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1 Proof of Lemma 4.1

Proof. If we perturb the network with the addition of e, we obtain the new Laplacian L+ beb
>
e .

By Sherman-Morrison formula [1], we obtain(
I + L+ beb

>
e

)−1
= (I + L)−1 − Ωbeb

>
e Ω

1 + b>e Ωbe

.

By the definitions of P-D index, I(G + e) = s>(I + L+ beb
>
e )
−1s . We can immediately obtain

f(e) = I(G) − I(G + e) =
(s>Ωbe)

2

1+b>
e Ωbe

. Since the term (s>Ωbe)
2 = (zu − z v)

2 is nonnegative,

together with the fact that 0 ≤ b>e Ωbe ≤ 2, we can conclude f(e) ≥ 0 consequently. �

2 Proof of Remark 1

Proof. When the opinions s are mean-centered, corresponding variation of the objective could be
expressed as

f(e) =s>Ωbeb
>
e Ωs =

(
(s − s>1

n
1)>Ωbe

)2

=

(
s>Ωbe −

s>1
n

1>Ωbe

)2

= s>Ωbeb
>
e Ωs,

where the last equality is obtained by the fact that 1>Ωbe = 1>be = 0.

Thus, under the perturbation of the network with a single edge e, it holds that whether the opinions
s are mean-centered or not, the variation of our objective i.e. f(e) are the same. The above results
complete the proof. �

3 Proof of Lemma 5.1

Proof. Note, for two matrices A and B , we write A � B to denote that B − A is positive
semidefinite. We use (I + L)−1T to denote the forest matrix associated with graph G + T .

Let EC be the candidate set, and let T,W be any two subsets of EC . To begin with, we first derive a
lower and an upper bound, respectively, for the marginal benefit function ρT (W ) = f(W∪T )−f(W ).
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On the one hand,

ρT (W ) = f(W ∪ T )− f(W ) = I(G+ T )− I(G+W ∪ T ) = s>(I + L)−1
T s − s>(I + L)−1

W∪T s

= s>
(

n−1∑
i=1

1

1 + λi(LT )
u iu

>
i −

1

1 + λi(LW∪T )
u iu

>
i

)
s

= s>
(

n−1∑
i=1

λi(LW∪T )− λi(LT )

(1 + λi(LT )) (1 + λi(LW∪T ))
u iu

>
i

)
s ≥ s>

(
LW∪T − LT

(1 + λn−1(LT )) (1 + λn−1(LW∪T ))

)
s

= s>
( ∑

e∈W\T beb
>
e

(1 + λn−1(LT )) (1 + λn−1(LW∪T ))

)
s.

On the other hand,

ρT (W ) = s>
(

n−1∑
i=1

λi(LW∪T )− λi(LT )

(1 + λi(LT )) (1 + λi(LW∪T ))
u iu

>
i

)
s

≤ s>
(

LW∪T − LT

(1 + λ1(LT )) (1 + λ1(LW∪T ))

)
s = s>

( ∑
e∈W\T beb

>
e

(1 + λ1(LT )) (1 + λ1(LW∪T ))

)
s.

Putting the above two bounds together leads to∑
e∈W\T ρe(T )

ρT (W )
≥ s>

 ∑
e∈W\T

beb
>
e

(1 + λn−1(LT )) (1 + λn−1(LT+e))

 s × (1 + λ1(LT )) (1 + λ1(LT∪W ))∑
e∈W\T s>beb

>
e s

≥
(

1 + λ1(L)

1 + λn−1(LEC )

)2

,

which implies the lower bounds of γ.

