
Supplementary material for

Discrete-Valued Neural Communication
in Structured Architectures Enhances Generalization

Dianbo Liu, Alex Lamb, Kenji Kawaguchi,
Anirudh Goyal, Chen Sun, Michael C. Mozer, & Yoshua Bengio

A Additional theorems for theoretical motivations

In this appendix, as a complementary to Theorems 1–2, we provide additional theorems, Theorems
3–4, which further illustrate the two advantages of the discretization process by considering an
abstract model with the discretization bottleneck. For the advantage on the sensitivity, the error
due to potential noise and perturbation without discretization — the third term ξ(w, r′,M′, d) > 0
in Theorem 4 — is shown to be minimized to zero with discretization in Theorems 3. For the
second advantage, the underlying dimensionality of N(M′,d′)(r

′,H) + ln(N(M,d)(r,Θ)/δ) without
discretization (in the bound of Theorem 4) is proven to be reduced to the typically much smaller
underlying dimensionality of LG + ln(N(M,d)(r, E ×Θ) with discretization in Theorems 3. Here,
for any metric space (M, d) and subset M ⊆ M, the r-converging number of M is defined by
N(M,d)(r,M) = min

{
|C| : C ⊆ M,M ⊆ ∪c∈CB(M,d)[c, r]} where the (closed) ball of radius r at

centered at c is denoted by B(M,d)[c, r] = {x ∈M : d(x, c) ≤ r}. See Appendix C.1 for a simple
comparison between the bound of Theorem 3 and that of Theorem 4 when the metric spaces (M, d)
and (M′, d′) are chosen to be Euclidean spaces.

We now introduce the notation used in Theorems 3–4. Let qe(h) := q(h, L,G). The models are de-
fined by f̃(x) := f̃(x,w, θ) := (ϕw ◦hθ)(x) without the discretization and f(x) := f(x,w, e, θ) :=
(ϕw ◦ qe ◦ hθ)(x) with the discretization. Here, ϕw represents a deep neural network with weight
parameters w ∈ W ⊂ RD, qe is the discretization process with the codebook e ∈ E ⊂ RL×m, and
hθ represents a deep neural network with parameters θ ∈ Θ ⊂ Rζ . Thus, the tuple of all learnable
parameters are (w, e, θ). For the codebook space, E = E1 × E2 with E1 ⊂ RL and E2 ⊂ Rm.
Moreover, let J : (f(x), y) 7→ J(f(x), y) ∈ R be an arbitrary (fixed) function, hθ(x) ∈ H ⊂ Rm,
x ∈ X , and y ∈ Y = {y(1), y(2)} for some y(1) and y(2).

Theorem 3. (with discretization) Let CJ(w) be the smallest real number such that |J(ϕw(η), y)| ≤
CJ(w) for all (η, y) ∈ E2 × Y . Let ρ ∈ N+ and (M, d) be a matric space such that E ×Θ ⊆M.
Then, for any δ > 0, with probability at least 1− δ over an iid draw of n examples ((xi, yi))

n
i=1, the

following holds: for any (w, e, θ) ∈ W × E ×Θ,∣∣∣∣∣Ex,y[J(f(x,w, e, θ), y)]− 1

n

n∑
i=1

J(f(xi, w, e, θ), yi)

∣∣∣∣∣
≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ)

n
+

√
Ld(w)2/ρ

n
,

where r = Ld(w)1/ρ−1
√

1
n and Ld(w) ≥ 0 is the smallest real number such that for all

(e, θ) and (e′, θ′) in E × Θ, |ψw(e, θ) − ψw(e′, θ′)| ≤ Ld(w)d((e, θ), (e′, θ′)) with ψw(e, θ) =
Ex,y[J(f(x), y)]− 1

n

∑n
i=1 J(f(xi), yi)

Theorem 4. (without discretization) Let C̃J(w) be the smallest real number such that |J((ϕw ◦
hθ)(x), y)| ≤ C̃J(w) for all (θ, x, y) ∈ Θ × X × Y . Let ρ ∈ N+ and (M, d) be a matric
space such that Θ ⊆ M. Let (M′, d′) be a matric space such that H ⊆ M′. Fix r′ > 0 and
C̄r′,d′ ∈ argminC{|C| : C ⊆ M′,H ⊆ ∪c∈CB(M′,d′)[c, r

′]}. Assume that for any c ∈ C̄r′,d′ , we
have |(J(ϕw(h), y) − (J(ϕw(h′), y)| ≤ ξ(w, r′,M′, d) for any h, h′ ∈ B(M′,d′)[c, r

′] and y ∈ Y .
Then, for any δ > 0, with probability at least 1− δ over an iid draw of n examples ((xi, yi))

n
i=1, the

following holds: for any (w, θ) ∈ W ×Θ,∣∣∣∣∣Ex,y[J(f̃(x,w, θ), y)]− 1

n

n∑
i=1

J(f̃(xi, w, θ), yi)

∣∣∣∣∣
14

Figure 6: Performance on adding task (RIMs) with no discretization, Gumbel-Softmax discretiza-
tion, or VQ-VAE style discretization (ours). Test length=500 is in-distribution test result and test
length=1000 is out-of-distribution results.

≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ)

n
+

√
L̃d(w)2/ρ

n
+ ξ(w, r′,M′, d),

where r = L̃d(w)1/ρ−1
√

1
n and L̃d(w) ≥ 0 is the smallest real number such that for all θ and θ′ in

Θ, |ψ̃w(θ)− ψ̃w(θ′)| ≤ L̃d(w)d(θ, θ′) with ψ̃w(θ) = Ex,y[J(f̃(x), y)]− 1
n

∑n
i=1 J(f̃(xi), yi).

