑
τ :x1:H∈El,3 |P

1,π(τ)− P2,π(τ)| ≤ O(Hεl) · P∗El,3(φ).
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A.4.4 Proof of Equation (29)

We start with observing that for (ht−1, at−1) : {xt′}t−1
t′=1 ∩Xl,3 = ∅, where we can reduce the sum at

time t as∑
rt−1,st

π(at−1|ht−1)T (st|st−1, at−1)
P∗El,4(x1:t−1, st)

mt
‖(D1,1

t−1:1 −D3
t−1:1)1‖1

≤
∑

rt−1,st

π(at−1|ht−1)T (st|st−1, at−1)
P∗El,4(x1:t−1, st)

mt
‖D1,1

t−1 · (D
1,1
t−2:1 −D3

t−2:1)1‖1

+
∑

rt−1,st

π(at−1|ht−1)T (st|st−1, at−1)
P∗El,4(x1:t−1, st)

mt
‖(D1,1

t−1 −D3
t−1) ·D3

t−2:11‖1

≤
∑
st

π(at−1|ht−1)T (st|st−1, at−1)
P∗El,4(x1:t−1, st)

mt−1
‖(D1,1

t−2:1 −D3
t−2:1)1‖1

+
∑
st

π(at−1|ht−1)T (st|st−1, at−1)P∗El,4(x1:t−1, st)‖D3
t−2:11‖1.

where in the last inequality we usedmt ≥ mt−1 by definition. Note thatD3
t−2:1 = (D+)t−2:1 by the

construction of D3.
For the case (ht−1, at−1) : {xt′}t−1

t′=1∩Xl,3 6= ∅, we consider two cases xt−1 ∈ Xl,3 and xt−1 /∈ Xl,3.
In the former, we have the remaining terms for ht−1 : {xt′}t−2

t′=1 ∩ Xl,3 = ∅. That is,∑
rt−1,st

π(at−1|ht−1)T (st|st−1, at−1)P∗El,4(x1:t−1, st)‖(D1,1
t−1:1 −D3

t−1:1)1‖1

≤
∑

rt−1,st

π(at−1|ht−1)T (st|st−1, at−1)P∗El,4(x1:t−1, st)‖D1,1
t−1 · (D

1,1
t−2:1 −D3

t−2:1)1‖1

≤ 2εl
∑
st

π(at−1|ht−1)T (st|st−1, at−1)
P∗El,4(x1:t−1, st)

mt−1
‖(D1,1

t−2:1 −D3
t−2:1)1‖1,

where the last inequality can be derived as we did in (28).

In the latter case when xt−1 /∈ Xl,3, we first note that {xt′}t−2
t′=1 ∩ Xl,3 6= ∅. In this case we proceed

as the following:∑
rt−1,st

π(at−1|ht−1)T (st|st−1, at−1)P∗El,4(x1:t−1, st)‖(D1,1
t−1:1 −D3

t−1:1)1‖1

≤
∑

rt−1,st

π(at−1|ht−1)T (st|st−1, at−1)P∗El,4(x1:t−1, st)‖D1,1
t−1 · (D

1,1
t−2:1 −D3

t−2:1)1‖1

+
∑

rt−1,st

π(at−1|ht−1)T (st|st−1, at−1)P∗El,4(x1:t−1, st)‖(D1,1
t−1 −D3

t−1) ·D3
t−2:11‖1

≤
∑
st

π(at−1|ht−1)T (st|st−1, at−1)P∗El,4(x1:t−1, st)‖(D1,1
t−2:1 −D3

t−2:1)1‖1

+
∑
st

π(at−1|ht−1)T (st|st−1, at−1)P∗El,4(x1:t−1, st)∆(xt−1)‖D3
t−2:11‖1.

Using the similar trick as in (28), we can reduce ∆(xt−1)‖D3
t−2:11‖1 ≤ 2εl‖(D+)t−2:11‖1 since in

this trajectory there must exist t∗ ≤ t− 2 such that xt∗ ∈ Xl,3. Now we need to combining all terms
and sum over ht−1:

2εl
∑

ht:{xt′}
t−1

t′=1
∩Xl,3=∅

π1:t−1T1:t−1

P∗El,4(x1:t−1, st)

mt
‖(D1,1

t−1:1 −D3
t−1:1)1‖1

+
∑

ht:{xt′}
t−1

t′=1
∩Xl,3 6=∅

π1:t−1T1:t−1P
∗
El,4(x1:t−1, st)‖(D1,1

t−1:1 −D3
t−1:1)1‖1
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≤ 2εl
∑

ht−1:{xt′}
t−2

t′=1
∩Xl,3=∅

π1:t−2T1:t−2‖(D1,1
t−2:1 −D3

t−2:1)1‖1
P∗El,4(x1:t−2, st−1)

mt−1

+
∑

ht−1:{xt′}
t−2

t′=1
∩Xl,3 6=∅

π1:t−2T1:t−2‖(D1,1
t−2:1 −D3

t−2:1)1‖1P∗El,4(x1:t−2, st−1)

+ 2εl
∑
ht−1

π1:t−2T1:t−2‖(D+)t−2:11‖1P∗El,4(x1:t−2, st−1).

The last term is less than 4εlP
∗
El,4(φ), which proves equation (29).

A.5 Analysis for Case II: El,2 (equation (19))

For any (xi, xj) ∈ Xl, let Pc(rj |xj , ri, xi) := µ1(xi, xj)/R+(ri|xi) for c = 1, 2 (recall that we use
R+(r|x) := 1

2 (R1
1 +R1

2)(r|x), and Rc−(r|x) := 1
2 (Rc1 −Rc2)(r|x)). We first observe that

‖P1(rj |xj , ri, xi)− P2(rj |xj , ri, xi)‖1 ≤ O(εl)/R+(ri|xi), (30)

since from the Bayes’ rule, we have

Pc(rj |xj , ri, xi) =
Rc1(ri|xi)

Rc1(ri|xi) +Rc2(ri|xi)
Rc1(rj |xj) +

Rc2(ri|xi)
Rc1(ri|xi) +Rc2(ri|xi)

Rc2(rj |xj),

=
Pc(ri, rj |xi, xj)
R+(ri|xi)

,

for c = 1, 2. We start by writing the target errors as usual.∑
τ :x1:H∈El,2

|P1,π(τ)− P2,π(τ)| =
∑

(x,r)1:H

1 {x1:H ∈ El,2}T0:H−1π1:H · |(P1 − P2)(r1:H |x1:H)|

=
∑
hH

π1:H−1T0:H−1

∑
aH ,rH

1 {x1:H ∈ El,2}π(aH |hH) · |(P1 − P2)(r1:H |x1:H)|,

where we define

Pc(r1:t|x1:t) :=
1

2

2∑
m=1

Πt
t′=1R

c
m(rt′ |xt′).

for c = 1, 2 and any t ∈ [H]. Note that by Lemma A.3, we are guaranteed that all trajectories in El,2
have at most 2 δl-distinguishable state-actions in both modelsM1,M2. We split the cases when the
number of distinguishable state-actions until timeH − 1 is whether d = 2, 1, 0. Let Xd,t be a set of
length t transition histories such that the number of distinguishable state-actions is exactly d. That is,

Xd,t =

{
x1:t−1

∣∣∣ t−1∑
t′=1

1
{

∆1(xt′) > 0 or ∆2(xt′) > 0
}

= d

}
. (31)

With a slight abuse in notation, we overwrite the notation ∆(x) := max(∆1(x),∆2(x)). Note that
when ∆(x) = 0 we have D1(·|x) = D2(·|x) by construction of modelsM1 andM2.
We start from length H histories hH . We divide cases into whether hH belongs to X2,H , X1,H or
X0,H .