Similarly, we derive the upper bound of the curvature α. Let j be any candidate edge in W\T . Then,

ρj(W\j ∪W )

ρj(T\j)
≥

s>bjb
>
j s

(1 + λn−1(LT )) (1 + λn−1(LT+e))
× (1 + λ1(LT )) (1 + λ1(LT∪W ))

s>bjb
>
j s

≥
(

1 + λ1(L)

1 + λn−1(LEC )

)2

,

which combining with the definition of curvature completes the proof. �

4 Proof of Theorem 5.1

Proof. To show the non-submodularity of the function concerned, consider the graph in Figure 1,
which is a 5-node path-graph with e1 and e2 being inexistent edges. We set initial opinion vector as
s = (0.25, 0.5, 0.5, 0.5, 0.25)>, and define two edge sets, T = ∅ and W = {e2}. Then,

I(T ) = 0.8295, I(T + e1) = 0.8295,

I(W ) = 0.8227, I(W + e1) = 0.8220,

so that

I(T )− I(T + e1) = 0 < 0.007 = I(W )− I(W + e1),

which violates the definition of submodularity. Thus, it follows that the set function of our problem is
non-submodular. �
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Figure 1: A 5-nodes path-graph where e1 and e2 are inexistent edges.
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5 Proof of Lemma 6.3

Proof. According to the assumption:

(1− ε

12
)‖Xeu‖2 ≤ ‖X ′eu‖2 ≤ (1 +

ε

12
)‖Xeu‖2

holds for any node u ∈ V and

(1− ε

12
)‖Xbe‖2 ≤ ‖X ′be‖2 ≤ (1 +

ε

12
)‖Xbe‖2

holds for any pair of nodes u and v connecting an edge e in E.

As G is connected, there exists a simple path Puv connecting u and v. By applying the triangle
inequality twice, we obtain

|‖X̃ be‖ − ‖X ′be‖| ≤ ‖(X̃ −X ′)be‖ ≤
∑

(a,b)∈Puv

‖(X̃ −X ′)(ea − eb)‖.

We will upper bound the last term by considering its square: ∑
(a,b)∈Puv

‖(X̃ −X ′)(ea − eb)‖

2

≤n
∑

(a,b)∈Puv

‖(X̃ −X ′)(ea − eb)‖2 ≤ n
∑

(a,b)∈E

‖(X̃ −X ′)(ea − eb)‖2

=n‖(X̃ −X ′)B>‖2F = n‖B(X̃ −X ′)‖2F .
Note that the first inequality is derived by Cauchy-Schwarz Inequality. Below we transform the

above-obtained Frobenius norm n‖B(X̃ −X ′)‖2F into the (I + L)-norm as

n‖B(X̃ −X ′)‖2F =nTr
(
(X̃ −X ′)>B>B(X̃ −X ′)

)
= nTr

(
(X̃ −X ′)>L(X̃ −X ′)

)
≤nTr

(
(X̃ −X ′)>(I + L)(X̃ −X ′)

)
= n

p∑
i=1

(X̃ i −X ′i)(I + L)(X̃ i −X ′i)
>

≤nδ21
p∑

i=1

X ′i(I + L)(X ′i)
>.

Applying the fact that L � (n+ 1)I and ΩLΩ � Ω � I , we have

nδ21

p∑
i=1

X ′i(I + L)(X ′i)
> ≤nδ21(n+ 1)

p∑
i=1

X ′i(X
′
i)
> = nδ21(n+ 1)‖X ′‖2F

≤nδ21(n+ 1)

n∑
i=1

(1 +
ε

12
)‖Xe i‖2 ≤ nδ21(n+ 1)

n∑
i=1

(1 +
ε

12
)e>i Ωe i

≤nδ21(n+ 1)(1 +
ε

12
)n.

On the other hand,

‖X ′be‖2 ≥(1−
ε

12
)‖Xbe‖2 = (1− ε

12
)b>e ΩLΩbe

≥(1− ε

12
)

1

n2(n+ 1)2
‖be‖2 = 2(1− ε

12
)

1

n2(n+ 1)2
.

The last inequality is obtained for the following reason. Note that be is orthogonal to all-one vector 1,
an eigenvector of L associated with the unique eigenvalue 0. Therefore, b>e Lbe ≥ λmin‖be‖2 holds.
In addtion, L and (I + L)−1 share identical eigenspaces.

