Supplementary Material for: Minimizing Polarization and Disagreement in Social Networks via Link Recommendation

Liwang Zhu, Qi Bao, and Zhongzhi Zhang*
Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China
School of Computer Science, Fudan University, Shanghai 200433, China
\{19210240147, 20110240002, zhangzz\}@fudan.edu.cn

1 Proof of Lemma 4.1

Proof. If we perturb the network with the addition of e, we obtain the new Laplacian $\boldsymbol{L}+\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}$. By Sherman-Morrison formula [1], we obtain

$$
\left(\boldsymbol{I}+\boldsymbol{L}+\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}\right)^{-1}=(\boldsymbol{I}+\boldsymbol{L})^{-1}-\frac{\boldsymbol{\Omega} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega}}{1+\boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}}
$$

By the definitions of P-D index, $\mathcal{I}(\mathcal{G}+e)=\boldsymbol{s}^{\top}\left(\boldsymbol{I}+\boldsymbol{L}+\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}\right)^{-1} \boldsymbol{s}$. We can immediately obtain $f(e)=\mathcal{I}(\mathcal{G})-\mathcal{I}(\mathcal{G}+e)=\frac{\left(s^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}\right)^{2}}{1+\boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}}$. Since the term $\left(\boldsymbol{s}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}\right)^{2}=\left(\boldsymbol{z}_{u}-\boldsymbol{z}_{v}\right)^{2}$ is nonnegative, together with the fact that $0 \leq \boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e} \leq 2$, we can conclude $f(e) \geq 0$ consequently.

2 Proof of Remark 1

Proof. When the opinions s are mean-centered, corresponding variation of the objective could be expressed as

$$
\begin{aligned}
f(e) & =\overline{\boldsymbol{s}}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \bar{s}=\left(\left(s-\frac{s^{\top} \mathbf{1}}{n} \mathbf{1}\right)^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}\right)^{2} \\
& =\left(s^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}-\frac{s^{\top} \mathbf{1}}{n} \mathbf{1}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}\right)^{2}=s^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{s}
\end{aligned}
$$

where the last equality is obtained by the fact that $\mathbf{1}^{\top} \boldsymbol{\Omega} b_{e}=\mathbf{1}^{\top} b_{e}=0$.
Thus, under the perturbation of the network with a single edge e, it holds that whether the opinions s are mean-centered or not, the variation of our objective i.e. $f(e)$ are the same. The above results complete the proof.

3 Proof of Lemma 5.1

Proof. Note, for two matrices \boldsymbol{A} and \boldsymbol{B}, we write $\boldsymbol{A} \preceq \boldsymbol{B}$ to denote that $\boldsymbol{B}-\boldsymbol{A}$ is positive semidefinite. We use $(\boldsymbol{I}+\boldsymbol{L})_{T}^{-1}$ to denote the forest matrix associated with graph $\mathcal{G}+T$.
Let E_{C} be the candidate set, and let T, W be any two subsets of E_{C}. To begin with, we first derive a lower and an upper bound, respectively, for the marginal benefit function $\rho_{T}(W)=f(W \cup T)-f(W)$.