Case i: hH : x1:H−1 ∈ X2,H . Since we consider trajectories only in El,2, we have ∆(xH) = 0 and
therefore the probability of observing rH under any history hH is the same, i.e., (P1−P2)(rH |hH) =
0. Hence we have∑

aH ,rH

1 {x1:H ∈ El,2}π(aH |hH) · |(P1 − P2)(rH:1|xH:1)|

=
∑
aH

1 {x1:H ∈ El,2}π(aH |hH) · |(P1 − P2)(rH−1:1|xH−1:1)|.
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Case ii: hH : x1:H−1 ∈ X1,H . We consider two cases: when ∆(xH) = 0 or ∆(xH) > 0. Let us
define an event Ed,t which is defined as the following:

Ed,t = El,2 ∩ {τ = (x, r)1:H |x1:t−1 ∈ Xd−1,t ∩∆(xt) > 0}, (32)

for d = 2, 1 and t ∈ [H]. Now in case ∆(xH) = 0, we again have (P1−P2)(rH |hH) = 0. Therefore
we have ∑

rH

|(P1 − P2)(rH:1|xH:1)| = |(P1 − P2)(rH−1:1|xH−1:1)|.

In order to handle the latter case when ∆(xH) > 0, we first define t∗ and pt as the following:

t∗ : t∗ < t, s.t. ∆(xt∗) > 0,

pt := P1(rt∗ |xt∗) = P2(rt∗ |xt∗) = R+(rt∗ |xt∗t ). (33)

Note that with the above definition, for length t history ht in any trajectories in El,2, we have

Pc(rt:1|xt:1) = Pc(rt|xt, xt∗ , rt∗) · Pc(rt−1:1|xt−1:1), c = 1, 2,

since for any t′ 6= t∗, t, we have ∆1(xt′) = ∆2(xt′) = 0. Recall the inequality (30),∑
rH

1 {x1:H ∈ El,2}π(aH |hH)|(P1 − P2)(rH:1|xH:1)|

≤
∑
rH

1 {x1:H ∈ El,2}π(aH |hH)|(P1 − P2)(rH |hH)|P1(r1:H−1|x1:H−1)

+
∑
rH

1 {x1:H ∈ El,2}π(aH |hH)P2(rH |hH)|(P1 − P2)(r1:H−1|x1:H−1)|

≤ 1 {x1:H ∈ E2,H}π(aH |hH)

(
εl
pH
P1(r1:H−1|x1:H−1) + |(P1 − P2)(r1:H−1|x1:H−1)|

)
.

In the last inequality, since we are handling the special case when x1:H ∈ E2,H , we replace
1 {x1:H ∈ El,2} by 1 {x1:H ∈ E2,H}.

Case iii: hH ∈ E0,H . We first observe that P1(r1:H−1|x1:H−1) = P2(r1:H−1|x1:H−1). Further-
more, in this case P1(rH |hH) = P1(rH |xH) = R+(rH |xH). Thus∑

aH ,rH

1 {x1:H ∈ El,2}π(aH |hH)|(P1 − P2)(rH:1|xH:1)| = 0.

Combine all cases. Plugging all of this into the summation over hH :∑
hH

π1:H−1T0:H−1

∑
aH ,rH

1 {x1:H ∈ El,2}π(aH |hH)|(P1 − P2)(rH:1|xH:1)|

≤
∑
hH

π1:H−1T0:H−1|(P1 − P2)(rH−1:1|xH−1:1)|P∗El,2(hH)

+
∑

hH :x1:H−1∈X1,H

π1:H−1T0:H−1P
1(rH−1:1|xH−1:1)

εl
pH

∑
aH

1 {x1:H ∈ E2,H}π(aH |hH). (34)

Finally, we control the last term in the above equation. We again consider the case when ∆(xH−1) = 0
and ∆(xH−1) > 0 which gives∑
hH :x1:H−1∈X1,H

π1:H−1T0:H−1P
1(rH−1:1|xH−1:1)

εl
pH

∑
aH

P∗E2,H (x1:H)π(aH |hH)

≤
∑

hH−1:x1:H−2∈X1,H−1

π1:H−2T0:H−2P
1(rH−2:1|xH−2:1)

εlP
∗
E2,H (hH−1)

pH−1

+ 2εl
∑

hH−1:x1:H−2∈X0,H−1

π1:H−2T0:H−2P
1(rH−2:1|xH−2:1)

∑
aH−1:∆(xH−1)>0

π(aH−1|hH−1)P∗E2,H (x1:H−1)
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≤
∑

hH−1:x1:H−2∈X1,H−1

π1:H−2T0:H−2P
1(rH−2:1|xH−2:1)

εlP
∗
E2,H (hH−1)

pH−1

+ 2εl
∑

hH−1:x1:H−2∈X0,H−1

∑
aH−1:∆(xH−1)>0

P1,π(hH−1, aH−1)P∗E2,H (x1:H−1). (35)

The first term comes from the fact that pH−1 = pH in case ∆(xH−1) = 0. For the second term, we
note that since x1:H−2 ∈ X0,H−1, we have P1(rH−2:1|xH−2:1) = (R+)H−2:1, which is equivalently
P1(rH−1:1|xH−1:1) = (R+)H−1P

1(rH−2:1|xH−2:1). We apply this relation to obtain the above
inequality (35).
We repeat this induction recursively until time step 1, and we get∑

hH :x1:H−1∈X1,H

π1:H−1T0:H−1P
1(rH−1:1|xH−1:1)

εlP
∗
E2,H (hH)

pH

≤ 2εl

H−1∑
t=1

∑
ht:x1:t−1∈X0,t

∑
at:∆(xt)>0

P∗E2,H (x1:t)P
π(ht, at)

≤ 2εl

H−1∑
t=1

∑
ht:x1:t−1∈X0,t

∑
at:∆(xt)>0

P∗E1,t(x1:t)P
π(ht, at).

The last inequality follows from the fact that conditioned on x1:t such that x1:t−1 ∈ X0,t and
∆(xt) > 0, we get P∗E1,t(x1:t) ≥ P∗E2,H (x1:t).