Note that we have CJ(w) ≤ C̃J(w) and Ld(w) ≈ L̃d(w) by their definition. For example, if we set
J to be a loss criterion, the bound in Theorem 4 becomes in the same order as and comparable to the
generalization bound via the algorithmic robustness approach proposed by the previous papers (Xu
and Mannor, 2012; Sokolic et al., 2017a,b), as we show in Appendix C.2.

B Additional Experiments

C Additional discussions on theoretical motivations

C.1 Simple comparison of Theorems 3 and 4 with Euclidean space

For the purpose of of the comparison, we will now consider the simple worst case with no additional
structure with the Euclidean space to instantiate N(M′,d′)(r

′,H), N(M,d)(r,Θ), and N(M,d)(r, E ×
Θ). It should be obvious that we can improve the bounds via considering metric spaces with additional
structures. For example, we can consider a lower dimensional manifold H in the ambient space
of Rm to reduce N(M′,d′)(r

′,H). Similar ideas can be applied for Θ and E × Θ. Furthermore,
the invariance as well as margin were used to reduce the bound on N(M′,d′)(r

′,X) in previous
works (Sokolic et al., 2017a,b) and similar ideas can be applied for N(M′,d′)(r

′,H), N(M,d)(r,Θ),
and N(M,d)(r, E × Θ). In this regard, the discretization can be viewed as a method to minimize
N(M′,d′)(r

′,H) to easily controllable LG while minimizing the sensitivity term ξ(w, r′,M′, d) to
zero at the same time in Theorems 3 and 4.

15

Suppose that for any y ∈ Y , the function h 7→ J(ϕw(h), y) is Lipschitz continuous as
|(J(ϕw(h), y) − (J(ϕw(h′), y)| ≤ ς(w)d(h, h′). Then, we can set ξ(w, r′,M′, d) = 2ς(w)r′

since d(h, h′) ≤ 2r′ for any h, h′ ∈ B(M′,d′)[c, r
′].

As an simple example, let us choose the metric space (M′, d′) to be the Euclidean space Rm
with the Euclidean metric and H ⊂ Rm such that ‖v‖2 ≤ RH for all v ∈ H. Then, we have
N(M′,d′)(r

′,H) ≤ (2RH
√
m/r′)m and we can set ξ(w, r′,M′, d) = 2ς(w)r′. Thus, by setting

r′ = RH/2, we can replace N(M′,d′)(r
′,H) by (4

√
m)m and set ξ(w, r′,M′, d) = ς(w)RH.

Similarly, let us choose the metric space (M, d) to be the Euclidean space with the Euclidean
metric and E ⊂ RLm and Θ ⊂ Rζ such that ‖v‖2 ≤ RE for all v ∈ E and ‖v‖2 ≤ RΘ for all
v ∈ Θ. This implies that ‖(vE , vθ)‖2 ≤

√
R2
E +R2

Θ. Thus, we haveN(M,d)(r,Θ) ≤ (2RΘ

√
ζ/r)ζ

and N(M,d)(r, E × Θ) ≤ (2
√
R2
E +R2

Θ

√
Lm+ ζ/r)Lm+ζ . Since r = L̃d(w)1/ρ−1

√
1
n and

r = Ld(w)1/ρ−1
√

1
n , we can replaceN(M,d)(r,Θ) by (2RΘL̃d(w)1−1/ρ

√
ζn)ζ andN(M,d)(r, E×

Θ) by (2Ld(w)1−1/ρ
√
R2
E +R2

Θ

√
(Lm+ ζ)n)Lm+ζ . By summarizing these and ignoring the

logarithmic dependency as in the standard Õ notation, we have the following bounds for Theorems 3
and 4:

(with discretization) CJ(w)

√
4LG + 2Lm+ 2ζ + 2 ln(1/δ)

n
+

√
Ld(w)2/ρ

n
,

and

(without discretization) C̃J(w)

√
4(4
√
m)m + 2ζ + 2 ln(1/δ)

n
+

√
L̃d(w)2/ρ

n
+ ς(w)RH,

where we used the fact that ln(x/y) = ln(x) + ln(1/y). Here, we can more easily see that the
discretization process has the benefits in the two aspects:

1. The discretization process improves sensitivity against noise and perturbations: i.e., it
reduces the sensitivity term ς(w)RH to be zero.

2. The discretization process reduces underlying dimensionality: i.e., it reduce the term
of 4(4

√
m)m to the term of 4LG + 2Lm. In practice, we typically have 4(4

√
m)m �

4LG+2Lm. This shows that using the discretization process withe codebook of size L×m,
we can successfully reduce the exponential dependency on m to the linear dependency on
m. This is a significant improvement.

C.2 On the comparison of Theorem 4 and algorithmic robustness

If we assume that the function x 7→ `(f̃(x), y) is Lipschitz for all y ∈ Y with Lipschitz constant
ςx(w) similarly to our assumption in Theorem 4, the bound via the algorithmic robustness in the
previous paper (Xu and Mannor, 2012) becomes the following: for any δ > 0, with probability at
least 1− δ over an iid draw of n examples ((xi, yi))

n
i=1, for any (w, θ) ∈ W ×Θ,∣∣∣∣∣Ex,y[`(f̃(x,w, θ), y)]− 1

n

n∑
i=1

[`(f̃(xi, w, θ), yi)]

∣∣∣∣∣ (4)

≤ ĈJ

√
4N(M′,d′)(r′,X) ln 2 + 2 ln 1

δ

n
+ 2ςx(w)r′,

where ĈJ ≥ C̃J(w) for all w ∈ W and (M′, d′) is a metric space such that X ⊆M′. See Appendix
C.3. for more details on the algorithmic robustness bounds.

