
Minimizing Polarization and Disagreement in Social
Networks via Link Recommendation

Liwang Zhu, Qi Bao, and Zhongzhi Zhang∗
Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China

School of Computer Science, Fudan University, Shanghai 200433, China
{19210240147, 20110240002, zhangzz}@fudan.edu.cn

Abstract

Individual’s opinions are fundamentally shaped and evolved by their interactions
with other people, and social phenomena such as disagreement and polarization
are now tightly woven into daily life. The quantification and optimization of
these concepts have been the subject of much recent research behind a wealth of
high-impact data mining applications. In particular, researchers have addressed the
question of how such concepts can be optimized by influencing the opinion of a
small number of individuals or by designing the network from scratch.
Here, rather than a “design-from-scratch” approach or altering the initial opinion,
we study the optimization problem of recommending k new links to minimize
the sum of polarization and disagreement in a social network with n nodes and
m edges. We show that our objective function of this combinatorial optimization
problem is not submodular, although it is monotone. We propose a simple greedy
algorithm with a constant-factor approximation that solves the problem in cubic
running time, and we provide theoretical analysis of the approximation guarantee
for the algorithm. To overcome the computation challenge for large networks,
we also provide a fast algorithm with computation complexity Õ(mkε−2) for any
ε > 0, where the Õ(·) notation suppresses the poly(log n) factors. Extensive
experiments on real datasets demonstrate both the efficiency and effectiveness of
our algorithms.

1 Introduction

Social networks and social media play a prominent part in the propagation, evolution, and formu-
lation of opinions [32], leading to fundamental changes in how humans share and shape opinions.
Particularly, in recent years, the tremendous prevalence of online social media platforms produces
various social phenomena, such as polarization and disagreement. The identification [48] and opti-
mization [50] of these quantities are fundamental tasks behind a myriad of high-impact data mining
applications, and thus have received considerable attention.

We focus on the phenomena of disagreement and polarization. Disagreement [39, 16] characterizes
how much acquaintances disagree in their opinions, globally across the network. Polarization [39,
36, 16] measures how equilibrium expressed opinions deviate from their average. However, existing
recommender systems, trained on real-data, with the goal to increase user engagement may stop the
user from being exposed to diverse opinions and naturally end up creating “echo-chambers”. In other
words, the recommended links minimizing disagreement may lead to greater polarization [39] since
connections between users with similar mindsets are preferred for such systems. Yet, exposure to
diverse content is necessary to obtain a complete picture about a topic [27]. Thus, there is a need

∗Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

for a radically different approach to suggest links that decrease both disagreement and polarization,
which motivates our work.

In this paper, we address the following optimization problem: given a social network with n nodes
and m edges, and an integer k, how to strategically recommend k links to the individuals so
that the polarization and disagreement is minimized. We show that our objective function of this
combinatorial optimization problem is not submodular, although it is monotone. To tackle the
exponential computation complexity, we resort to greedy algorithm extended for non-submodular
function [5] by iteratively adding the most promising edges. We propose a simple greedy algorithm
with a constant-factor approximation that solves the problem in cubic running time. To confront
the computation challenge for large networks, we also provide a fast algorithm with computation
complexity Õ(mkε−2) for any ε > 0, where ε > 0 is the error parameter and the Õ(·) notation
suppresses the poly(log n) factors. We confirm our theoretical and algorithmic performance by
executing extensive experiments on various real networks, which show that our algorithms are
efficient and effective, outperforming several other strategies of creating edges.

Omitted proofs and implementation are provided as supplementary material.

2 Related work

We review the related literature from the following three perspectives, including modeling opinion
dynamics, optimization problems in opinion dynamics, and link recommendation strategies.

Modeling opinion dynamics. Opinion dynamics has been the subject of intense recent research to
model social learning processes in various disciplines [29, 19, 4]. These models capture the mecha-
nisms and factors influencing opinion formulation, shedding light on understanding the whole process
of opinion shaping and diverse phenomena taking place in social media. In the past decades, numer-
ous relevant models have been proposed [40], among which the Friedkin-Johnsen (FJ) model [20] is
one of the most popular models. After its establishment, the FJ model has been extended in a variety
of ways [29, 28, 47, 13], by incorporating different factors affecting opinion dynamics, such as peer
pressure [42], susceptibility to persuasion [1], and opinion leader [25]. Under the formalism of the FJ
model or its variants, some relevant quantities, properties and explanations have been broadly studied,
including the equilibrium expressed opinions [18, 6], sufficient condition for the stability [41], the
average initial opinion [18], interpretations [24, 6], and so on.

Optimization problems in opinion dynamics. Recently, several optimization problems related to
opinion dynamics have been formulated and studied for different objectives. For example, a long line
of work has been devoted to maximizing the overall opinion by using different strategies, such as
identifying a fixed number of individuals and setting their expressed opinions to 1 [25], changing
agent’s internal opinions [49, 47], as well as modifying individuals’ susceptibility to persuasion [1, 8].
[46] studies the problem of allocating seed users to opposing campaigns with a goal to maximize
the expected number of users who are co-exposed to both campaigns. In additon, [23] studies the
problem of balancing the information exposure. These studies have far-reaching implications in
product marketing, public health campaigns, and political candidates. Another major and increas-
ingly important focus of research is optimizing some social phenomena, such as maximizing the
diversity [35, 37], minimizing conflict [12], disagreement [21], and polarization [36]. A recent work
considers the problem of minimizing the sum of polarization and disagreement by changing the
underlying network topology [39]. Different from the “design-from-scratch” approach, we instead
concentrate on edge recommendation, a practical incremental approach that suggests modifications to
an existing network to achiever our goal. Moreover, our proposed algorithms differ significantly from
existing ones, in spite of the fact that our objective function is identical to that in [39].