Finally, we observe that E1,t ∩ E1,t′ = ∅ for all t, t′ ∈ [H] such that t 6= t′, and ∪Ht=1E1,t ⊆ El,2.
Therefore there is no duplication of histories in the summation and we can safely proceed to:

sup
π

H−1∑
t=1

∑
ht:x1:t−1∈X0,t

∑
at:∆(xt)>0

P∗E1,t(ht, at)P
π(ht, at)

= sup
π

H−1∑
t=1

∑
(ht,at):(x1:t−1∈X0,t)∩∆(xt)>0

Pπ(E1,t|ht, at)Pπ(ht, at)

≤ sup
π

H−1∑
t=1

∑
(ht,at):(x1:t−1∈X0,t)∩∆(xt)>0

Pπ(E1,t, ht, at) ≤ sup
π

H−1∑
t=1

Pπ(E1,t) ≤ sup
π
Pπ(El,2).

This concludes that∑
hH∈E1,H

π1:H−1T0:H−1P
1(rH−1:1|xH−1:1)

εlP
∗
El,2(hH)

pH
≤ 2εlP

∗
El,2(φ),

and we can plug this back to (34) and apply the same argument recursively until time step drops down
to 1. This gives ∑

τ :x1:H∈El,2

|P1,π(τ)− P2,π(τ)| ≤ O(Hεl)P
∗
El,2(φ).
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Algorithm 4 Reward Model Recovery from Second-Order Correlations

1: Solve an LP for l̂(x) for all x ∈ S ×A such

min
l̂(x):x∈S×A

∑
x∈S×A

l̂(x),

s.t. l̂(x) satisfy (36), (37), and (38) (39)

2: Decide signs sign(x) that satisfies (40).
3: Clip l̂(x) within (−∞, u(x)] where u(x) = log (min(p̂+(x), 1− p̂+(x)) for all x.
4: Set R̂−(r = 1|x) = sign(x) · exp(l̂(x)) and R̂−(r = 0|x) = −sign(x) · exp(l̂(x)) for all x.
5: Let R̂1(r|x) = R̂+(r|x) + R̂−(r|x), R̂2(r|x) = R̂+(r|x)− R̂−(r|x) for all r, x.
6: Return M̂ = (S,A, T̂ , ν̂, {R̂m}2m=1).

Appendix B Deferred Analysis in Section 3

B.1 Formulation of the LP for Model Recovery

We describe a detailed LP formulation to obtain an empirical reward models. Let cu(xi, xj) and
cl(xi, xj) are upper and lower confidence bounds for u(xi, xj) respectively:

cu(xi, xj) := µ̂(xi, xj)− p̂+(xi)p̂+(xj) +

√
ι2

n(xi, xj)
+ ε20,

cl(xi, xj) := µ̂(xi, xj)− p̂+(xi)p̂+(xj)−
√

ι2
n(xi, xj)

− ε20.

We can write down the linear program to find variables l̂(x) with several linear constraints. The first
constraint is upper bound on the multiplication of two reward differences:

l̂(xi) + l̂(xj) ≤ log (|cu(xi, xj)| ∨ |cl(xi, xj)|) , ∀xi, xj ∈ S ×A, (36)
The second constraint is, for all xi, xj ∈ S ×A such that signs of both upper and lower bounds are
equal, a lower confidence bound:

l̂(xi) + l̂(xj) ≥ log (|cu(xi, xj)| ∧ |cl(xi, xj)|) , ∀(xi, xj) : cu(xi, xj) · cl(xi, xj) > 0. (37)
Finally, we add a regularity condition for differences in probabilities:

10 log(ε0) ≤ l̂(x) ≤ log
(

(p̂+(x) ∧ 1− p̂+(x)) +
√
ι1/n(x) + ε20

)
, ∀x ∈ S ×A. (38)

with a properly set confidence parameter ι1 = O(log(SA/η)). Now we can solve the LP feasibility
problem for l̂(x) and find parameters for an empirical model. The LP formulation can be found in
(39). The minimization objective

∑
l̂(x) encourages to ignore small differences in two reward models

at each state-action.
After we obtain a value for l(x) = log |∆̂(x)|, it remains to find signs of p̂−(x). We find a correct
assignment for sign(x) with the following constraints:

sign(xi)sign(xj) = sign(û(xi, xj)), ∀(xi, xj) : cu(xi, xj) · cl(xi, xj) > 0. (40)
Solving constraints (40) can be formulated as 2-Satisfiability (2-SAT) problem [2] and thus can be
efficiently solved. The full algorithm is described in Algorithm 4.

B.2 Proof of Lemma 3.1

Magnitude Constraints We start with confidence bounds for estimated probabilities that holds
with probabilities at least 1− η:

|p+(x)− p̂+(x)| ≤

√
c1 log(SA/η)

n(x)
, ∀x ∈ S ×A,
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|µ(xi, xj)− µ̂(xi, xj)| ≤

√
c2 log(SA/η)

n(xi, xj)
, ∀xi, xj ∈ S ×A,

for some absolute constants c1, c2. Furthermore, by construction the number of visit counts for any
pair is less than the visit counts of a single state-action:

min(n(xi), n(xj)) ≥ n(xi, xj), ∀xi, xj ∈ S ×A.

Then we consider a modelM1 that approximates the true model with non-zero probability for every
reward:

R1
m(r|x) = Rm(r|x), m ∈ {1, 2}, r ∈ {0, 1}, x ∈ S ×A : |∆(x)| > ε50,{
R1

1(r|x) = ε30 + (1− 2ε30)R1(r|x) + (2r − 1)ε40
R1

2(r|x) = ε30 + (1− 2ε30)R2(r|x)− (2r − 1)ε40
, r ∈ {0, 1}, x ∈ S ×A : |∆(x)| ≤ ε50,

For this model, we have

|(R1
+ −R+)(r|x)| ≤ ε30, ∀r ∈ {0, 1}, x ∈ S ×A,

|(P1 − P)(ri, rj |xi, xj)| ≤ 2ε30, ∀ri, rj ∈ {0, 1}, xi, xj ∈ S ×A,
∆1(x) ≥ ε50, ∀x ∈ S ×A.

We show that one feasible solution l∗(x) can be obtained fromM1

l∗(x) := log
∣∣p1
−(x)

∣∣ = log(∆1(x)).

We first check the first constraint (36):

∆1(xi)∆
1(xj) = |µ1(xi, xj)− p1

+(xi)p
1
+(xj)|

≤ |µ̂(xi, xj)− p̂+(xi)p̂+(xj)|+

√
c2 log(SA/η)

n(xi, xj)
+ ε20

= max(|cu(xi, xj)|, |cl(xi, xj)|).
For the second constraint (37) follows similarly when cu(xi, xj) · cl(xi, xj) > 0. In the other case,
∆1(xi)∆

1(xj) can be as small as 0, which implies that l(xi) + l(xj) is unbounded below. For the
final constraint (38), we observe that

ε50 ≤ ∆1(x) ≤ p1
+(x) ≤ p̂+(x) +

√
c1 log(SA/η)

n(x)
+ ε30, ∀x ∈ S ×A.