Thus, we can see that the dominant termN(M′,d′)(r
′,H) in Theorem 4 is comparable to the dominant

term N(M′,d′)(r
′,X) in the previous study. Whereas the previous bound measures the robustness in

the input space X , the bound in Theorem 4 measures the robustness in the bottleneck layer space
H. When compared to the input space X , if the bottleneck layer space H is smaller or has more
structures, then we can haveN(M′,d′)(r

′,H) < N(M′,d′)(r
′,X) and Theorem 4 can be advantageous

over the previous bound. However, Theorem 4 is not our main result as we have much tighter bounds
for the discretization process in Theorem 3 as well as Theorem 1.

16

C.3 On algorithmic robustness

In the previous paper, algorithmic robustness is defined to be the measure of how much the loss value
can vary with respect to the perturbations of values data points (x, y) ∈ X × Y . More precisely,
an algorithm A is said to be (|Ω|, %(·))-robust if X × Y can be partitioned into |Ω| disjoint sets
Ω1, . . . ,Ω|Ω| such that for any dataset S ∈ (X × Y)m, all (x, y) ∈ S, all (x′, y′) ∈ X × Y , and all
i ∈ {1, . . . , |Ω|}, if (x, y), (x′, y′) ∈ Ωi, then

|`(f̃(x), y)− `(f̃(x′), y′)| ≤ %(S).

If algorithmA is (Ω, %(·))-robust and the codomain of ` is upper-bounded by M , then given a dataset
S, we have (Xu and Mannor, 2012) that for any δ > 0, with probability at least 1− δ,∣∣∣∣∣Ex,y[`(f̃(x), y)]− 1

n

n∑
i=1

[`(f̃(xi), yi)]

∣∣∣∣∣ ≤M
√

2|Ω| ln 2 + 2 ln 1
δ

n
+ %(S).

The previous paper (Xu and Mannor, 2012) further shows concrete examples of this bound for a case
where the function (x, y) 7→ `(f̃(x), y) is Lipschitz with Lipschitz constant ςx,y(w),∣∣∣∣∣Ex,y[`(f̃(x), y)]− 1

n

n∑
i=1

[`(f̃(xi), yi)]

∣∣∣∣∣ ≤M
√

2N(M′,d′)(r′,X × Y) ln 2 + 2 ln 1
δ

n
+ 2ςx,y(w)r′,

where (M′, d′) is a metric space such that X × Y ⊆ M′. Note that the Lipschitz assumption on
t he function (x, y) 7→ `(f̃(x), y) does not typically hold for the 0-1 loss on classification. For
classification, we can assume that the function x 7→ `(f̃(x), y) is Lipschitz instead, yielding equation
(4).

D Proofs

We use the notation of qe(h) := q(h, L,G) in the proofs.

D.1 Proof of Theorem 1

Proof of Theorem 1. Let Ik = {i ∈ [n] : qe(hi) = Qk}. By using the following equality,

Eh[φSk (qe(h))] = Eh[φSk (qe(h))|qe(h) = Qk] Pr(qe(h) = Qk) = φ(Qk) Pr(qe(h) = Qk),

we first decompose the difference into two terms as

Eh[φSk (qe(h))]− 1

n

n∑
i=1

φSk (qe(hi)) (5)

= φ(Qk)

(
Pr(qe(h) = Qk)− |Ik|

n

)
+

(
φ(Qk)

|I
k
|

n
− 1

n

n∑
i=1

φSk (qe(hi))

)
.

The second term in the right-hand side of (5) is further simplified by using

1

n

n∑
i=1

φSk (qe(hi)) =
1

n

∑
i∈Ik

φ(qe(hi)),

and

φ(Qk)
|I

k
|

n
=

1

n

∑
i∈Ik

φ(qe(hi)),

as

φ(Qk)
|I

k
|

n
− 1

n

n∑
i=1

φSk (qe(hi)) = 0.

17

Substituting these into equation (5) yields∣∣∣∣∣Eh[φSk (qe(h))]− 1

n

n∑
i=1

φSk (qe(hi))

∣∣∣∣∣ =

∣∣∣∣φ(Qk)

(
Pr(qe(h) = Qk)− |Ik|

n

)∣∣∣∣
≤ |φ(Qk)|

∣∣∣∣Pr(qe(h) = Qk)− |Ik|
n

∣∣∣∣ . (6)

Let pk = Pr(qe(h) = Qk) and p̂ = |Ik|
n . Consider the random variable Xi = 1{qe(hi) = Qk} with

the pushforward measure of the random variable hi under the map hi 7→ 1{qe(hi) = Qk}. Here, we
have that Xi ∈ {0, 1} ⊂ [0, 1]. Since e is fixed and h1, . . . , hn are assumed to be iid, the Hoeffding’s
inequality implies the following: for each fixed k ∈ [LG],

Pr(|pk − p̂k| ≥ t) ≤ 2 exp
(
−2nt2

)
.

By solving δ′ = 2 exp
(
−2nt2

)
, this implies that for each fixed k ∈ [LG], for any δ′ > 0, with

probability at least 1− δ′,

|pk − p̂k| ≤
√

ln(2/δ′)

2n
.

By taking union bounds over k ∈ [LG] with δ′ = δ
LG , we have that for any δ > 0, with probability at

least 1− δ, the following holds for all k ∈ [LG]:

|pk − p̂k| ≤
√

ln(2LG/δ)

2n
.