Link recommendation strategies. Our problem aims to optimize an objective via link recommenda-
tion. Here, we review some instances of related edge recommendation problems. [15, 43, 17] improve
the centrality of a node and [3] strategically fight opinion control in social networks. As for opinion
dynamics, the operation of creating edges is actually convenient and practical, which is equivalent
to making friendship between individuals. In [22], the edge addition strategy is explored on the
endorsement graph, with an aim to reduce controversy, and it also takes account of the acceptable
probability of the recommended edge. In [6], addition of edges is discussed in order to reduce the
social cost, namely the lack of agreement. Finally, [12] exploits link recommendation strategy to
reduce the risk of conflict, [27] considers link insertions to reduce structural bias which may trap a

2

reader in a “polarized” bubble with no access to other opinions. Our work is motivated in part by
these studies, while we address a new optimization problem, and present two new algorithms, with
the faster one being nearly linear.

3 Preliminaries

In this section, we give a brief introduction to some essential concepts and tools, in order to facilitate
the description of the studied problem and its related greedy algorithms.

Graph and Related Matrix. Let G = (V,E) be a connected undirected simple graph (network)
with |V | = n nodes and |E| = m edges. The adjacency relation of all nodes in G is encoded in its
adjacency matrix A = (aij)n×n. If nodes i and j are adjacent by an edge e, then aij = aji = 1;
aij = aji = 0 otherwise. Let Ni be the set of neighbours of node i satisfying Ni = {j|{i, j} ∈ E}.
Then, the degree di of node i is di =

∑n
j=1 aij =

∑
j∈Ni

aij , and the diagonal degree matrix of G is
defined as D = diag(d1, d2, . . . , dn).

The Laplacian matrix of G is defined to be L = D −A. There is also an alternative construction of
L by using the incidence matrix B ∈ R|E|×|V |, an m× n signed edge-node incidence matrix. The
element bev, e ∈ E and v ∈ V , of B is defined as follows: bev = 1 if node v is the head of edge e,
bev = −1 if node v is the tail of edge e, and bev = 0 otherwise. For an edge e ∈ E with two end
nodes i and j, the row vector of B corresponding to e can be written as bij , be = e i − ej where
e i denotes the i-th standard basis vector of appropriate dimension. Then the Laplacian matrix L of G
can also be represented as L = B>B , which indicates that L is symmetric and positive semidefinite.
Moreover, the Laplacian matrix L of a connected graph G has a unique zero eigenvalue.

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1 be the nonzero eigenvalues of L of a connected graph G, and
u i be the corresponding orthonormal eigenvectors. Then, L has an eigendecomposition of form
L = UΛU> =

∑n−1
i=1 λiu iu

>
i where Λ = diag (0, λ1, λ2, .., λn−1) and u i is the i-th column of

matrix U . Let λmax and λmin be, respectively, the maximum and nonzero minimum eigenvalue of L.
Then, λmax = λn−1 ≤ n [45], and λmin = λ1 ≥ 1/n2 [34].

The forest matrix of graph G is defined as Ω = (I + L)−1 = (ωij)n×n [26, 11]. Matrix Ω is a
doubly stochastic matrix [9, 10], satisfying Ω1 = 1 and 1>Ω = 1> where 1 denotes the all-ones
vector. For a pair of nodes i and j, their forest distance rij is defined as rij , b>ijΩbij , obeying
relation 0 ≤ rij ≤ 2.

Greedy Algorithms for Non-Submodular Functions. For submodular maximization problems,
the greedy algorithm has become a prevalent choice for solving them with a guaranteed (1− 1/e)
approximation ratio. However, there are a large class of important set functions optimization in
network topology design fail to be submodular. To alleviate this issue, a generalized approximation
ratio has been proved and further provides a performance guarantee for non-submodular functions
based on two quantities: submodularity ratio γ and curvature α, which characterize how close these
functions are from being sub- or supermodular [5].

For consistency, we first give the definitions of submodular ratio and curvature below. We use
ρT (W)

def
= f(T ∪W)− f(W) to denote the marginal benefit of the set T ⊆ X with respect to the

set W ⊆ X .

Definition 3.1 (Submodular Ratio [5]) The submodular ratio of a nonnegative set function f is the
largest γ ∈ R+ such that for any subset W,T ⊆ X ,

∑
i∈W\T ρi(T) ≥ γρW (T).

Definition 3.2 (Curvature [5]) The curvature of a nonnegative set function f is the smallest α ∈ R+

such that for any subset W,T ⊆ X and any element j ∈ T\W , it follows that ρj(T\j ∪W) ≥
(1− α)ρj(T\j).

Notice that for a non-decreasing function f , it follows that its submodular ratio γ ∈ [0, 1] and γ = 1
if and only if f is a submodular function; and its curvature α ∈ [0, 1] and α = 0 if and only if f is a
supermodular function. Given those two quantities, the greedy algorithm enjoys a tight approximation
guarantee of 1

α (1− e−αγ) for a larger class of optimization problems [5].