[^0]On the one hand,

$$
\begin{aligned}
\rho_{T}(W) & =f(W \cup T)-f(W)=\mathcal{I}(G+T)-\mathcal{I}(G+W \cup T)=s^{\top}(\boldsymbol{I}+\boldsymbol{L})_{T}^{-1} \boldsymbol{s}-\boldsymbol{s}^{\top}(\boldsymbol{I}+\boldsymbol{L})_{W \cup T}^{-1} \boldsymbol{s} \\
& =s^{\top}\left(\sum_{i=1}^{n-1} \frac{1}{1+\lambda_{i}\left(\boldsymbol{L}_{T}\right)} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}-\frac{1}{1+\lambda_{i}\left(\boldsymbol{L}_{W \cup T}\right)} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}\right) s \\
& =s^{\top}\left(\sum_{i=1}^{n-1} \frac{\lambda_{i}\left(\boldsymbol{L}_{W \cup T}\right)-\lambda_{i}\left(\boldsymbol{L}_{T}\right)}{\left(1+\lambda_{i}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{i}\left(\boldsymbol{L}_{W \cup T}\right)\right)} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}\right) s \geq s^{\top}\left(\frac{\boldsymbol{L}_{W \cup T}-\boldsymbol{L}_{T}}{\left(1+\lambda_{n-1}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{n-1}\left(\boldsymbol{L}_{W \cup T}\right)\right)}\right) s \\
& =s^{\top}\left(\frac{\sum_{e \in W \backslash T} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}{\left(1+\lambda_{n-1}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{n-1}\left(\boldsymbol{L}_{W \cup T}\right)\right)}\right) \boldsymbol{s} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\rho_{T}(W) & =s^{\top}\left(\sum_{i=1}^{n-1} \frac{\lambda_{i}\left(\boldsymbol{L}_{W \cup T}\right)-\lambda_{i}\left(\boldsymbol{L}_{T}\right)}{\left(1+\lambda_{i}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{i}\left(\boldsymbol{L}_{W \cup T}\right)\right)} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}\right) s \\
& \leq s^{\top}\left(\frac{\boldsymbol{L}_{W \cup T}-\boldsymbol{L}_{T}}{\left(1+\lambda_{1}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{1}\left(\boldsymbol{L}_{W \cup T}\right)\right)}\right) s=s^{\top}\left(\frac{\sum_{e \in W \backslash T} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}{\left(1+\lambda_{1}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{1}\left(\boldsymbol{L}_{W \cup T}\right)\right)}\right) s .
\end{aligned}
$$

Putting the above two bounds together leads to

$$
\begin{aligned}
\frac{\sum_{e \in W \backslash T} \rho_{e}(T)}{\rho_{T}(W)} & \geq \boldsymbol{s}^{\top}\left(\sum_{e \in W \backslash T} \frac{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}{\left(1+\lambda_{n-1}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{n-1}\left(\boldsymbol{L}_{T+e}\right)\right)}\right) s \times \frac{\left(1+\lambda_{1}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{1}\left(\boldsymbol{L}_{T \cup W}\right)\right)}{\sum_{e \in W \backslash T} \boldsymbol{s}^{\top} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} s} \\
& \geq\left(\frac{1+\lambda_{1}(\boldsymbol{L})}{1+\lambda_{n-1}\left(\boldsymbol{L}_{E_{C}}\right)}\right)^{2},
\end{aligned}
$$

which implies the lower bounds of γ.
Similarly, we derive the upper bound of the curvature α. Let j be any candidate edge in $W \backslash T$. Then,
$\frac{\rho_{j}(W \backslash j \cup W)}{\rho_{j}(T \backslash j)} \geq \frac{\boldsymbol{s}^{\top} \boldsymbol{b}_{j} \boldsymbol{b}_{j}^{\top} \boldsymbol{s}}{\left(1+\lambda_{n-1}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{n-1}\left(\boldsymbol{L}_{T+e}\right)\right)} \times \frac{\left(1+\lambda_{1}\left(\boldsymbol{L}_{T}\right)\right)\left(1+\lambda_{1}\left(\boldsymbol{L}_{T \cup W}\right)\right)}{\boldsymbol{s}^{\top} \boldsymbol{b}_{j} \boldsymbol{b}_{j}^{\top} \boldsymbol{s}} \geq\left(\frac{1+\lambda_{1}(\boldsymbol{L})}{1+\lambda_{n-1}\left(\boldsymbol{L}_{E_{C}}\right)}\right)^{2}$,
which combining with the definition of curvature completes the proof.

4 Proof of Theorem 5.1

Proof. To show the non-submodularity of the function concerned, consider the graph in Figure 1 which is a 5 -node path-graph with e_{1} and e_{2} being inexistent edges. We set initial opinion vector as $s=(0.25,0.5,0.5,0.5,0.25)^{\top}$, and define two edge sets, $T=\emptyset$ and $W=\left\{e_{2}\right\}$. Then,

$$
\begin{aligned}
\mathcal{I}(T)=0.8295, \mathcal{I}\left(T+e_{1}\right) & =0.8295 \\
\mathcal{I}(W)=0.8227, \mathcal{I}\left(W+e_{1}\right) & =0.8220
\end{aligned}
$$

so that

$$
\mathcal{I}(T)-\mathcal{I}\left(T+e_{1}\right)=0<0.007=\mathcal{I}(W)-\mathcal{I}\left(W+e_{1}\right)
$$

which violates the definition of submodularity. Thus, it follows that the set function of our problem is non-submodular.

Figure 1: A 5 -nodes path-graph where e_{1} and e_{2} are inexistent edges.