Thus l∗(x) satisfies all magnitude constraints (36), (37), and (38).

Sign Constraint For the sign constraint (40), we note that whenever cu(xi, xj) · cl(xi, xj) > 0,
we have

sign(p1
−(xi) · p1

−(xj)) = sign(xi)sign(xj) = sign(cu(xi, xj)), (41)

which can be inferred by

p1
−(xi)p

1
−(x2) = P1(ri = 1, rj = 1|xi, xj)− p1

+(xi)p
1
+(xj)

= P̂(ri = 1, rj = 1|xi, xj)− p̂+(xi)p̂+(xj) + errors,

where errors is in order of O
(√

c2 log(SA/η)/n(xi, xj) + ε2
)
. This implies that

cl(xi, xj) ≤ p1
−(xi)p

1
−(xj) ≤ cu(xi, xj),

which concludes that reward models fromM1 satisfy (40).

B.3 Proof of Lemma 4.2

At this point, we no longer assume that the true transition and initial state models are given, but instead
we use estimated quantities T̂ , ν̂ from Algorithm 2.
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Notations Let us define a few variables to proceed. We denote #k(x) as visit counts at x during the
kth episode. A similar quantity #k(xi, xj) is 1 if data for a pair (xi, xj) is collected in the kth episode
and 0 otherwise. Let π̃k be the policy executed in the kth episode. Let nk(x) :=

∑k
k′=1 #k′(x),

nk(xi, xj) =
∑k
k′=1 #k′(xi, xj) and the expected quantities n̄k(x) =

∑k
k′=1 Eπ̃k′ [#k′(x)],

n̄kk′=1(xi, xj) =
∑k
k′=1 Eπ̃k′ [#k′(xi, xj)]. We define a desired high probability event Epe for mar-

tingale sums:

nk(x) ≥ 1

2
n̄k(x)− cl log(K/η), ∀k ∈ [K], x ∈ S ×A,

nk(xi, xj) ≥
1

2
n̄k(xi, xj)− cl log(K/η), ∀k ∈ [K], xi, xj ∈ S ×A, (42)

for some absolute constant cl > 0. With a standard measure of concentration argument for martingale
sums [48], we can show thatP(Epe) ≥ 1−η. We also denote T̂k, ν̂k for the empirically estimated tran-
sition and initial distribution models at the beginning of kth episode. Let v1 be a 2-tuple (null, null)
and i1 = 1.

Number of Episodes K We first show that we terminate Algorithm 2 after at most K episodes
with probability at least 1− η where

K = C · S
2A

ε2pe
(H +A) log(K/η),

for some absolute constant C > 0. Let us examine Ṽ0 at the kth episode. This can be decomposed as

Ṽ0 =
√
ιν/k +

∑
s

ν̂k(s) · Ṽ1(i1, v1, s)

≤
√
ιν/k + ‖ν̂k(s)− ν(s)‖1 +

∑
s

ν(s) · Q̃1((i1, v1, s), (a, z))

≤ 2
√
ιν/k + Eπ̃k

[
Q̃1((i1, v1, s1), π̃k(v1, s1))

]
.

Note that (at, zt) = π̃k(vt, st) for t ∈ [H]. We can recursively bound expectation of Q̃t for t ≥ 1:

Eπ̃k

[
Q̃t((it, vt, st), (at, zt))

]
= Eπ̃k [br(it, vt, zt) + bT (st, at)] + Eπ̃k

∑
st+1

T̂k(st+1|st, at) · Ṽt+1(it+1, vt+1, st+1)


≤ Eπ̃k

[√
ι21 {collect}
nk(vt+1)

+ 2

√
ιT

nk(st, at)

]
+ Eπ̃k

[
Q̃t+1((it+1, vt+1, st+1), (at+1, zt+1))

]
,

where 1 {collect} is a short hand for 1 {it = 2 ∩ zt = 1}. We summarize all appended terms to get

Ṽ0 ≤ 2
√
ιν/k +

H∑
t=1

Eπ̃k

[
2

√
ιT

nk(st, at)
+

√
ι21 {collect}
nk(vt+1)

]

≤ 2
√
ιν/k +

∑
(s,a)

2

√
ιT

nk(s, a)
· Eπ̃k [#k(s, a)] +

∑
(xi,xj)

√
ι2

nk(xi, xj)
· Eπ̃k [#k(xi, xj)]

≤ 2
√
ιν/k +

∑
x

2H · 1 {n̄k(x) < 4 · cl log(K/η)}

+ 4
∑
x

√
ιT

n̄k(x)
· (n̄k+1(x)− n̄k(x)) + 4

∑
(xi,xj)

√
ι2

n̄k(xi, xj)
· (n̄k+1(xi, xj)− n̄k(xi, xj)).

We now sum overK episodes, then

Kεpe ≤ 4
√
ινK +O(clHSA log(KSA/η)) + 8

∑
x

√
ιT n̄K+1(x) + 8

∑
(xi,xj)

√
ι2n̄K+1(xi, xj).
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We now note that
∑
x n̄K+1(x) = HK and

∑
(xi,xj) n̄K+1(xi, xj) ≤ K. Using a Cauchy-Schwartz

inequality, we get

Kεpe ≤ O
(√

ινK +HSA log(SA/η) +
√
ιTHSAK +

√
ι2S2A2K

)
.

Note we plug our design of confidence interval parameters ιν = O(S log(K/η)), ιT =
O(S log(KSA/η)) and ι2 = O(log(KSA/η)). This gives a bound that K ≤
O
(
S2A(A+H)ε−2

pe log(KSA/η)
)
. Hence we terminate Algorithm 2 after at most K episodes

under the event Epe

K = C · S2A(A+H)ε−2
pe log(HSA/(εpeη)).

Note that from a concentration of martingale sums, Epe happens with probability at least 1− η.

Bound on P∗E′l (φ) We now show the second part of the lemma: under the event Epe, we have

P∗E′l
(φ) ≤ O(Hεpe) ·max

(
1,
√
nl/ι2

)
.

We first observe that

P∗E′l
= sup

π
Pπ(E ′l ) ≤ sup

π
Pπ
(
∪H−1
t1=1{∃t2 > t1, s.t. (xt1 , xt2) ∈ Xl ∩ X cl−1}

)
≤ sup

π

H−1∑
t1=1

Pπ
(
∃t2 > t1, s.t. (xt1 , xt2) ∈ Xl ∩ X cl−1

)
.