3

4 Problem Formulation

In this section, we briefly discuss the FJ model of opinion formation, as well as the definitions and
measures for disagreement and polarization. Then we formally introduce the problem for optimizing
the polarization-disagreement index in a social network.

Friedkin-Johnsen Model. The FJ model is one of the most popular models for opinion dynamics [20].
In the FJ model, each node i ∈ V has two opinions: internal (or innate) opinion and the expressed
opinion, both in the interval [0, 1]. The internal opinion for each node, denoted by si, remains
unchanged. Let z i(t) be the expressed opinion of node i at time t, which evolves as

z i(t+ 1) =
si +

∑
j∈Ni

aijz j(t)

1 +
∑
j∈Ni

aij
. (1)

Let s = (s1, s2, . . . , sn)> be the initial opinion vector. Let z = (z 1, z 2, . . . , zn)> be the equilib-
rium expressed opinion vector, which can be represented as z = Ωs [6].

In the FJ model, individuals interact with their acquaintances and exchange opinions whereas the
opinions of nodes often do not reach consensus, leading to disagreement, polarization and other
important phenomena, which have been the subject of many recent works. In this paper, we study the
disagreement and polarization using definitions given in [39].

For a graph G = (V,E) with expressed opinion vector z , its disagreement D(G) is defined as
D(G) =

∑
(i,j)∈E(z i−z j)2. Let z̄ be the mean-centered equilibrium vector given by z = z− z>1

n 1.
Then the polarization P (G) is defined as: P (G) =

∑
i∈V z 2

i = z>z . We further introduce the
polarization-disagreement (P-D) index, i.e., the objective we are concerned with. For a graph
G = (V,E) with expressed opinion vector z , the polarization-disagreement index I(G) is the sum of
the polarization P (G) and disagreement D(G) : I(G) = P (G) +D(G). Convenient matrix-vector
expressions for the above quantities are provided by the following proposition [12, 39, 48].

Proposition 1 D(G), P (G) and I(G) can be conveniently expressed in terms of quadratic forms as

D(G) = z>Lz = z>Lz = s>ΩLΩs,

P (G) = z>z = s>Ω2s,

I(G) = z>Lz + z>z = s>Ωs.

Remark 1 In this paper, we will generally assume that the internal opinions s are mean-centered,
that is, s̄ = s . Note that in such case, z will also be mean-centered. In fact, as will be shown in
supplementary material, whether the opinions s are mean-centered or not, the edges which we select
to augment the network are the same since the variation of our objective remains unchanged.

Formulation of Problem. Our problem is based on the following fact. For a connected undirected
network G(V,E), if we augment the network by adding the edges in set T , which is a subset of the
candidate edge set EC consisting of specified nonexistent edges, the P-D index of the new graph will
not increase. In our subsequent analysis, we will use the following notation to improve readability
of our lemmas. We use G + T to denote the graph augmented by adding the edges in T , that is
G + T = (V,E ∪ T). To evaluate the variation of the P-D index when adding edges, we define an
objective function on the edge set f : 2EC → R+ as

f(T) = I(G)− I(G + T), (2)

in the sequel, we will use f(e) and G + e, respectively, to denote f({e}) and G + {e} for simplicity.
The variation of the P-D index under the perturbation of a single edge can be expressed by the
following lemma.

Lemma 4.1 For a candidate edge e ∈ EC connecting node u and v with row vector be = eu − ev ,
one obtains

f(e) =
s>Ωbeb

>
e Ωs

1 + b>e Ωbe
=

(zu − z v)
2

1 + ruv
≥ 0. (3)

Lemma 4.1 indicates that the addition of any nonexisting edge can reduce the P-D index. Then
the following problem arises naturally: given a candidate edge set EC , how to optimally select a

4

subset T of EC subject to a cardinality constraint, so that the polarization-disagreement index of
the new graph is minimized. Such an optimization problem has been the subject of many recent
papers [21, 39]. Yet we focus on edge recommendation rather than global structural results due to
the following reasons: in practice, graph edits can typically be made only in small amounts, either
because of budget constraints, or because of practical considerations. A similar idea was previously
used in [12]. We now give a mathematical formulation of Problem 1 in a formal way as follows.

Problem 1 Given a connected graph G = (V,E), an integer k, a candidate edge set EC consisting
of nonexistent edges, find a subset T ⊂ EC with |T | = k, and add them to G forming a new graph
G + T = (V,E ∪ T), so that the polarization-disagreement index I(G + T) is minimized. That is:

minimize
T⊂EC , |T |=k

I(G + T). (4)

5 SPGREEDY: Simple Greedy Algorithm

In this section, we first study the characterization of our problem, and then propose a simple greedy
algorithm, followed by some analysis in terms of the approximation guarantee.

Problem Characterization. We start with detailing the theoretic challenges of Problem 1. The
complexity of Problem 1 comes along two dimensions—searching for the best edge subset delivering
the maximum of the objective, and assessing the impact of a given subset of edges upon the objective.
The former is inherently a combinatorial problem, which is computationally infeasible to solve in a
naïve brute-force manner while the latter involves cubic-time matrix inversion. To be specific, for
each augmented edge set T coming from

(|EC |
k

)
possible subsets, we need to compute the P-D index

of the resultant graph, yielding an exponential complexity O
((|EC |

k

)
· n3
)
.