5 Proof of Lemma 6.3

Proof. According to the assumption:

$$
\left(1-\frac{\epsilon}{12}\right)\left\|\overline{\boldsymbol{X}} \boldsymbol{e}_{u}\right\|^{2} \leq\left\|\boldsymbol{X}^{\prime} \boldsymbol{e}_{u}\right\|^{2} \leq\left(1+\frac{\epsilon}{12}\right)\left\|\overline{\boldsymbol{X}} \boldsymbol{e}_{u}\right\|^{2}
$$

holds for any node $u \in V$ and

$$
\left(1-\frac{\epsilon}{12}\right)\left\|\overline{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|^{2} \leq\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|^{2} \leq\left(1+\frac{\epsilon}{12}\right)\left\|\overline{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|^{2}
$$

holds for any pair of nodes u and v connecting an edge e in E.
As \mathcal{G} is connected, there exists a simple path $P_{u v}$ connecting u and v. By applying the triangle inequality twice, we obtain

$$
\left|\left\|\tilde{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|-\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|\right| \leq\left\|\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right) \boldsymbol{b}_{e}\right\| \leq \sum_{(a, b) \in P_{u v}}\left\|\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\left(\boldsymbol{e}_{a}-\boldsymbol{e}_{b}\right)\right\|
$$

We will upper bound the last term by considering its square:

$$
\begin{aligned}
\left(\sum_{(a, b) \in P_{u v}}\left\|\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\left(\boldsymbol{e}_{a}-\boldsymbol{e}_{b}\right)\right\|\right)^{2} & \leq n \sum_{(a, b) \in P_{u v}}\left\|\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\left(\boldsymbol{e}_{a}-\boldsymbol{e}_{b}\right)\right\|^{2} \leq n \sum_{(a, b) \in E}\left\|\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\left(\boldsymbol{e}_{a}-\boldsymbol{e}_{b}\right)\right\|^{2} \\
& =n\left\|\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right) \boldsymbol{B}^{\top}\right\|_{F}^{2}=n\left\|\boldsymbol{B}\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\right\|_{F}^{2} .
\end{aligned}
$$

Note that the first inequality is derived by Cauchy-Schwarz Inequality. Below we transform the above-obtained Frobenius norm $n\left\|\boldsymbol{B}\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\right\|_{F}^{2}$ into the $(\boldsymbol{I}+\boldsymbol{L})$-norm as

$$
\begin{aligned}
n\left\|\boldsymbol{B}\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\right\|_{F}^{2} & =n \operatorname{Tr}\left(\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)^{\top} \boldsymbol{B}^{\top} \boldsymbol{B}\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\right)=n \operatorname{Tr}\left(\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)^{\top} \boldsymbol{L}\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\right) \\
& \leq n \operatorname{Tr}\left(\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)^{\top}(\boldsymbol{I}+\boldsymbol{L})\left(\tilde{\boldsymbol{X}}-\boldsymbol{X}^{\prime}\right)\right)=n \sum_{i=1}^{p}\left(\tilde{\boldsymbol{X}}_{i}-\boldsymbol{X}_{i}^{\prime}\right)(\boldsymbol{I}+\boldsymbol{L})\left(\tilde{\boldsymbol{X}}_{i}-\boldsymbol{X}_{i}^{\prime}\right)^{\top} \\
& \leq n \delta_{1}^{2} \sum_{i=1}^{p} \boldsymbol{X}_{i}^{\prime}(\boldsymbol{I}+\boldsymbol{L})\left(\boldsymbol{X}_{i}^{\prime}\right)^{\top}
\end{aligned}
$$

Applying the fact that $\boldsymbol{L} \preceq(n+1) \boldsymbol{I}$ and $\boldsymbol{\Omega} \boldsymbol{L} \boldsymbol{\Omega} \preceq \boldsymbol{\Omega} \preceq \boldsymbol{I}$, we have