Combining the above-obtained results, it follows that∣∣∣‖X̃ be‖ − ‖X ′be‖
∣∣∣

‖X ′be‖
≤
δ1n(n+ 1)

√
(1 + ε/12)(n+ 1)√

2(1− ε/12)
≤ ε

32
,

based on which we further obtain∣∣∣‖X̃ be‖2 − ‖X ′be‖2
∣∣∣ = ∣∣∣‖X̃ be‖ − ‖X ′be‖

∣∣∣× ∣∣∣‖X̃ be‖+ ‖X ′be‖
∣∣∣

≤ ε

32
(2 +

ε

32
)‖X ′be‖2 ≤

ε

12
‖X ′be‖2,

which completes the proof. �
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6 Proof of Lemma 6.5

Proof. Since L is the Laplacian of a connected graph, we can find a path Puv connecting u and v.
By applying the triangle inequality, we obtain

q>b>e beq = (qu − qv)
2 ≤ n

∑
(a,b)∈Puv

(q(ea − eb))
2

≤ n
∑

(a,b)∈E

‖q(ea − eb)‖ ≤ nq>Lq ,

which implies that

‖q‖beb>
e
≤
√
n‖q‖L.

We first bound the value
∣∣∣‖q‖beb>

e
− ‖Ωs‖beb>

e

∣∣∣ by the triangle inequality∣∣∣‖q‖beb>
e
− ‖Ωs‖beb>

e

∣∣∣ ≤ ‖q −Ωs‖beb>
e
≤
√
n‖q −Ωs‖L

≤
√
nδ3‖Ωs‖I+L =

√
nδ3
√
s>Ωs

≤ δ3
√
n
√
s>s since ‖s‖2 ≤ n,

≤ δ3n,

based on which we proceed to bound
∣∣∣‖q‖2beb>

e
− ‖Ωs‖2

beb>
e

∣∣∣:∣∣∣‖q‖2beb>
e
− ‖Ωs‖2beb>

e

∣∣∣ = ∣∣∣‖q‖beb>
e
+ ‖Ωs‖beb>

e

∣∣∣× ∣∣∣‖q‖beb>
e
− ‖Ωs‖beb>

e

∣∣∣
≤
(
2‖Ωs‖beb>

e
+ δ3n

)
δ3n ≤

(
2
√
n‖Ωs‖L + δ3n

)
δ3n

≤ (2n+ δ3n) δ3n since ‖z‖2 ≤ n, δ3 ≤ 1 and Ω ≤ L†,

≤3δ3n2.
Thus, one has ∣∣∣‖q‖2beb>

e
− ‖Ωs‖2beb>

e

∣∣∣ ≤ 3δ3n
2 ≤ ε

3
,

which leads to the results directly. �

6.1 Proof of Theorem 6.1

Proof. Using Lemmas 6.3, 6.4, and 6.5, one has

|f̂(e)− f(e)| =

∣∣∣∣∣ ‖q‖2
beb>

e

1 + ‖X̃ be‖2 + ‖Ỹ be‖2
−
‖Ωs‖2

beb>
e

1 + b>e Ωbe

∣∣∣∣∣
≤

∣∣∣∣∣ 1

1− ε/3
‖q‖2

beb>
e

1 + b>e Ωbe

−
‖Ωs‖2

beb>
e

1 + b>e Ωbe

∣∣∣∣∣
≤

∣∣∣∣∣ 1

1− ε/3
‖Ωs‖2

beb>
e
+ ε/3

1 + b>e Ωbe

−
‖Ωs‖2

beb>
e

1 + b>e Ωbe

∣∣∣∣∣
=

∣∣∣∣ 1

1− ε/3
(zu − z v)

2 + ε/3

1 + ruv
− (zu − z v)

2

1 + ruv

∣∣∣∣
≤ 2ε/3

1− ε/3
≤ 4

5
ε, since (zu − z v)

2 ≤ 1 and 0 ≤ ruv ≤ 2,

which leads to the result. �
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