To tackle the exponential complexity, we resort to a greedy heuristic. Firstly, the objective function is
monotone respect to the edge set T , as we mentioned in Lemma 4.1. But, we show that, unlike in the
case in other standard optimization settings, neither submodularity nor supermodularity holds for our
objective function. We present above results in the following theorem.

Theorem 5.1 The function f(T) defined above is a non-submodular monotonically increasing
function of the edge set T .

Thanks to the empirical success of applying greedy strategy on a significantly larger class of non-
submodular functions [5], in spite of the non-submodularity of our objective f(T), the greedy
algorithm can still become a proper choice for solving Problem 1, the details of which will be
discussed in the next subsection.

Simple Greedy Algorithm. Our simple greedy algorithm, denoted as SPGREEDY, exploits the
performance guarantee for non-submodular functions. The general approach is as follows. We will
first assess candidate edges with respect to how much their addition to the network decreases the term
I(G), and then iteratively add the most promising edges to the network until budget is reached.

The augmented edge set T is initialized with an empty set. Then k edges are iteratively selected to the
augmented edge set from setEC \T . At each iteration of the greedy algorithm, the edge e in candidate
set is chosen that gives the largest marginal gain f(e). The algorithm stops until k edges are selected
to be added to T . The naïve greedy algorithm takes time O(k|EC |n3), which is computationally
intractable even for small-size networks. Actually, as shown in the proof of Lemma 4.1, with Ω
already computed, we can view the addition of a single edge e as a rank-1 update to the original
matrix Ω, which can be calculated in time O(n2) by using Sherman-Morrison formula [38], instead
of inverting the matrix again in O(n3) in each loop.

The above analysis leads to a simple greedy algorithm SPGREEDY(G, EC , k, s), which is outlined in
Algorithm 1. To begin with, this algorithm requires O(n3) time to compute the inverse of I + L, and
then it performs in k rounds, with each round mainly including two steps: computing f(e) (Line 4) in
O(|EC |n2) time, and updating Ω (Line 8) in O(n2) time. Thus, the total running time of Algorithm 1
is O(n3 + k|EC |n2), which is much faster than the naïve algorithm.

Approximation Guarantee. As we mentioned before, the performance of the greedy algorithm for
non-submodular function can be evaluated by its submodularity ratio γ and curvature α. Hence, we
derive the bounds for these two quantities of our Problem 1.

5

Algorithm 1: SPGREEDY(G, EC , k, s)

Input : A connected graph G; a candidate edge set EC ; an integer k ≤ |EC |; an initial opinion
vector s

Output : A subset of T ⊂ EC and |T | = k
1 Initialize solution T = ∅
2 Compute Ω
3 for i = 1 to k do
4 Compute f(e) for each e ∈ EC \ T
5 Select ei s.t. ei ← arg maxe∈EC\T f(e)

6 Update solution T ← T ∪ {ei}
7 Update the graph G ← G(V,E ∪ {ei})
8 Update Ω← Ω− Ωbeb

>
e Ω

1+b>e Ωbe

9 return T

Lemma 5.1 Let λ1(L) be the smallest non-zero eigenvalue of Laplacian matrix L for graph G, and
let λn−1(LEC

) be the largest eigenvalue of Laplacian matrix LEC
for the augmented graph G +EC .

Then, the submodularity ratio γ of set function f(T) = I(G)− I(G + T) is bounded by 1 > γ ≥(
1+λ1(L)

1+λn−1(LEC
)

)2

> 0, and its curvature α is bounded by 0 < α ≤ 1−
(

1+λ1(L)
1+λn−1(LEC

)

)2

< 1.

Lemma 5.1, together with the approximation guarantee stated before, yields a performance analysis
for the greedy algorithm. As will be shown in the Experiment Section, the greedy algorithm has been
shown to perform very close to the optimal solutions for our problem in the experimental aspect.

6 FASTGREEDY: Fast Greedy Algorithm

Compared with the naïve algorithm, computation time of Algorithm 1 is significantly reduced.
However, it is still computationally unacceptable when employed on large networks with millions of
vertices. In this section, we address this challenge by presenting an efficient approximation algorithm,
solving the problem in time Õ(mkε−2).

The core step for solving Problem 1 is to calculate the impact of each edge upon the objective
i.e., f(e). According to (3), to evaluate f(e), we need to estimate two terms s>Ωbeb

>
e Ωs and

b>e Ωbe. We will show how to approximate these two quantities in nearly linear time using Johnson-
Lindenstrauss (JL) Lemma [30, 2] and Fast SDDM (symmetric, diagonally-dominant M-matrix)
Solvers[44]. Moreover, the results returned by our algorithm are demonstrated to provide proper
approximations to f(e).

Lemma 6.1 (JL Lemma [30]) Given fixed vectors v1, v2, · · · , vn ∈ Rd and a real number ε > 0.
Let p be a positive integer such that p ≥ 24 log n/ε2 and Rp×d a random matrix with each entry
being 1/

√
p or −1/

√
p with identical probability. Then, with probability at least 1 − 1/n, the

following statement holds for any pair of i and j, 1 ≤ i, j ≤ n:

(1− ε)‖v i − v j‖2 ≤ ‖Rv i −Rv j‖2 ≤ (1 + ε)‖v i − v j‖2.

