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1 Proof of Lemma 4.1

Proof. If we perturb the network with the addition of e, we obtain the new Laplacian L + bebz.
By Sherman-Morrison formula [[1], we obtain
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By the definitions of P-D index, Z(G +¢) = s (I + L+ b.b.)~'s. We can immediately obtain
ST 2
fle) =Z(G) —Z(G +e) = % Since the term (s 2b.)? = (z, — 2z,)? is nonnegative,

together with the fact that 0 < b;,rﬂbe < 2, we can conclude f(e) > 0 consequently. [J

2 Proof of Remark 1

Proof. When the opinions s are mean-centered, corresponding variation of the objective could be
expressed as

=T To= s'1 ¢ ’
fle) =s Qbbb Qs =((s— Tl) Qb,

s'1 2
= <sTQbe — ITQbe) =5 ' Qb.b] Qs,
n

where the last equality is obtained by the fact that 1T Q2b, = 1T b, = 0.

Thus, under the perturbation of the network with a single edge e, it holds that whether the opinions
s are mean-centered or not, the variation of our objective i.e. f(e) are the same. The above results
complete the proof. [

3 Proof of Lemma 5.1

Proof. Note, for two matrices A and B, we write A < B to denote that B — A is positive
semidefinite. We use (I + L):;1 to denote the forest matrix associated with graph G + 7.

Let FE¢ be the candidate set, and let 7', W be any two subsets of E. To begin with, we first derive a
lower and an upper bound, respectively, for the marginal benefit function p7 (W) = f(WUT)— f(W).
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On the one hand,
pr(W) = fWUT) = fW)=Z(G+T)~L(G+WUT)=s"(I+Lr's—s (I+Lyors
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On the other hand,
n—1
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W _ T 1 Wy
priv)=s <1§=:1 T+ (L) L+ N(@wor) ™ ) °
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Putting the above two bounds together leads to
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which implies the lower bounds of .
Similarly, we derive the upper bound of the curvature «. Let j be any candidate edge in W\T'. Then,

pi(W\jUW) > sTb]-bst » 1+ M (L7)) 14+ M(Lruw)) > ( 1+ X(L)

pi(T\j) (1 + An-1(L7)) (1 + An—1(L1+e)) sTh;b] s

which combining with the definition of curvature completes the proof. [

4 Proof of Theorem 5.1

Proof. To show the non-submodularity of the function concerned, consider the graph in Figure|l]
which is a 5-node path-graph with e; and e, being inexistent edges. We set initial opinion vector as
s = (0.25,0.5,0.5,0.5,0.25) ", and define two edge sets, T' = () and W = {e,}. Then,

Z(T) = 0.8295,Z(T + e1) = 0.8295,
Z(W) =0.8227,Z(W + e1) = 0.8220,
so that
I(T)—Z(T+e)=0<0007T=Z(W) —Z(W + e1),

which violates the definition of submodularity. Thus, it follows that the set function of our problem is
non-submodular. [

Figure 1: A 5-nodes path-graph where e; and e; are inexistent edges.
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5 Proof of Lemma 6.3

Proof. According to the assumption:
€ N
(1- *)I\Xeu||2 <[ X'eu]” < (1+ )X eu”
holds for any node u € V and
I— I—
(1= 5Bl < X bl < (1+ )| Kb
holds for any pair of nodes © and v connecting an edge e in .

As G is connected, there exists a simple path P,, connecting v and v. By applying the triangle
inequality twice, we obtain

X bell = [ X bl < (X = XVbell < D (X — X')(ea — en)l.
(a,b)€EPuy
We will upper bound the last term by considering its square:

( > II(X—X')(ea—eb)ll)

(a,b)€ Puy
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noYy X=X ea—e)l*<n Y (X —X')(ea — &)l

(a,b)€Pyy (a,b)€E
=n|(X - X")B" |} = n| B(X — X')| .
Note that the first inequality is derived by Cauchy-Schwarz Inequality. Below we transform the
above-obtained Frobenius norm n| B(X — X')||% into the (I + L)-norm as

n|B(X — X')||% =nTr ((X ~X)TB"B(X - X’)) — nTr ((X X)X - X’))
gnTr((X—X) (I+L)(X ) nzp: NI+ L) (X - X)T
=1
<nb? S XUT + DX

i=1
Applying the fact that L < (n + 1)1 and QLQ < Q < I, we have

p P
n? S XU+ LX) <nd(n+1) > XUXD)T = nb2(n+ DI|IX' |

=1 =1
n n
<néi(n+1) ; ||Xez|\2<n52(n+1);(1+12) e] Qe;
<nd2(n+1)(1+ T;)n.
On the other hand,
€ — €
1X7be[* >(1 = IXbel|” = (1 - 5)b, QLL2b,
>(1 = {3 g o = 20— )

The last inequality is obtained for the following reason. Note that b, is orthogonal to all-one vector 1,

an eigenvector of I associated with the unique eigenvalue 0. Therefore, b, Lb. > Amin|| b ||? holds.
In addtion, L and (I + L)~ share identical eigenspaces.

Combining the above-obtained results, it follows that

ain(n+1)y/(1+¢€/12)(n + 1) < £
IX7b.| - 2(1— ¢/12) e
based on which we further obtain
X ’| X
€

X b2 = 1 X b
€ €
< @+ SX b < SIX b,

which completes the proof. [



6 Proof of Lemma 6.5

Proof. Since L is the Laplacian of a connected graph, we can find a path P,, connecting v and v.
By applying the triangle inequality, we obtain

q'bbeg=(q,-9q,)" <n Y (glea—ep))’

(a,b)€Pyy
<n Y lla(ea - e)| <ng'Lgq.
(a,b)EE
which implies that
lally.sr < Vnlgllz

by the triangle inequality

We first bound the value ‘HquebT — [|2slp 5T

<llg—sllppr < Vnllg—Qsllz

< V/nds||2s|| 111 = VnosVsT Qs
< d3y/nVsTs  since|s||® < n,

[lall.or = 19280s.57

S 53”)
based on which we proceed to bound ‘”quebZ - ”aniebj :
lali or = 192812, 7| =l allo.or + 1928 ].07] % [Iall,sr = 1€25]5,57

< <2HQSHbEbI + 6371) 5371 < (2\/’71“98”[, + 6371) 5371

<(2n+ d3n) d3n since ||z]|? <n,d3 < 1land Q < L,

<3d5n2.
Thus, one has
gl o7 = 192813, | < 30n% < £,
which leads to the results directly.
6.1 Proof of Theorem 6.1
Proof. Using Lemmas 6.3, 6.4, and 6.5, one has
A lal2 9252,

[f(e) = fle)| =

1+ | Xbe2+ [ Yb|? 1+ b, Qb,
L lalZ, sl

1-¢/31+bQb. 1+b, Qb,
1 ”QsHiebZ +¢€/3 ||Q-9Hibg

1—€¢/3 1+b,Qb, 1+ b Qb,
1 (zu—20)%+¢/3 B (24 — 24)?

IN

IN

1—¢/3 14 7w 14 74
2¢/3 4

< ¢/ < —e, since (2, — 2,)? < land 0 < 7y, < 2,
1-¢/375

which leads to the result. [
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