$$
\begin{aligned}
n \delta_{1}^{2} \sum_{i=1}^{p} \boldsymbol{X}_{i}^{\prime}(\boldsymbol{I}+\boldsymbol{L})\left(\boldsymbol{X}_{i}^{\prime}\right)^{\top} & \leq n \delta_{1}^{2}(n+1) \sum_{i=1}^{p} \boldsymbol{X}_{i}^{\prime}\left(\boldsymbol{X}_{i}^{\prime}\right)^{\top}=n \delta_{1}^{2}(n+1)\left\|\boldsymbol{X}^{\prime}\right\|_{F}^{2} \\
& \leq n \delta_{1}^{2}(n+1) \sum_{i=1}^{n}\left(1+\frac{\epsilon}{12}\right)\left\|\overline{\boldsymbol{X}} \boldsymbol{e}_{i}\right\|^{2} \leq n \delta_{1}^{2}(n+1) \sum_{i=1}^{n}\left(1+\frac{\epsilon}{12}\right) \boldsymbol{e}_{i}^{\top} \boldsymbol{\Omega} \boldsymbol{e}_{i} \\
& \leq n \delta_{1}^{2}(n+1)\left(1+\frac{\epsilon}{12}\right) n .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|^{2} & \geq\left(1-\frac{\epsilon}{12}\right)\left\|\overline{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|^{2}=\left(1-\frac{\epsilon}{12}\right) \boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{L} \boldsymbol{\Omega} \boldsymbol{b}_{e} \\
& \geq\left(1-\frac{\epsilon}{12}\right) \frac{1}{n^{2}(n+1)^{2}}\left\|\boldsymbol{b}_{e}\right\|^{2}=2\left(1-\frac{\epsilon}{12}\right) \frac{1}{n^{2}(n+1)^{2}}
\end{aligned}
$$

The last inequality is obtained for the following reason. Note that \boldsymbol{b}_{e} is orthogonal to all-one vector $\mathbf{1}$, an eigenvector of \boldsymbol{L} associated with the unique eigenvalue 0 . Therefore, $\boldsymbol{b}_{e}^{\top} \boldsymbol{L} \boldsymbol{b}_{e} \geq \lambda_{\min }\left\|\boldsymbol{b}_{e}\right\|^{2}$ holds. In addtion, \boldsymbol{L} and $(\boldsymbol{I}+\boldsymbol{L})^{-1}$ share identical eigenspaces.
Combining the above-obtained results, it follows that

$$
\frac{\left|\left\|\tilde{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|-\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|\right|}{\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|} \leq \frac{\delta_{1} n(n+1) \sqrt{(1+\epsilon / 12)(n+1)}}{\sqrt{2(1-\epsilon / 12)}} \leq \frac{\epsilon}{32},
$$

based on which we further obtain

$$
\begin{aligned}
\left|\left\|\tilde{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|^{2}-\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|^{2}\right| & =\left|\left\|\tilde{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|-\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|\right| \times\left|\left\|\tilde{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|+\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|\right| \\
& \leq \frac{\epsilon}{32}\left(2+\frac{\epsilon}{32}\right)\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|^{2} \leq \frac{\epsilon}{12}\left\|\boldsymbol{X}^{\prime} \boldsymbol{b}_{e}\right\|^{2}
\end{aligned}
$$

which completes the proof.

6 Proof of Lemma 6.5

Proof. Since L is the Laplacian of a connected graph, we can find a path $P_{u v}$ connecting u and v. By applying the triangle inequality, we obtain

$$
\begin{aligned}
\boldsymbol{q}^{\top} \boldsymbol{b}_{e}^{\top} \boldsymbol{b}_{e} \boldsymbol{q} & =\left(\boldsymbol{q}_{u}-\boldsymbol{q}_{v}\right)^{2} \leq n \sum_{(a, b) \in P_{u v}}\left(\boldsymbol{q}\left(\boldsymbol{e}_{a}-\boldsymbol{e}_{b}\right)\right)^{2} \\
& \leq n \sum_{(a, b) \in E}\left\|\boldsymbol{q}\left(\boldsymbol{e}_{a}-\boldsymbol{e}_{b}\right)\right\| \leq n \boldsymbol{q}^{\top} \boldsymbol{L} \boldsymbol{q},
\end{aligned}
$$

which implies that

$$
\|\boldsymbol{q}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}} \leq \sqrt{n}\|\boldsymbol{q}\|_{\boldsymbol{L}}
$$