Lemma 6.2 (Fast SDDM Solver [44]) There is a nearly linear time solver y = SOLVE(S , b, ε)
which takes an SDDM matrix Sn×n with m nonzero entries, a vector b ∈ Rn, and an error
parameter δ > 0, and returns a vector x ∈ Rn satisfying ‖y − S−1b‖S ≤ δ‖S−1b‖S with high

probability, where ‖y‖S
def
=
√
y>Sy . The solver runs in expected time Õ(m) .

We first approximate the term b>e Ωbe in the denominator of (3), which can be written as b>e Ωbe =

b>e Ω(I +L)Ωbe = b>e Ω
(
I + B>B

)
Ωbe = ‖Ωbe‖2 +‖BΩbe‖2. In this way, we have reduced

the estimation of the denominator of (3) to the calculation of the quadratic form of ‖BΩbe‖2 and
‖Ωbe‖2 in Rm and Rn. To reduce the computation cost, we will apply the JL lemma to reduce the
dimensions. Let Qp×m and Pp×n be two random ±1/

√
p matrices where p will be decided later,

6

then we can simply project matrices BΩ and Ω onto low-dimensional subspace QBΩ and PΩ.
However, this still does not help to reduce the computation time, since direct computation of the
above `2 norm involves matrix inversion, leading a running time of O(n3). In order to avoid inverting
matrix I + L, we will utilize the fast SDDM linear system solvers [44] to approximate the above two
terms.

Let X = QB ,X = BΩ,X ′ = QX , let X̃ i = SOLVE(I + L,X i, δ1), satisfying ‖X̃ i −
X ′i‖I+L ≤ δ1‖X ′i‖I+L with δ1 ≤

ε
√

2(1−ε/12)

32n(n+1)
√

(1+ε/12)(n+1)
. Making use of Lemmas 6.1 and 6.2,

the term ‖QBΩbe‖2 can be efficiently approximated as stated in the following lemma.

Lemma 6.3 Given an undirected graph G = (V,E) with Laplacian matrix L, a parameter ε ∈ (0, 1
2),

then, the following relation holds:

(1− ε

12
)2‖Xbe‖2 ≤ ‖X̃ be‖2 ≤ (1 +

ε

12
)2‖Xbe‖2. (5)

In a similar way, let Y = P ,Y = Ω,Y ′ = PY , let Ỹ i = SOLVE(I + L,Y i, δ2) with

δ2 ≤
ε
√

2(1−ε/12)

32(n+1)
√

(1+ε/12)(n+1)
. Then, the following lemma holds, giving an efficient approximation to

‖QΩbe‖2.

Lemma 6.4 Given an undirected graph G = (V,E) with Laplacian matrix L, a parameter ε ∈ (0, 1
2),

then, the following relation holds:

(1− ε

12
)2‖Ybe‖2 ≤ ‖Ỹ be‖ ≤ (1 +

ε

12
)2‖Ybe‖2. (6)

Having Lemma 6.3, 6.4, the term b>e Ωbe can be efficiently approximated by ‖X̃ be‖2 + ‖Ỹ be‖2
satisfying

(1− ε

3
)b>e Ωbe ≤ ‖X̃ be‖2 + ‖Ỹ be‖2 ≤ (1 +

ε

3
)b>e Ωbe.

We continue to approximate the numerator of f(e), which can be written as ‖Ωs‖2
beb>e

. We will use
the fast SDDM matrix solver again to approximate this term.

Lemma 6.5 Given an undirected graph G = (V,E) with Laplacian matrix L and forest matrix Ω,
a parameter ε ∈ (0, 1

2), and the internal opinion vector s , let q = SOLVE (I + L, s, δ3), where

δ3 ≤ ε
9n2 . Then, the following relation holds:

∣∣∣‖q‖2beb>e
− ‖Ωs‖2

beb>e

∣∣∣ ≤ ε
3 .

Algorithm 2: COMP(G, EC , s, ε)
Input : A graph G; a candidate edge set EC ; an initial opinion vector s; a real number 0 ≤ ε ≤ 1/2

Output : {(e, f̂(e)|e ∈ EC}
1 Set δ1, δ2, δ3 according to Lemmas 6.3, 6.4 and 6.5,
2 p←

⌈
24 logn/(ε

12
)2
⌉

3 Generate random Gaussian matrices Pp×n,Qp×m

4 Compute approximations q to Ωs , X̃ to X
def
= BΩ, and Ỹ to Y

def
= Ω

5 for i = 1 to p do
6 q ← SOLVE(I + L, s, δ3)

7 X̃ i ← SOLVE(I + L,X i, δ1)

8 Ỹ i ← SOLVE(I + L,Y i, δ2)

9 for each e ∈ EC do
10 compute f̂(e) = b>e qq>be

1+‖X̃ be‖2+‖Ỹ be‖2

11 return {(e, f̂(e)|e ∈ EC}

Having considerably approximately computing each part of f(e), we are now able to propose an algo-
rithm COMP approximating f(e) for every edge e in the candidate set EC based on Lemmas 6.3, 6.4
and 6.5. The outline of algorithm COMP is shown in Algorithm 2, whose performance is given in
Theorem 6.1.

7

Theorem 6.1 For 0 ≤ ε ≤ 1/2, the value f̂(e) returned by COMP satisfies |f(e)− f̂(e)| ≤ 4
5ε with

high probability.