Substituting this into equation (6) yields that for any δ > 0, with probability at least 1 − δ, the
following holds for all k ∈ [LG]:∣∣∣∣∣Eh[φSk (qe(h))]− 1

n

n∑
i=1

φSk (qe(hi))

∣∣∣∣∣ ≤ |φ(Qk)|
√

ln(2LG/δ)

2n
= |φ(Qk)|

√
G ln(L) + ln(2/δ)

2n
.

D.2 Proof of Theorem 2

Proof of Theorem 2. Let (M′, d′) be a matric space such that H ⊆ M′. Fix r′ > 0 and C̄ ∈
argminC{|C| : C ⊆ M′,H ⊆ ∪c∈CB(M′,d′)[c, r

′]} such that |C̄| < ∞. Fix an arbitrary ordering
and define ck ∈ C̄r′,d′ to be the k-the element in the ordered version of C̄ in that fixed ordering
(i.e., ∪k{ck} = C̄r′,d′). Let B[c] = B(M′,d′)[c, r

′] and S = {B[c1],B[c2], . . . ,B[c|C̄|]}. Suppose
that

∣∣φSk (h)− φSk (h′)
∣∣ ≤ ξk(r′,M′, d) for any h, h′ ∈ B[ck] and k ∈ [|C̄|], which is shown to be

satisfied later in this proof. Let Ik = {i ∈ [n] : hi ∈ B[ck]} for all k ∈ [|C̄|]. By using the following
equality,

Eh[φSk (h)] = Eh[φSk (h)|h ∈ B[ck]] Pr(h ∈ B[ck]),

we first decompose the difference into two terms as∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣ (7)

≤
∣∣∣∣Eh[φSk (h)|h ∈ B[ck]]

(
Pr(h ∈ B[ck])− |Ik|

n

)∣∣∣∣+

∣∣∣∣∣Eh[φSk (h)|h ∈ B[ck]]
|Ik|
n
− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
The second term in the right-hand side of (7) is further simplified by using

1

n

n∑
i=1

φSk (hi) =
1

n

∑
i∈Ik

φSk (hi),

and

Eh[φSk (h)|h ∈ B[ck]]
|Ik|
n

=
1

n

∑
i∈Ik

Eh[φSk (h)|h ∈ B[ck]],

18

as ∣∣∣∣∣Eh[φSk (h)|h ∈ B[ck]]
|Ik|
n
− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
=

∣∣∣∣∣ 1n ∑
i∈Ik

(
Eh[φSk (h)|h ∈ B[ck]]− φSk (hi)

)∣∣∣∣∣
≤ 1

n

∑
i∈Ik

sup
h∈B[ck]

∣∣φSk (h)− φSk (hi)
∣∣ ≤ |Ik|

n
ξk(r′,M′, d).

Substituting these into equation (7) yields∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
≤
∣∣∣∣Eh[φSk (h)|h ∈ B[ck]]

(
Pr(h ∈ B[ck])− |Ik|

n

)∣∣∣∣+
|Ik|
n
ξk(r′,M′, d)

≤ |Eh[φ(h)|h ∈ B[ck]]|
∣∣∣∣(Pr(h ∈ B[ck])− |Ik|

n

)∣∣∣∣+
|Ik|
n
ξk(r′,M′, d), (8)

Let pk = Pr(h ∈ B[ck]) and p̂ = |Ik|
n . Consider the random variable Xi = 1{h ∈ B[ck]} with the

pushforward measure of the random variable hi under the map hi 7→ 1{h ∈ B[ck]}. Here, we have
that Xi ∈ {0, 1} ⊂ [0, 1]. Since B[ck] is fixed and h1, . . . , hn are assumed to be iid, the Hoeffding’s
inequality implies the following: for each fixed k ∈ [|C̄|],

Pr(|pk − p̂k| ≥ t) ≤ 2 exp
(
−2nt2

)
.

By solving δ′ = 2 exp
(
−2nt2

)
, this implies that for each fixed k ∈ [|C̄|], for any δ′ > 0, with

probability at least 1− δ′,

|pk − p̂k| ≤
√

ln(2/δ′)

2n
.

By taking union bounds over k ∈ [|C̄|] with δ′ = δ
|C̄| , we have that for any δ > 0, with probability at

least 1− δ, the following holds for all k ∈ [|C̄|]:

|pk − p̂k| ≤
√

ln(2|C̄|/δ)
2n

=

√
ln(|C̄|) + ln(2/δ)

2n
.

Substituting this into equation (8) yields that for any δ > 0, with probability at least 1 − δ, the
following holds for all k ∈ [|C̄|]:∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
≤ |Eh [φ(h)|h ∈ B[ck]]|

√
ln(N(M′,d′)(r′,H)) + ln(2/δ)

2n

+ ξk(r′,M′, d)

(
1

n

n∑
i=1

1{hi ∈ B[ck]}

)
,

where we used |Ik| =
∑n
i=1 1{hi ∈ B[ck]}. Let us now choose the metric space (M′, d′) to be the

Euclidean space Rm with the Euclidean metric and H ⊂ Rm such that ‖v‖2 ≤ RH for all v ∈ H.
Then, we have N(M′,d′)(r

′,H) ≤ (2RH
√
m/r′)m and we can set ξ(w, r′,M′, d) = 2ςkr

′. This is
because that the function h 7→ φSk (h) is Lipschitz continuous as |φSk (h)− φSk (h′)| ≤ ςkd(h, h′), and
because d(h, h′) ≤ 2r′ for any h, h′ ∈ B(M′,d′)[ck, r

′]. Thus, by setting r′ = RH/(2
√
n), we can

replace N(M′,d′)(r
′,H) by (4

√
nm)m and set ξ(w, r′,M′, d) = ςkRH/

√
n.