Now in the augmented MDP M̃ consider a class of augmented policies Π̃t1,l such that for a fixed t1,
a policy π̃ picks the first state of a pair only at time step t1, i.e., zt = 0 for t < t1 and zt1 = 1, and
then pick the second state of the pair whenever it encounters that makes the pair belong to Xl, i.e., we
set zt2 = 1 whenever (xt1 , xt2) ∈ Xl for t2 > t1. Within this policy class, define Q̃1 and Ṽ 1 as the
following:

b1T (s, a) =

(
1 ∧

√
ιT

n(s, a)

)
, b1r(i, v, z) = 1

{
i = 2 ∩ z = 1 ∩ (v′ ∈ Xl ∩ X cl−1)

}
·
(

1 ∧
√
ι2
nl

)
,

Q̃1
t ((i, v, s), (a, z)) = 1 ∧

(
br +

∑
s′

T̂ (s′|s, a) · Ṽ 1
t+1(i′, v′, s′) + bT

)
,

with Q̃1
H+1 = 0. For Ṽ 1, we define it as,

Ṽ 1
t (i, v, s) = max

(a,z)∈Ã
Q̃1
t ((i, v, s), (a, z)), if t > t1,

Ṽ 1
t (i, v, s) = max

a∈A
Q̃1
t ((i, v, s), (a, 1)), if t = t1,

Ṽ 1
t (i, v, s) = max

a∈A
Q̃1
t ((i, v, s), (a, 0)), if t < t1,

and Ṽ 1
0 =

√
ιν/K +

∑
s ν(s) · Ṽ 1

1 (1, v1, s) and v1 = (null, null). By construction, Ṽ0 is an upper
confidence bound of Ṽ 1

0 :

εpe ≥ Ṽ0 ≥ Ṽ 1
0 .

On the other hand, supπ P
π
(
∃t2 > t1, s.t. (xt1 , xt2) ∈ Xl ∩ X cl−1

)
can be computed through the

dynamic programming on Q̃∗:

br(i, v, z) = 1
{
i = 2 ∩ z = 1 ∩ (v′ ∈ Xl ∩ X cl−1)

}
·
(

1 ∧
√
ι2
nl

)
,

Q̃∗t ((i, v, s), (a, z)) = br +
∑
s′

T (s′|s, a) · Ṽ ∗t+1(i′, v′, s′),
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and

Ṽ ∗t (i, v, s) = max
(a,z)∈Ã

Q̃∗t ((i, v, s), (a, z)), if t > t1,

Ṽ ∗t (i, v, s) = max
a∈A

Q̃∗t ((i, v, s), (a, 1)), if t = t1,

Ṽ ∗t (i, v, s) = max
a∈A

Q̃∗t ((i, v, s), (a, 0)), if t < t1,

Then the maximum probability of having (xt1 , xt2) ∈ Xl ∩ X cl−1 can be computed as the following:

Ṽ ∗0 =
∑
s

ν(s) · Ṽ ∗(1, v1, s) =

(
1 ∧

√
ι2
nl

)
· sup
π
Pπ
(
∃t2 > t1, s.t. (xt1 , xt2) ∈ Xl ∩ X cl−1

)
.

Finally, we can inductively show that Q̃1
t ≥ Q̃∗t and Ṽ 1

0 ≥ Ṽ ∗0 with the setting of confidence interval
parameters ι2, ιT . This concludes that

Ṽ 1
0 ≥ Ṽ ∗0 =

(
1 ∧

√
ι2
nl

)
· sup
π
Pπ
(
∃t2 > t1, s.t. (xt1 , xt2) ∈ Xl ∩ X cl−1

)
.

This concludes that

P∗E′l
≤
H−1∑
t1=1

sup
π
Pπ
(
∃t2 > t1, s.t. (xt1 , xt2) ∈ Xl ∩ X cl−1

)
≤ Hεpe ·

(
1 ∨

√
nl/ι2

)
.

B.4 Complete Proof of Theorem 3.2

In this section, we put the final puzzle piece, a guarantee on total-variation distance between trajectories
with different transitions and initial state probabilities, to complete the picture. LetM1 be a 2RM-
MDP model such that

ν1(s) = ν(s), T 1(·|s, a) = T (·|s, a), R1
m(·|s, a) = R̂(·|s, a), ∀m ∈ {1, 2}, s ∈ S, a ∈ A

For any history-dependent policy π, we target to bound that∑
τ

|Pπ(τ)− P̂π(τ)| ≤
∑
τ

|Pπ(τ)− P1,π(τ)|+ |P1,π(τ)− P̂π(τ)|.

Note that we already have shown that
∑
τ |Pπ(τ)−P1,π(τ)| ≤ ε/H in Section 4 and Appendix A.3.

Thus we focus on bounding the second term. We first need the following lemma which is proven in
Appendix D.

Lemma B.1 For any history-dependent policy π, we have∑
τ

|P1,π(τ)− P̂π(τ)| ≤ ‖(ν − ν̂)(s1)‖1 +

H−1∑
t=1

E1,π
[
‖(T − T̂ )(st+1|st, at)‖1

]
. (43)

AfterK episodes of pure-exploration, we also get

‖(ν − ν̂)(s1)‖1 +

H−1∑
t=1

E1,π
[
‖(T − T̂ )(st+1|st, at)‖1

]
≤
√
ιν/K +

H−1∑
t=1

E1,π
[√

ιT /n(st, at)
]
.

We can show that (43) is at most 2HṼ0 (recall (5)) from the Bellman-update rule. First we see
‖(ν − ν̂)(s1)‖1 +

∑H−1
t=1 E1,π

[
‖(T − T̂ )(st+1|st, at)‖1

]
≤ Ṽ 1

0 where:

Q̃1
t (s, a) = ‖(T − T̂ )(st+1|st, at)‖1 +

∑
s′

T (s′|s, a) · Ṽ 1
t+1(s′)

≤ (H + 1) ·
√

ιT
n(st, at)

+
∑
s′

T̂ (s′|s, a) · Ṽ 1
t+1(s′),
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Ṽ 1
t (s) = max

a
Q̃1
t (s, a),

Ṽ 1
0 = ‖(ν − ν̂)(s1)‖1 +

∑
s

ν(s) · Ṽ 1
1 (s) ≤ (H + 1) ·

√
ιν
K

+
∑
s

ν̂(s) · Ṽ 1
1 (s),

and Ṽ 1
H+1 = 0. On the other hand, from the construction of Q̃ in (5), for any i, v, z, we have

2H · Q̃t((i, v, s), (a, z)) ≥ Q̃1
t (s, a) for all (s, a). Therefore,√

ιν/K +

H−1∑
t=1

Eπ
[√

ιT /n(xt)
]
≤ 2HṼ0 ≤ 2Hεpe. (44)

With our choice of εpe = o(ε/H3), we have ‖Pπ(τ) − P̂π(τ)‖1 ≤ O(ε/H), which then we can
conclude that |V πM − V πM̂| ≤ H · ‖P

π(τ)− P̂π(τ)‖1 ≤ O(ε).