Exploiting Algorithm 2 to approximate f(e), we develop a fast greedy algorithm
FASTGREEDY(G, EC , s, k, ε) in Algorithm 3 to solve Problem 1. Overall, it follows the greedy
strategy (Algorithm 1). In detail, Algorithm 3 performs k rounds (Lines 2-6). In each round, it takes
time Õ(mε−2) to call COMP to compute the approximation of the marginal gain f̂(e), then iteratively
select the element with the highest impact score and update. Therefore, the time complexity of
Algorithm 3 is Õ(mkε−2).

Algorithm 3: FASTGREEDY(G, EC , s, k, ε)
Input : A graph G; a candidate edge set EC ; an initial opinion vector s; an integer k ≤ |EC |;

a real number 0 ≤ ε ≤ 1/2
Output : T : a subset of EC and |T | = k

1 Initialize solution T = ∅
2 for i = 1 to k do
3 {e, f̂(e)|e ∈ EC \ T} ← COMP(G, EC \ T, s, ε)
4 Select ei s.t. ei ← arg maxe∈EC\T f̂(e)

5 Update solution T ← T ∪ {ei}
6 Update the graph G ← G(V,E ∪ {ei})
7 return T

7 Experiments

In this section, we present numerical results to evaluate the performance of our two greedy algorithms
SPGREEDY and FASTGREEDY. To this end, extensive experiments are designed and executed on real
networks of various types and scales to validate the effectiveness and efficiency of our algorithms.

Datasets. The studied realistic networks are representatively selected from various domains, which
are publicly available in the KONECT [31] and SNAP [33]. For each network, we implement our
experiments on its largest components. The characteristics of the largest components for all networks
are summarized in Table 1.

Machine and reproducibility. All experiments were conducted on a machine equipped with 32G
RAM and 4.2 GHz Intel i7-7700 CPU. All algorithms in our experiments are executed in Julia. In
our algorithms, we use the SDDM solver SOLVE [44], the Julia implementation of which is available
at https://github. com/danspielman/Laplacians.jl.

Table 1: Running time and results for each dataset with k=50.

Network n m
Running Time (s) ∆I(G) Ratio

SPGREEDY FASTGREEDY SPGREEDY FASTGREEDY

GrQc 4,158 13,422 7.83 11.13 -4.9966 -4.9774 0.9962
USgrid 4,941 6,594 10.31 10.70 -7.3406 -7.2720 0.9906
Erdös992 5,094 7,515 10.91 8.98 -6.1616 -6.0984 0.9897
Bcspwr10 5,300 8,271 12.03 11.57 -6.0290 -5.9820 0.9922
Reality 6,809 7,680 19.81 7.83 -5.7861 -5.7183 0.9883
PagesGovernment 7,057 89,429 21.10 27.27 -2.7580 -2.7484 0.9965
WikiElec 7,115 100,753 21.13 27.74 -4.7478 -4.7105 0.9921
Dmela 7,393 25,569 23.59 15.70 -4.9245 -4.8988 0.9948
HepPh 11,204 117,619 59.37 79.10 -4.2728 -4.2641 0.9980
Anybeat 12,645 49,132 81.86 44.41 -5.4685 -5.4180 0.9908
PagesCompany 14,113 52,126 106.40 62.88 -5.2711 -5.2554 0.9970
CondMat 21,363 91,286 319.86 101.95 -4.5719 -4.5659 0.9987
Gplus 23,628 39,194 416.24 42.99 -5.3146 -5.2672 0.9911
Brightkite∗ 56,739 212,945 — 274.97 — — —
WikiTalk∗ 92,117 360,767 — 397.34 — — —
Douban∗ 154,908 327,162 — 494.19 — — —
Citeseer∗ 227,320 814,134 — 1460.20 — — —
TwitterFollows∗ 404,719 713,319 — 1009.49 — — —
FourSquare∗ 639,014 3,214,986 — 3748.63 — — —
IMDB∗ 896,305 3,782,447 — 9076.97 — — —
YoutubeSnap∗ 1,134,890 2,987,624 — 6918.97 — — —

8

⊠

⊠ ⊠
⊠

⊠
⊠

⊠ ⊠
⊠

▲

▲

▲

▲

▲

▲

▲

▲

▲

•

•

•

•

•

•

•

•

•

▪

▪

▪

▪

▪

▪

▪

▪

▪

0 2 4 6 8

0

-0.1

-0.2

Number of Added Edges

∆
I
(G

)

Random

SpGreedy

FastGreedy

Optimum

⊠

▲

•
▪

(a) ⊠
⊠

⊠
⊠ ⊠

⊠ ⊠ ⊠
⊠

▲

▲

▲

▲

▲

▲

▲

▲

▲

•

•

•

•

•

•
•

•
•

▪

▪

▪

▪

▪

▪
▪

▪
▪

0 2 4 6 8

0

-0.1

-0.2

Number of Added Edges

∆
I
(G

)

Random

SpGreedy

FastGreedy

Optimum

⊠

▲

•
▪

(b) ⊠

⊠ ⊠

⊠

⊠ ⊠
⊠ ⊠

⊠

▲

▲

▲

▲

▲

▲

▲

▲

▲

•

•

•

•

•

•

•

•
•

▪

▪

▪

▪

▪

▪

▪

▪
▪

0 2 4 6 8

0

-0.1

-0.2

Number of Added Edges

∆
I
(G

)