This yields∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
19

≤ |Eh [φ(h)|h ∈ B[ck]]|
√
m ln(4

√
nm) + ln(2/δ)

2n
+
ςkRH√
n

(
1

n

n∑
i=1

1{hi ∈ B[ck]}

)
.

D.3 Proof of Theorem 3

In the proof of Theorem 3, we write f(x) := f(x,w, e, θ) when the dependency on (w, e, θ) is clear
from the context.
Lemma 1. Fix θ ∈ Θ and e ∈ E. Then for any δ > 0, with probability at least 1 − δ over an iid
draw of n examples ((xi, yi))

n
i=1, the following holds for any w ∈ W:∣∣∣∣∣Ex,y[J(f(x,w, e, θ), y)]− 1

n

n∑
i=1

J(f(x,w, e, θ), yi)

∣∣∣∣∣ ≤ CJ(w)

√
4LG ln 2 + 2 ln(1/δ)

n
.

Proof of Lemma 1. Let Ik,y = {i ∈ [n] : (qe ◦ hθ)(xi) = Qk, yi = y}. Using Ex,y[J(f(x), y)] =∑LG

k=1

∑
y′∈Y Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′] Pr((qe ◦ hθ)(x) = Qk ∧ y = y′), we

first decompose the difference into two terms as

Ex,y[J(f(x), y)]− 1

n

n∑
i=1

J(f(xi), yi) (9)

=
LG∑
k=1

∑
y′∈Y

Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′]

(
Pr((qe ◦ hθ)(x) = Qk ∧ y = y′)− |Ik,y

′ |
n

)

+

LG∑
k=1

∑
y′∈Y

Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′]
|Ik,y′ |
n
− 1

n

n∑
i=1

J(f(xi), yi)

 .

The second term in the right-hand side of (9) is further simplified by using

1

n

n∑
i=1

J(f(x), y) =
1

n

LG∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

J(f(xi), yi),

and

Ex,y[J(f(x), y)|(qe ◦ hθ)(x)

= Qk, y = y′]
|Ik,y′ |
n

=
1

n

∑
i∈Ik,y′

Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′],

as

LG∑
k=1

∑
y′∈Y

Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′]
|Ik,y′ |
n
− 1

n

n∑
i=1

J(f(xi), yi)

=
1

n

LG∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

(Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′]− J(f(xi), yi))

=
1

n

LG∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

(J(ϕw(Qk), y′)− (J(ϕw(Qk), y′)) = 0

Substituting these into equation (9) yields

Ex,y[J(f(x), y)]− 1

n

n∑
i=1

J(f(xi), yi)

20

=

LG∑
k=1

∑
y′∈Y

J(ϕw(Qk), y′)

(
Pr((qe ◦ hθ)(x) = Qk ∧ y = y′)− |Ik,y

′ |
n

)

=

2LG∑
k=1

J(vk)

(
Pr(((qe ◦ hθ)(x), y) = vk)− |Ik|

n

)
,

where the last line uses the fact that Y = {y(1), y(2)} for some (y(1), y(2)), along with the additional
notation Ik = {i ∈ [n] : ((qe ◦ hθ)(xi), yi) = vk}. Here, vk is defined as vk = (ϕw(Qk), y(1)) for
all k ∈ [LG] and vk = (ϕw(ek−LG), y(2)) for all k ∈ {LG + 1, . . . , 2LG}.
By using the bound of |J(ϕw(η), y)| ≤ CJ(w),∣∣∣∣∣Ex,y[J(f(x), y)]− 1

n

n∑
i=1

J(f(xi), yi)

∣∣∣∣∣
=

∣∣∣∣∣∣
2LG∑
k=1

J(vk)

(
Pr(((qe ◦ hθ)(x), y) = vk)− |Ik|

n

)∣∣∣∣∣∣
≤ CJ(w)

2LG∑
k=1

∣∣∣∣Pr(((qe ◦ hθ)(x), y) = vk)− |Ik|
n

∣∣∣∣ .
Since |Ik| =

∑n
i=1 1{((qe ◦ hθ)(xi), yi) = vk} and (θ, e) is fixed, the vector (|I1|, . . . , |I2LG |)

follows a multinomial distribution with parameters n and p = (p1, ..., p2LG), where pk = Pr(((qe ◦
hθ)(x), y) = vk) for k = 1, . . . , 2LG. Thus, by using the Bretagnolle-Huber-Carol inequality (van
der Vaart and Wellner, 1996, A6.6 Proposition), we have that with probability at least 1− δ,∣∣∣∣∣Ex,y[J(f(x), y)]− 1

n

n∑
i=1

J(f(xi), yi)

∣∣∣∣∣ ≤ CJ(w)

√
4LG ln 2 + 2 ln(1/δ)

n
.