Appendix C Proof of the Lower Bound (Theorem 3.3)

We first consider instances of 2RM-MDP with H = 2, S = 2 and arbitrary A ≥ 3. Our construction
is as the following:

1. Regardless of actions played, both MDPs always start from s1 at t = 1 and transits to s2 at
t = 2.

2. At t = 1, for all actions a ∈ A except a∗1, both MDPs return a reward sampled from a
Bernoulli distribution Ber(1/2).

• M1: For the action a∗1, a reward is sampled from Ber(1/2 +
√
ε).

• M2: For the action a∗1, a reward is sampled from Ber(1/2−
√
ε).

3. At t = 2, for all actions a ∈ A except a∗2,1 and a∗2,2, both MDPs return a reward sampled
from a Bernoulli distribution Ber(1/2).

• M1: For a∗2,1, a∗2,2, rewards are sampled from Ber(1/2 +
√
ε) and Ber(1/2 −

√
ε)

respectively.
• M2: For a∗2,1, a∗2,2, rewards are sampled from Ber(1/2 −

√
ε) and Ber(1/2 +

√
ε)

respectively.

In this construction, the optimal strategy is to play a∗1 at t = 1, and depending on the outcome r1, we
play either a∗2,1 if r1 = 1 or a∗2,2 otherwise. By playing this strategy, expected long-term return is

1

2

2∑
m=1

Pm(r1 = 1) + Pm(r2 = 1|a∗2,1) · Pm(r1 = 1) + Pm(r2 = 1|a∗2,2) · Pm(r1 = 0)

=
1

2
+
(
(1/2 +

√
ε)2 + (1/2−

√
ε)2
)

= 1 + 2ε.

Note that if we do not play a∗1 at t = 1, or one of a∗2,1 and a∗2,2 at t = 2, then the expected cumulative
reward is 1. Therefore the problem can be reduced to find a∗1 and a∗2,1 or a∗2,2.
However, if we play a1 6= a∗1 at t = 1 or play a2 6= a∗2,1, a

∗
2,2 at t = 2, i.e., if we do not play the right

actions at both time steps, then marginal distribution of the sample we get from the environment is
always P(r1, r2|a1, a2) = 1

4 for all (r1, r2) ∈ {0, 1}
⊗

2. Therefore, even if we can access to a full
distribution of outcomes from a wrong action sequence, there would be no information gain from
playing any wrong sequences of actions, other than removing the played sequence from all O(A2)
possibilities.
On the other hand, even if we play the correct sequence (a∗1, a

∗
2,1) (or (a∗1, a

∗
2,2)), unless we play it

sufficient number of timesO(1/ε2), we cannot distinguish it from other wrong action sequences. That
is, the marginal distribution of the reward sequence from the correct action-sequence is close to the
one obtained with any wrong action sequence (a1, a2) in Kullback-Leibler (KL) divergence:∑

(r1,r2)∈{0,1}
⊗

2

P(r1, r2|a1, a2) · log

(
P(r1, r2|a1, a2)

P(r1, r2|a∗1, a∗2,1)

)
< O(ε2).
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We can apply a similar lower-bound argument for the multi-armed bandits with A2-arms in [21],
where a general framework for the lower-bound is provided based on information gains from the
played policies. Note that there are always A2-possible sequences of actions to play in each episode,
and the information gain after each episode is not affected by how the decision in each step is made.
This argument gives a Ω(A2/ε2) lower bound.
Then following the action-amplification argument (see Appendix A in [36]), we can obtain
Ω(S2A2/ε2) lower bound.

Appendix D Auxiliary Lemmas

D.1 Proof of Lemma 4.3

Recall that l(xi) + l(xj) = log(∆(xi)) + log(∆(xj)) = log |u(xi, xj)| for all xi, xj ∈ S × A
when exact model parameters are given from equation (6). Thus if we have three equations for
(x1, x2), (x2, x3), (x3, x1), then we can compute l(x1) as follows:

l(x1) =
1

2
(log |u(x1, x2)|+ log |u(x2, x3)|+ log |u(x3, x1)|)− log |u(x2, x3)|.

Now from empirical estimates of the model M̂, we can compute l̂(x1) similarly. To simplify the
burden in notation, let us denote z1 = u(x1, x2), z2 = u(x2, x3) and z3 = u(x3, x1), and empirical
counterparts as ẑ1, ẑ2, ẑ3. We first note that

|z1 − ẑ1| = |u(x1, x2)− û(x1, x2)|
≤ |µ(x1, x2)− µ̂(x1, x2)|+ |p+(x1)p+(x2)− p̂+(x1)p̂+(x2)|+ b(x1, x2)

≤ 3
√
ι2/n(x1, x2) + ε20 ≤ 0.01δlεl,

where the last inequality uses n(x1, x2) ≥ nl = C · ι2δ−2
l ε−2

l for a sufficiently large C > 0.
Similarly, for z2 − ẑ2 and z3 − ẑ3 we can obtain similar inequalities. On the other hand, we note that
|z1| = ∆(x1)∆(x2) ≥ δ2

l � 0.01δlεl. Now we can see that

|l(x1)− l̂(x1)| ≤ 1

2

(
0.01δlεl
z1

+
0.01δlεl
z2

+
0.01δlεl
z3

)
≤ 1

2

(
0.01δlεl

∆(x1)∆(x2)
+

0.01δlεl
∆(x2)∆(x3)

+
0.01δlεl

∆(x3)∆(x1)

)
.

Let i∗ = arg maxi∈[3] ∆(xi) = 2 (the same argument holds for any i∗ by symmetry). First observe
that

|l(x1)− l̂(x1)| ≤ 0.01εl
2

(
1

∆(x1)
+

2

∆(x2)

)
,

where we used ∆(x2),∆(x3) ≥ δl. Now converting l(x) to ∆(x1) = exp(l(x1)), we get

∆̂(x1) ≤ ∆(x1) exp

(
0.01εl

2

(
1

∆(x1)
+

2

∆(x2)

))
≤ ∆(x1)

(
1 + 2 · 0.01εl

2

(
1

∆(x1)
+

2

∆(x2)

))
≤ ∆(x1) + 0.03εl,

where in the second inequality we used exp(z) ≤ 1 + 2z for small enough z. Similarly, we can
also show ∆̂(x1) ≥ ∆(x1) − 0.03εl. Symmetric argument holds for ∆(x3). For ∆(x2), let i∗2 =
arg maxi∈{1,3}∆(xi). Then similarly we get

∆̂(x2) ≤ ∆(x2)

(
1 +

0.01εl
2

(
2

∆(x2)
+

1

∆(xi∗2 )

))
≤ ∆(x2) + 0.03εl

∆(x2)

∆(xi∗2 )
.