Random

SpGreedy

FastGreedy

Optimum

⊠

▲

•
▪

(c) ⊠ ⊠ ⊠
⊠ ⊠ ⊠ ⊠

⊠ ⊠

▲

▲

▲

▲

▲

▲

▲

▲

▲

•

•

•

•

•

•

•

•

•

▪

▪

▪

▪

▪

▪

▪

▪

▪

0 2 4 6 8

0

-0.2

-0.4

Number of Added Edges

∆
I
(G

)

Random

SpGreedy

FastGreedy

Optimum

⊠

▲

•
▪

(d)

Uniform distribution

⊠ ⊠
⊠ ⊠

⊠ ⊠
⊠

⊠
⊠

▲

▲

▲

▲

▲

▲

▲

▲

▲

•

•

•

•

•

•
•

•
•

▪

▪

▪

▪

▪

▪
▪

▪
▪

0 2 4 6 8

0

-0.02

-0.04

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

Optimum

⊠

▲

•
▪

(c) ⊠

⊠ ⊠ ⊠
⊠ ⊠ ⊠

⊠
⊠

▲

▲

▲

▲

▲

▲

▲
▲

▲

•

•

•

•

•
•

•
•

•

▪

▪

▪

▪

▪
▪

▪
▪

▪

0 2 4 6 8

0

-0.02

-0.04

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

Optimum

⊠

▲

•
▪

(d)

⊠ ⊠ ⊠ ⊠
⊠

⊠
⊠

⊠
⊠

▲

▲

▲

▲

▲

▲

▲

▲

▲

•

•

•

•

•

•
•

•
•

▪

▪

▪

▪

▪

▪
▪

▪
▪

0 2 4 6 8

0

-0.02

-0.04

-0.06

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

Optimum

⊠

▲

•
▪

(a) ⊠ ⊠
⊠

⊠

⊠

⊠ ⊠

⊠ ⊠

▲

▲

▲

▲

▲

▲

▲

▲

▲

•

•

•

•

•

•

•

•

•

▪

▪

▪

▪

▪

▪

▪

▪

▪

0 2 4 6 8

0

-0.02

-0.04

-0.06

-0.08

Number of Added Edges

∆
I
(G

)
Random

Exact

Approx

Optimum

⊠

▲

•
▪

(b)

Exponential distribution

⊠

⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
⊠

▲

▲

▲

▲

▲

▲

▲
▲

▲

•

•

•

•
•

•
•

•
•

▪

▪

▪

▪
▪

▪
▪

▪
▪

0 2 4 6 8

0

-0.01

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

Optimum

⊠

▲

•
▪

(c) ⊠

⊠ ⊠

⊠
⊠ ⊠ ⊠ ⊠ ⊠

▲

▲

▲

▲

▲

▲

▲
▲ ▲

•

•

•

•

•

•
•

• •

▪

▪

▪

▪

▪

▪
▪

▪ ▪

0 2 4 6 8

0

-0.02

-0.04

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

Optimum

⊠

▲

•
▪

(d)

⊠
⊠

⊠

⊠ ⊠

⊠ ⊠
⊠ ⊠

▲

▲

▲

▲

▲

▲

▲

▲

▲

•

•

•

•

•

•

•
•

•

▪

▪

▪

▪

▪

▪

▪
▪

▪

0 2 4 6 8

0

-0.02

-0.04

-0.06

-0.08

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

Optimum

⊠

▲

•
▪

(a) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
▲

▲

▲

▲
▲

▲
▲ ▲ ▲

•

•

•
• • • • • •

▪

▪

▪
▪ ▪ ▪ ▪ ▪ ▪

0 2 4 6 8

0

-0.02

-0.04

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

Optimum

⊠

▲

•
▪

(b)

Power-law distribution

Figure 1: Optimization results of four methods for edge addition on datasets (a) Karate, (b) Dolphins,
(c) Netscience and (d) Diseasom with three initial opinion distributions for varying k.

Methods. The sets of k edges are found with the following seven strategies. (1) Optimum: selecting
edge set |T | = k with minimum I(G + T) by exhaustive search. (2) Random: selecting k edges at
random. (3) Betweenness: selecting top-k edges with the highest betweenness [7]. (4) DegProduct:
selecting top-k edges with the largest product of two end-points degrees. (5) DegSum: selecting
top-k edges with the largest sum of two end-points degrees. (6)FastGreedy: selecting top-k edges
with maximum f(e) returned by algorithm FASTGREEDY. (7) SpGreedy: selecting top-k edges with
maximum f(e) returned by algorithm SPGREEDY.
Opinions and evaluation metrics. We investigate three different distributions for the initial opin-
ions: uniform distribution, exponential distribution, and power-law distribution. For the uniform
distribution, the initial opinion si of each node i is distributed uniformly in the range of [0, 1]. For
the latter two distributions, we use randht.py file in [14] to generate and normalize opinions to the
range of [0, 1] according to a exponential distribution and a power law with a given slope. Note that
there is always a node with internal opinion 1 due to the normalization operation. The performance
of all above-mentioned methods is evaluated by the impact of their selected edges on the drop of the
P-D index ∆I(G) = I(G + T)− I(G), with a smaller ∆I(G) corresponding to an more effective
method.