Proof of Theorem 3. Let Ĉr,d ∈ argminC
{
|C| : C ⊆ M, E ×Θ ⊆ ∪c∈CB(M,d)[c, r]}. Note that if

N(M,d)(r, E ×Θ) =∞, the bound in the statement of the theorem vacuously holds. Thus, we focus
on the case of N(M,d)(r, E × Θ) = |Ĉr,d| < ∞. For any (w, e, θ) ∈ W × E × Θ, the following
holds: for any (ê, θ̂) ∈ Ĉr,d,

|ψw(e, θ)| =
∣∣∣ψw(ê, θ̂) + ψw(e, θ)− ψw(ê, θ̂)

∣∣∣
≤
∣∣∣ψw(ê, θ̂)

∣∣∣+
∣∣∣ψw(e, θ)− ψw(ê, θ̂)

∣∣∣ . (10)

For the first term in the right-hand side of (10), by using Lemma 1 with δ = δ′/N(M,d)(r, E ×Θ)
and taking union bounds, we have that for any δ′ > 0, with probability at least 1− δ′, the following
holds for all (ê, θ̂) ∈ Ĉr,d,∣∣∣ψw(ê, θ̂)

∣∣∣ ≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ′)

n
. (11)

By combining equations (10) and (11), we have that for any δ′ > 0, with probability at least 1− δ′,
the following holds for any (w, e, θ) ∈ W × E ×Θ and any (ê, θ̂) ∈ Ĉr,d:

|ψw(e, θ)| ≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ′)

n
+
∣∣∣ψw(e, θ)− ψw(ê, θ̂)

∣∣∣ .
This implies that for any δ′ > 0, with probability at least 1 − δ′, the following holds for any
(w, e, θ) ∈ W × E ×Θ:

|ψw(e, θ)| ≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ′)

n
+ min

(ê,θ̂)∈Ĉr,d

∣∣∣ψw(e, θ)− ψw(ê, θ̂)
∣∣∣ .

(12)

21

For the second term in the right-hand side of (12), we have that for any (w, e, θ) ∈ W × E ×Θ,

min
(ê,θ̂)∈Ĉr,d

∣∣∣ψw(e, θ)− ψw(ê, θ̂)
∣∣∣ ≤ Ld(w) min

(ê,θ̂)∈Ĉr,d
d((e, θ), (ê, θ̂)) ≤ Ld(w)r.

Thus, by using r = Ld(w)1/ρ−1
√

1
n , we have that for any δ′ > 0, with probability at least 1 − δ′,

the following holds for any (w, e, θ) ∈ W × E ×Θ:

|ψw(e, θ)| ≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ′)

n
+

√
Ld(w)2/ρ

n
. (13)

Since this statement holds for any δ′ > 0, this implies the statement of this theorem.

D.4 Proof of Theorem 4

In the proof of Theorem 3, we write f̃(x) := f̃(x,w, θ) when the dependency on (w, θ) is clear from
the context.
Lemma 2. Fix θ ∈ Θ. Let (M′, d′) be a matric space such that H ⊆ M′. Fix r′ > 0 and
C̄r′,d′ ∈ argminC{|C| : C ⊆ M′,H ⊆ ∪c∈CB(M′,d′)[c, r

′]}. Assume that for any c ∈ C̄r′,d′ , we
have |(J(ϕw(h), y) − (J(ϕw(h′), y)| ≤ ξ(w, r′,M′, d) for any h, h′ ∈ B(M′,d′)[c, r

′] and y ∈ Y .
Then for any δ > 0, with probability at least 1− δ over an iid draw of n examples ((xi, yi))

n
i=1, the

following holds for any w ∈ W:∣∣∣∣∣Ex,y[J(f̃(x,w, θ), y)]− 1

n

n∑
i=1

J(f̃(x,w, θ), yi)

∣∣∣∣∣
≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(1/δ)

n
+ ξ(w, r′,M′, d).

Proof of Lemma 2. Note that if N(M′,d′)(r
′,H) = ∞, the bound in the statement of the theorem

vacuously holds. Thus, we focus on the case of N(M′,d′)(r
′,H) = |C̄r′,d′ | < ∞. Fix an arbitrary

ordering and define ck ∈ C̄r′,d′ to be the k-the element in the ordered version of C̄r′,d′ in that fixed
ordering (i.e., ∪k{ck} = C̄r′,d′).

Let Ik,y = {i ∈ [n] : hθ(xi) ∈ B(M′,d′)[ck, r
′], yi = y} for all k × y ∈ [|C̄r′,d′ |] × Y . Using

Ex,y[J(f̃(x), y)] =
∑|C̄r′,d′ |
k=1

∑
y′∈Y Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r

′], y = y′] Pr(hθ(x) ∈
B(M′,d′)[ck, r

′] ∧ y = y′), we first decompose the difference into two terms as∣∣∣∣∣Ex,y[J(f̃(x), y)]− 1

n

n∑
i=1

J(f̃(xi), yi)

∣∣∣∣∣ (14)

=

∣∣∣∣∣∣
|C̄r′,d′ |∑
k=1

∑
y′∈Y

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′]

(
Pr(hθ(x) ∈ B(M′,d′)[ck, r

′] ∧ y = y′)− |Ik,y
′ |

n

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
|C̄r′,d′ |∑
k=1

∑
y′∈Y

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′]

|Ik,y′ |
n
− 1

n

n∑
i=1

J(f̃(xi), yi).

∣∣∣∣∣∣
The second term in the right-hand side of (14) is further simplified by using

1

n

n∑
i=1

J(f̃(x), y) =
1

n

|C̄r′,d′ |∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

J(f̃(xi), yi),

and

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′]

|Ik,y′ |
n

=
1

n

∑
i∈Ik,y′

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′],

22

as ∣∣∣∣∣∣
|C̄r′,d′ |∑
k=1

∑
y′∈Y

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′]

|Ik,y′ |
n
− 1

n

n∑
i=1

J(f̃(xi), yi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
|C̄r′,d′ |∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

(
Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r

′], y = y′]− J(f̃(xi), yi)
)∣∣∣∣∣∣

≤ 1

n

|C̄r′,d′ |∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

sup
h∈B(M′,d′)[ck,r

′]

|J(ϕw(h, y′)− J(ϕw(hθ(xi)), y
′)| ≤ ξ(w).