This concludes the proof of Lemma 4.3.
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D.2 Proof of Corollary 1

By Lemma 4.3, for any τ = (x, r)1:H ∈ El,3 and t 6= t∗, we have that ∆(xt) ≥ δl implies
|∆(xt)− ∆̂(xt)| ≤ εl/2. The bound for xt∗ also directly follows from Lemma 4.3.
For ∆(xt) < δl, if δl = max(δ, εl) = εl, then we have ∆(xt∗)∆(xt) < εl∆(xt∗). Now by the
constraint (7), we have

|p−(xt∗)p−(xt)− p̂−(xt∗)p̂−(xt)| < 0.01δlεl.

From this, we have ∆̂(xt∗)∆̂(xt) < 1.01εl∆(xt∗). At the same time, by Lemma 4.3 we also have
∆̂(xt∗) ≥ 0.5∆(x∗t ). Therefore, we get ∆̂(xt) < 3εl.
If ∆(xt) < δl and δl = max(δ, εl) = δ > εl, then by definition of δ, we have ∆(xt) = 0. In this
case, from |∆̂(xt∗)∆̂(xt)−∆(xt)∆(xt)| <

√
ι2/nl < 0.03εlδ. From this, we get ∆̂(xt∗)∆̂(xt) <

0.03εlδ. Since ∆̂(xt∗) ≥ 0.5∆(x∗t ) ≥ 0.5δ, we get ∆̂(xt) < 2εl.

D.3 Proof of Lemma A.3

We start with the following inequality:

|u(x1, x2)− û(x1, x2)|
≤ |µ(x1, x2)− µ̂(x1, x2)|+ |p+(x1)p+(x2)− p̂+(x1)p̂+(x2)|+ b(x1, x2)

≤ 3
√
ι2/n(x1, x2) + ε20 ≤ 0.01δlεl (45)

for any x1, x2 such that n(x1, x2) ≥ nl.

Case I:
∑H
t=1 1 {∆(xt) ≥ εl} = 2. In this case, let any time-step t1 such that ∆̂(xt1) ≥ 2εl, and

we show that ∆(xt1) < εl. If it were true, let t2, t3 be the time steps where ∆(xt) ≥ εl for t = t2, t3.
Then,

∆̂(xt) < ∆(xt)/1.5, t = t2, t3. (46)

If this is the case, then |û(xt2 , xt3)− u(xt2 , xt3)| > u(xt2 , xt3)/2 > δlεl/2. However, visit counts
for all pairs in a same trajectory satisfies n(xt2 , xt3) ≥ C · ι2δ−2

l ε−2
l , and thus |û(xt2 , xt3) −

u(xt2 , xt3)| < 0.01δlεl, which is contradiction (see equation (45)).

Now we argue that (46) is true. Suppose for t2, we have ∆̂(xt2) ≥ ∆(xt2)/1.5. Then,

û(xt1 , xt2) = ∆̂(xt1)∆̂(xt2) >
4

3
εl∆(xt2).

On the other hand, we have u(xt1 , xt2) < εl∆(xt2). Now we can see that

|û(xt1 , xt2)− u(xt1 , xt2)| ≥ 1

3
εl∆(xt2) >

1

3
εlδl,

which is again contradiction since |û(xt2 , xt3) − u(xt2 , xt3)| < 0.01δlεl. Hence we showed that
∆̂(xt) > 2εl only if ∆(xt) ≥ εl. This ensures that

∑H
t=1 1

{
∆(xt) ≥ εl ∪ ∆̂(xt) ≥ 2εl

}
= 2.

Case II:
∑H
t=1 1 {∆(xt) ≥ εl} ≤ 1. Here, we show that there should not exist any two t1, t2 such

that ∆̂(xt1), ∆̂(xt2) ≥ 2εl and at the same time ∆(xt1),∆(xt2) < εl. If this is the case, then we
immediately get

∑H
t=1 1

{
∆(xt) ≥ εl ∪ ∆̂(xt) ≥ 2εl

}
≤ 2.

Now we show that there exist no such pair of t1, t2. We first consider when δl = εl. In this case, we
have

|û(xt1 , xt2)− u(xt1 , xt2)| ≥ 3ε2l = 3δlεl,

which is a contradiction to equation (45).

In the other case δl = max(δ, εl) > εl, note that this is equivalent to
∑H
t=1 1 {∆(xt) > 0} ≤ 1. We

show that whenever ∆(x1) = 0, then the LP (39) returns a solution such that ∆̂(x1) ≤ ε20. Note that
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whenever ∆(x1) = 0, then for any x2, we have u(x1, x2) = ∆(x1)∆(x2) = 0. This implies, with
high probability, for any x2 we have

cu(x1, x2) < 0 < cl(x1, x2).

Hence there is no lower bound constraint (37) for l̂(x1) + l̂(x2) as cu(x1, x2) · cl(x1, x2) < 0, and
l̂(x1) can always take the minimum possible value from (38), which gives l̂(x1) = 10 log(ε0). Hence
by the minimizing objective in (39), we get ∆̂(x1) ≤ ε20. This proves that whenever ∆̂(x) ≥ 2εl, we
must have ∆(x) > 0, which proves

∑H
t=1 1

{
∆(st, at) ≥ εl ∪ ∆̂(st, at) ≥ 2εl

}
≤ 2.

D.4 Proof of Lemma A.2

For the true modelM andM1, we can see that

|R1
m(r|x)−Rm(r|x)| = |εl − (R+(r|x)−Rm(r|x))− 2εlR+(r|x)|,

≤ εl|1− 2R+(r|x)|+ 2εl ≤ 3εl, if ∆(x) < 2εl,

|R1
m(r|x)−Rm(r|x)| = |εl − 2εlRm(r|x)| ≤ 3εl, if ∆(x) ≥ 2εl,

For the empirical model M̂ andM2, we first note that

|R̂+(r|x)−R+(r|x)| ≤
√
ι2/n(x) ≤

√
ι2/nl ≤ 0.01δlεl.

for all x : ∃(x1, x2) ∈ Xl, s.t. x = x1 or x2. Then, we can check that

|R2
m(r|x)− R̂m(r|x)| = |εl − (R+(r|x)− R̂m(r|x))− 2εlR+(r|x)|,

≤ εl|1− 2R+(r|x)|+ |R+(r|x)− R̂+(r|x)|+ |R̂+(r|x)− R̂m(r|x)|
≤ 4εl,

if ∆(x) < 2εl, and for the else case, for bothm = 1, 2 we have

|R2
m(r|x)−Rm(r|x)| = εl|1− 2R+(r|x)|+ |R+(r|x)− R̂+(r|x)| ≤ 3εl.