We first bound the value $\left|\|\boldsymbol{q}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}-\|\boldsymbol{\Omega} s\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}\right|$ by the triangle inequality

$$
\begin{aligned}
\left|\|\boldsymbol{q}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}-\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}\right| & \leq\|\boldsymbol{q}-\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}} \leq \sqrt{n}\|\boldsymbol{q}-\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{L}} \\
& \leq \sqrt{n} \delta_{3}\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{I}+\boldsymbol{L}}=\sqrt{n} \delta_{3} \sqrt{\boldsymbol{s}^{\top} \boldsymbol{\Omega} \boldsymbol{s}} \\
& \leq \delta_{3} \sqrt{n} \sqrt{\boldsymbol{s}^{\top} \boldsymbol{s}} \quad \text { since }\|\boldsymbol{s}\|^{2} \leq n \\
& \leq \delta_{3} n,
\end{aligned}
$$

based on which we proceed to bound $\left|\|\boldsymbol{q}\|_{\boldsymbol{b}_{\boldsymbol{e}} \boldsymbol{b}_{e}^{\top}}^{2}-\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}^{2}\right|$:

$$
\begin{aligned}
\left|\|\boldsymbol{q}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}^{2}-\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{\boldsymbol{e}} \boldsymbol{b}_{e}^{\top}}^{2}\right| & =\left|\|\boldsymbol{q}\|_{\boldsymbol{b}_{\boldsymbol{e}} \boldsymbol{b}_{e}^{\top}}+\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}\right| \times\left|\|\boldsymbol{q}\|_{\boldsymbol{b}_{\boldsymbol{e}} \boldsymbol{b}_{e}^{\top}}-\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}\right| \\
& \leq\left(2\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}+\delta_{3} n\right) \delta_{3} n \leq\left(2 \sqrt{n}\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{L}}+\delta_{3} n\right) \delta_{3} n \\
& \leq\left(2 n+\delta_{3} n\right) \delta_{3} n \quad \text { since }\|\boldsymbol{z}\|^{2} \leq n, \delta_{3} \leq 1 \text { and } \boldsymbol{\Omega} \leq \boldsymbol{L}^{\dagger} \\
& \leq 3 \delta_{3} n^{2} .
\end{aligned}
$$

Thus, one has

$$
\left|\|\boldsymbol{q}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}^{2}-\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{\boldsymbol{e}}^{\top}}^{2}\right| \leq 3 \delta_{3} n^{2} \leq \frac{\epsilon}{3}
$$

which leads to the results directly.

6.1 Proof of Theorem 6.1

Proof. Using Lemmas 6.3, 6.4, and 6.5, one has

$$
\begin{aligned}
|\hat{f}(e)-f(e)| & =\left|\frac{\|\boldsymbol{q}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}^{2}}{1+\left\|\tilde{\boldsymbol{X}} \boldsymbol{b}_{e}\right\|^{2}+\left\|\tilde{\boldsymbol{Y}} \boldsymbol{b}_{e}\right\|^{2}}-\frac{\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}^{2}}{1+\boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}}\right| \\
& \leq\left|\frac{1}{1-\epsilon / 3} \frac{\|\boldsymbol{q}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}^{2}}{1+\boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}}-\frac{\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top}}^{2}}{1+\boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}}\right| \\
& \leq\left|\frac{1}{1-\epsilon / 3} \frac{\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{e} \boldsymbol{b}_{e}}^{2}+\epsilon / 3}{1+\boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}}-\frac{\|\boldsymbol{\Omega} \boldsymbol{s}\|_{\boldsymbol{b}_{\boldsymbol{e}} \boldsymbol{b}_{e}^{\top}}^{2}}{1+\boldsymbol{b}_{e}^{\top} \boldsymbol{\Omega} \boldsymbol{b}_{e}}\right| \\
& =\left|\frac{1}{1-\epsilon / 3} \frac{\left(\boldsymbol{z}_{u}-\boldsymbol{z}_{v}\right)^{2}+\epsilon / 3}{1+r_{u v}}-\frac{\left(\boldsymbol{z}_{u}-\boldsymbol{z}_{v}\right)^{2}}{1+r_{u v}}\right| \\
& \leq \frac{2 \epsilon / 3}{1-\epsilon / 3} \leq \frac{4}{5} \epsilon, \quad \operatorname{since}\left(\boldsymbol{z}_{u}-\boldsymbol{z}_{v}\right)^{2} \leq 1 \text { and } 0 \leq r_{u v} \leq 2
\end{aligned}
$$

which leads to the result.

References

[1] Carl D Meyer, Jr. Generalized inversion of modified matrices. SIAM Journal on Applied Mathematics, 24(3):315-323, 1973.

[^0]: * Corresponding author.