Substituting these into equation (14) yields∣∣∣∣∣Ex,y[J(f̃(x), y)]− 1

n

n∑
i=1

J(f̃(xi), yi)

∣∣∣∣∣
≤
∣∣∣∣∣∣
|C̄r′,d′ |∑
k=1

∑
y′∈Y

Ex,y[J(f̃(x), y′)|hθ(x) ∈ B(M′,d′)[ck, r
′]]

(
Pr(hθ(x) ∈ B(M′,d′)[ck, r

′] ∧ y = y′)− |Ik,y
′ |

n

)∣∣∣∣∣∣+ ξ(w)

≤ C̃J(w)

2|C̄r′,d′ |∑
k=1

∣∣∣∣(Pr((hθ(x), y) ∈ vk)− |Ik|
n

)∣∣∣∣+ ξ(w),

where the last line uses the fact that Y = {y(1), y(2)} for some (y(1), y(2)), along with the additional
notation Ik = {i ∈ [n] : (hθ(xi), yi) ∈ vk}. Here, vk is defined as vk = B(M′,d′)[ck, r

′]×{y(1)} for
all k ∈ [|C̄r′,d′ |] and vk = B(M′,d′)[ck−|C̄r′,d′ |, r

′]× {y(2)} for all k ∈ {|C̄r′,d′ |+ 1, . . . , 2|C̄r′,d′ |}.

Since |Ik| =
∑n
i=1 1{(hθ(x), y) ∈ vk} and θ is fixed, the vector (|I1|, . . . , |I2|C̄r′,d′ ||) follows a

multinomial distribution with parameters n and p = (p1, ..., p2|C̄r′,d′ |), where pk = Pr((hθ(x), y) ∈
vk) for k = 1, . . . , 2|C̄r′,d′ |. Thus, by noticing |C̄r′,d′ | = N(M′,d′)(r

′,H) and by using the
Bretagnolle-Huber-Carol inequality (van der Vaart and Wellner, 1996, A6.6 Proposition), we have
that with probability at least 1− δ,∣∣∣∣∣Ex,y[J(f̃(x), y)]− 1

n

n∑
i=1

J(f̃(xi), yi)

∣∣∣∣∣
≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(1/δ)

n
+ ξ(w).

Proof of Theorem 4. Let Ĉr,d ∈ argminC
{
|C| : C ⊆ M,Θ ⊆ ∪c∈CB(M,d)[c, r]}. Note that if

N(M,d)(r,Θ) = ∞, the bound in the statement of the theorem vacuously holds. Thus, we fo-
cus on the case of N(M,d)(r,Θ) = |Ĉr,d| <∞. For any (w, θ) ∈ W ×Θ, the following holds: for
any θ̂ ∈ Ĉr,d, ∣∣∣ψ̃w(θ)

∣∣∣ =
∣∣∣ψ̃w(θ̂) + ψ̃w(θ)− ψ̃w(θ̂)

∣∣∣
≤
∣∣∣ψ̃w(θ̂)

∣∣∣+
∣∣∣ψ̃w(θ)− ψ̃w(θ̂)

∣∣∣ . (15)

For the first term in the right-hand side of (15), by using Lemma 2 with δ = δ′/N(M′,d′)(r
′,Θ) and

taking union bounds, we have that for any δ′ > 0, with probability at least 1− δ′, the following holds
for all θ̂ ∈ Ĉr,d,∣∣∣ψ̃w(θ̂)

∣∣∣ ≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ′)

n
+ ξ(w, r′,M′, d). (16)

23

By combining equations (15) and (16), we have that for any δ′ > 0, with probability at least 1− δ′,
the following holds for any (w, θ) ∈ W ×Θ and any θ̂ ∈ Ĉr,d:∣∣∣ψ̃w(θ)

∣∣∣
≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ′)

n
+
∣∣∣ψ̃w(θ)− ψ̃w(θ̂)

∣∣∣+ ξ(w, r′,M′, d).

This implies that for any δ′ > 0, with probability at least 1 − δ′, the following holds for any
(w, θ) ∈ W ×Θ:∣∣∣ψ̃w(θ)

∣∣∣ ≤ CJ(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ′)

n
(17)

+ min
θ̂∈Ĉr,d

∣∣∣ψ̃w(θ)− ψ̃w(θ̂)
∣∣∣+ ξ(w, r′,M′, d).

For the second term in the right-hand side of (17), we have that for any (w, θ) ∈ W ×Θ,

min
θ̂∈Ĉr,d

∣∣∣ψ̃w(θ)− ψ̃w(θ̂)
∣∣∣ ≤ L̃d(w) min

θ̂∈Ĉr,d
d(θ, θ̂) ≤ Ld(w)r.

Thus, by using r = L̃d(w)1/ρ−1
√

1
n , we have that for any δ′ > 0, with probability at least 1 − δ′,

the following holds for any (w, θ) ∈ W ×Θ:∣∣∣ψ̃w(θ)
∣∣∣ ≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ′)

n
(18)

+

√
L̃d(w)2/ρ

n
+ ξ(w, r′,M′, d).

Since this statement holds for any δ′ > 0, this implies the statement of this theorem.