D.5 Proof of Lemma B.1

This is a special case of Lemma B.3 in [36] with same transition and initial probability parameters
for all contexts, as RM-MDP can be also considered as a special case of LMDP. To make the paper
self-contained, we reproduce the proof. For any t ∈ [H] andm ∈ [2], we start with∑

(s,a,r)1:t

|P1,π
m − P̂πm|((s, a, r)1:t) =

∑
(s,a,r)1:t−1,st

|P1,π
m − P̂πm|((s, a, r)1,t−1, st)

≤
∑

(s,a,r)1:t−1,st

|P1,π
m − P̂πm|((s, a, r)1:t−1)T̂ (st|st−1, at−1)

+
∑

(s,a,r)1:t−1,st

P1,π
m ((s, a, r)1:t−1)|T − T̂ |(st|st−1, at−1)

≤
∑

(s,a,r)1:t−1

|P1,π
m − P̂πm|((s, a, r)1:t−1)

+
∑

(s,a,r)1:t−1

‖(T − T̂ )(st|st−1, at−1)‖1P1,π
m ((s, a, r)1:t−1),

where in the first equality follows since we use the same reward models forM1 and M̂. Recursively
applying the same argument, we get∑

(s,a,r)1:H

|P1,π
m − P̂πm|((s, a, r)1:H)

≤ ‖(ν − ν̂)(s1)‖1 +

H∑
t=2

∑
(s,a,r)1:t−1

‖(T − T̂ )(st|st−1, at−1)‖1P1,π
m ((s, a, r)1:t−1).
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Finally, we observe that

∑
(s,a,r)1:H

|P1,π − P̂π|((s, a, r)1:H) =
1

2

2∑
m=1

∑
(s,a,r)1:H

|P1,π
m − P̂πm|((s, a, r)1:H)

≤ ‖(ν − ν̂)(s1)‖1 +

H∑
t=2

∑
(s,a,r)1:t−1

‖(T − T̂ )(st|st−1, at−1)‖1P1,π((s, a, r)1:t−1)

= ‖(ν − ν̂)(s1)‖1 + E1,π
[
‖(T − T̂ )(st|st−1, at−1)‖1

]
,

which concludes the lemma.

Appendix E Towards Non-Uniform Mixing Weights

In this appendix, we discuss the high-level idea of how to handle non-uniform mixing weights
w1 = w,w2 = 1− w. For a simplified discussion, let us assume w1, w2 = Ω(1), δ = Ω(1) and the
true T, ν are known in advance. We first recheck several quantities to check what becomes different.
First, now the average reward is p+(x) := w · p1(x) + (1− w) · p2(x). Let differences in rewards
be p−(x) := p1(x)− p2(x). For any xi, xj ∈ S ×A, the reward correlation function now becomes
(compare this to (1)):

µ(xi, xj) = w · p1(xi)p1(xj) + (1− w) · p2(xi)p2(xj). (47)

If we construct a matrix B ∈ RSA×SA indexed by state-actions such that at its (i, j) entry is given by:

Bi,j = µ(xi, xj)− p+(xi)p+(xj),

then we get B = w(1− w) · qq> where q is a vector indexed by x such that qi = p−(xi). Note that
the only difference from w = 1/2 case is the overall re-scaling factor w(1− w). This suggests that
we can still extract the same information on reward differences (compare this to (6))

u(xi, xj) := w(1− w) · p−(xi)p−(xj) = µ(xi, xj)− p+(xi)p+(xj).

This means the overall algorithm remains the same: we can still first get correlations from pure-
exploration (Algorithm 2), and then recovers magnitude of |p−(xi)| (Algorithm 4).
What complicates the problem is the recovery of signs: after solving a 2-SAT problem to find all
signs of p̂−(x) that satisfy (40), still there remains an ambiguity whether we have sign(p̂−(x)) =
sign(p−(x)) or sign(p̂−(x)) = −sign(p−(x)) (with pair-wise consistency to satisfy (40)), because
either sign(p−(x)) or −sign(p−(x)) is a consistent solution for (40). This is not a problem when
the model is symmetric in signs of p−(x) (recall the symmetry argument in Appendix A.4.1), but
when the prior is non-uniform, then we also need to find the exact signs of p−(x). To see this, observe
that

p1(x) = p+(x) + (1− w) · p−(x), p2(x) = p+(x)− w · p−(x),

and that changing the sign of p−(x) may result in a different set of pairs (p1(x), p2(x)).
Now we elaborate how to resolve the sign-ambiguity issue if w 6= 1/2. Let us consider several disjoint
subsets of state-actions G1, G2, ..., Gq ⊆ S ×A such that the following holds: (a) ∪ql=1Gl = {x ∈
S × A : |p−(x)| ≥ δ}, and (b) any xi, xj ∈ S × A belongs to the same Gl for some l ∈ [q] if
one decides sign(xi) then sign(xj) is automatically decided. One can construct {Gl}ql=1 when we
formulate the sign assignment problem to a 2-SAT problem. Now, if q = O(1), then there will be
only a small number of possible candidate empirical models that satisfy (40). If that is the case, we
can compute the optimal policy for each candidate, run each optimal policy on the real environment,
and take the one with more (estimated) long-term rewards.
In general, q can be at mostO(SA), and thus creating toomany candidate models from the combination
of consistent sign assignments. In such case, we can extract information from third order correlations.
Observe that, for some (xi, xj , xk) ∈ (S ×A)

⊗
3, we define:

µ(xi, xj , xk) := E[rirjrk|xi, xj , xk] = w · p1(xi)p1(xj)p1(xk) + (1− w) · p2(xi)p2(xj)p2(xk).
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Some algebra shows that from this, we can extract a quantity

u(xi, xj , xk) := µ(xi, xj , xk)− p+(xi)p+(xj)p+(xk)

− (p+(xi)u(xj , xk) + p+(xj)u(xi, xk) + p+(xk)u(xi, xj))

= w(1− w)(1− 2w) · p−(xi)p−(xj)p−(xk).

Suppose that all three state-actions belong to the same group, i.e., xi, xj , xk ∈ Gl for some l ∈ [q]. If
|1− 2w| is not too small (say, larger than ε/H2), then by looking at the sign of u(xi, xj , xk), we can
decide the signs of not only xi, xj , xk, but also all elements in Gl.
Now note that, for each l ∈ [q], there are only two possible assignments of signs for all elements
in Gl. Pick any element xl ∈ Gl. Non-negligible u(xi, xj , xk) suggests that we can perform a
hypothesis-testing whether sign(xl) = +1 or −1, because joint-probability of (r(xi), r(xj), r(xk))
for any xi, xj , xk ∈ Gl, for each case are at least apart by |w(1− w)(1− 2w)δ3| in total-variation
distance. Thus if we can collect O(|w(1− w)(1− 2w)δ3|−2) number of samples of any third-order
correlations from Gl, we can decide sign(xl). While we do not investigate this direction further in
detail, it will be of independent interest to obtain a tight sample complexity (both upper and lower
bounds) for non-uniform priors with an optimal design of recovery mechanism for sign(xl). We
leave it as future work.
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1. For all authors...

• (a) Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope? [Yes]

• (b) Have you read the ethics review guidelines and ensured that your paper conforms to
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to speculate about broader societal impacts.
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