E Method Details

Algorithm 1: Discretization of inter-module communication in RIM
N is sample size,T is total time step, M is number of modules in the RIM model
initialization;
for i in 1..M do

initialize z0
i ;

end
Training;
for n in 1..N do

for t in 1..T do
INPUTATTENTION = SOFTATTENTION(zt1, z

t
2, ..., z

t
M , x

t);
if i in top K of INPUTATTENTION then

ẑt+1
i = RNN(zti , x

t);
else

ẑt+1
i′ = zti′ ;

end
for i in 1..M do

Discretization; ht+1
i = SOFTATTENTION(ẑt+1

1 , ẑt+1
2 ,ẑt+1

M)

zt+1
i = ẑt+1

i + q(ht+1
i , L,G);

end
end
Calculate task loss, codebook loss and commitment loss according to equation 1
Update model parameter Θ together with discrete latent vectors in codebook e ∈ RLXD;

end

24

E.1 Task Details

2D shape environment is a 5X5 grid world with different objects of different shapes and colors placed
at random positions.Each location can only be occupied by one object.The underlying environment
dynamics of 3D shapes are the same as in the 2D dateset, and only the rendering component was
changed (Kipf et al., 2019). In OOD setting, the total number of objects are changed for each
environment. We used number of objects of 4 (validation), 3 (OOD-1) and 2 (OOD-2). We did not
put in more than 5 objects because the environment will be too packed and the objects can hardly
move.

The 3-body physics simulation environment is an interacting system that evolves according to
physical laws.There are no actions applied onto any objects and movement of objects only depend
on interaction among objects. This environment is adapted from Kipf et al. (2019). In the training
environment, the radius of each ball is 3.In OOD settings, we changed the radius to 4 (validation)
and 2 (OOD test).

In all the 8 Atari games belong to the same collections of 2600 games from Atari Corporation.We
used the games adapted to OpenAI gym environment. There are several versions of the same game
available in OpenAI gym. We used version "Deterministic-v0" starting at warm start frame 50
for each game for training. Version "Frameskip-v0" starting at frame 250 as OOD validation and
"Frameskip-v4" starting at frame 150 at OOD test.

In all the GNN compositional reasoning experiments. HITS at RANK K (K=1 in this study) was used
as as the metrics for performance.This binary score is 1 for a particular example if the predicted state
representation is in the k-nearest neighbor set around the true observation. Otherwise this score is 0.
MEAN RECIPROCAL RANK (MRR) is also used as a performance metrics, which is defined as
MRR = 1

N

∑N
n=1

1
Rankn

where rankn is the rank of the n-th sample (Kipf et al. (2019)).

In adding task, gap length of 500 was used for training and gap length of 200 (OOD validation)
and 1000 (OOD testing) are used for OOD settings. In sequential MNIST experiment , model was
trained at 14X14 resolution and tested in different resolutions (Goyal et al. (2019)). Sort-of-Clevr
experiments are conducted in the same way as Goyal et al. (2021b)

E.2 Model Architecture, Hyperparameters and Training Details

DVNC implementation details In DVNC, codebook e ∈ RL×m was initialized by applying K-
means clustering on training data points (s) where the number of clusters is L. The nearest ej ,by
Euclidean distance ,is assigned to each si. The commitment loss β

∑G
i ||si − sg(eoi)||22 , which

encourages si stay close to the chosen codebook vector, and the task loss are back-propagated to each
of the model components that send information in the inter-component communication process.The
gradient of task loss are back-propagated to each of the components that send information using
straight-through gradient estimator. The codebook loss

∑G
i || sg(si) − eoi ||2 that encourages the

selected codebook vector to stay close to si is back-propagated to the selected codebook vector.
Task loss is not backpropagated to codebook vectors. Only the task loss is back-propagated to the
model component that receives the information. It is worth pointing out that in this study, we train
the codebook vectors directly using gradient descent instead of using exponential moving average
updates as in Oord et al. (2017).

Model architecture, hyperparameters and training settings of GNN used in this study are same
as in Kipf et al. (2019), where encoder dimension is 4 and number of object slot is 3..Model
architecture, hyperparameters and training settings of RIMs used in this study are identify to Goyal
et al. (2019),where 6 RIM units and k=4 are used. Model architecture, hyperparameters and training
settings of transformer models are the same as in Goyal et al. (2021b), except that we did not
include shared workspace. Hyperparameters of GNN and RIM models are summarized in table 4.
Hyperparameters of transformers with various settings can be found in Goyal et al. (2021b). In all the
models mentioned above,we include discretization of communication in DVNC and keep other parts
of the model unchanged.

Data are split into training set, validation set and test set, the ratio varies among different tasks
depending on data availability.For in-distribution performance, validation set has the same distribution
as training set. In OOD task, one of the OOD setting,eg. certain number of blocks in 2D shape

25

(a) 2D Shapes (b) Three-body

(c) Atari Games

(d) Sort-of-Clevr

Figure 7: Examples of different task environments. Atari game screen shots are obtained from
OpenAI gym platform. Sort-of-Clevr example was adapted from Goyal et al. (2021b) with permission

26

Table 4: Hyperparameters used for GNN and RIMs
GNN model RIMs model

Hyperparameters Values Hyperparameters Values
Batch size 1024 Batch size 64
hidden dim 512 hidden dim 300
embedding-dim 512/G embedding-dim 300/G
codebook_loss_weight 1 codebook_loss_weight 0.25
Max. number of epochs 200 Max. number of epochs 100
Number of slots(objects) 5 learning-rate 0.001
learning-rate 5.00E-04 Optimizer Adam
Optimizer Adam Number of Units (RIMs) 6

Number of active RIMs 4
RIM unit type LSTM
dropout 0.5
gradient clipping 1

experiment, is used as validation set. The OOD setting used for validation was not included in test
set.

E.3 Computational resources

GPU nodes on university cluster are used. GNN training takes 3 hrs for each task with each
hyperparameter setting on Tesla GPU. Training of RIMs and transformers take about 12 hours
on the same GPU for each task. In total, the whole training progress of all models, all tasks, all
hyperparameter settings takes approximately 800 hours on GPU nodes.

27