Results. We first evaluate the effectiveness of our algorithms, we execute experiments on four
small realistic networks: Karate with 34 nodes and 78 edges, Dolphins with 62 nodes and 159
edges, Netscience with 379 nodes and 914 edges, and Diseasom with 516 nodes and 1188 edges.
These networks are small, allowing us to compute the optimal set of edges. For each case, we
add k = 1, 2, . . . , 8 edges to augment the network from |EC | = 30 candidate edges. For the
approximation algorithm FASTGREEDY, we set ε = 0.3. Note that a smaller ε corresponds to a
stronger approximation ratio but less efficiency. As shown in Figures 1, for all three initial opinion
distributions, the solutions returned by our two greedy algorithms and the optimum solution are
almost the same so that the three curves are overlapped, demonstrating that our greedy algorithms
perform much better than the theoretical guarantee. In addition, both of our algorithms are much
better than those returned by the random scheme.

To further show the effectiveness of our algorithms, we proceed to compare the results of our methods
with the baseline schemes on four relatively larger real-world networks: Yeast with 1458 nodes
and 1948 edges, GridWorm with 3507 nodes and 6531 edges, Erdös992 with 5094 nodes and 7515
edges, and Reality with 6809 nodes and 7680 edges, for which it is almost impossible to get the
optimal solutions by brute-force search. For each network, the performance of different methods for

9

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂
^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂

^̂ ^̂ ^

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠

▪▪▪

•••
▲▲▲

0 10 20 30 40 50

0

-2

-4

-6

Number of Added Edges

∆
I
(G

)

Random

SpGreedy

FastGreedy

DegSum

DegProduct

Betweenness

^

⊗

⊠

▪
•
▲

(a)
^̂ ^̂ ^̂ ^̂

^̂ ^

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠

▪▪▪

•••
▲▲▲

0 10 20 30 40 50

0

-2

-4

-6

Number of Added Edges

∆
I
(G

)

Random

SpGreedy

FastGreedy

DegSum

DegProduct

Betweenness

^

⊗

⊠

▪
•
▲

(b)
^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^
^̂ ^̂ ^̂ ^̂ ^̂

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠⊠⊠⊠

⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠

▪▪▪
•••▲▲▲

0 10 20 30 40 50

0

-2

-4

-6

Number of Added Edges

∆
I
(G

)

Random

SpGreedy

FastGreedy

DegSum

DegProduct

Betweenness

^

⊗

⊠

▪
•
▲

(c)
^
^̂ ^̂

^̂ ^̂

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗

⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠

⊠⊠⊠

▪▪▪

•••

▲▲▲

0 10 20 30 40 50

0

-2

-4

-6

Number of Added Edges

∆
I
(G

)

Random

SpGreedy

FastGreedy

DegSum

DegProduct

Betweenness

^

⊗

⊠

▪
•
▲

(d)

Uniform distribution

^^^

⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊠

⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠
⊠⊠⊠⊠

⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠

���•••���

0 10 20 30 40 50

0

-0.5

-1.0

-1.5

Number of A dded Edges

�

I
(G
)

R an d om

E x ac t

A p p r ox

D egSum

D egP r o d u c t

B etw een n ess

^

⊗

⊠

�
•
�

(c)
^^^
⊗

⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊠

⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠
⊠
⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠

���
•••
���

0 10 20 30 40 50

0

-0.5

-1.0

-1.5

-2.0

Number of A dded Edges

�

I
(G
)

R an d om

E x ac t

A p p r ox

D egSum

D egP r o d u c t

B etw een n ess

^

⊗

⊠

�
•
�

(d)

^^^

⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊠

⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠

���
•••
���

0 10 20 30 40 50

0

-0.5

-1.0

-1.5

Number of A dded Edges

�

I
(G
)

R an d om

E x ac t

A p p r ox

D egSum

D egP r o d u c t

B etw een n ess

^

⊗

⊠

�
•
�

(a)
^^^^^^^^

^^^

⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊠

⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠
⊠
⊠⊠
⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠

���
•••���

0 10 20 30 40 50

0

-0.5

-1.0

-1.5

-2.0

Number of A dded Edges

�

I
(G
)

R an d om

E x ac t

A p p r ox

D egSum

D egP r o d u c t

B etw een n ess

^

⊗

⊠

�
•
�

(b)

Exponential distribution

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^

⊗

⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊠

⊠

⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠
⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠⊠

▪▪▪
•••▲▲▲

0 10 20 30 40 50

0

-0.5

-1.0

-1.5

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

DegSum

DegProduct

Betweenness

^

⊗

⊠

▪
•
▲

(c)
^̂ ^⊗

⊗

⊗
⊗
⊗
⊗
⊗⊗⊗

⊠

⊠

⊠
⊠
⊠
⊠⊠

⊠⊠

▪▪▪•••▲▲▲

0 10 20 30 40 50

0

-0.5

-1.0

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

DegSum

DegProduct

Betweenness

^

⊗

⊠

▪
•
▲

(d)

^̂ ^⊗

⊗

⊗
⊗
⊗
⊗
⊗
⊗⊗

⊠

⊠

⊠
⊠
⊠
⊠
⊠
⊠⊠

▪▪▪•••▲▲▲

0 10 20 30 40 50

0

-0.5

-1.0

-1.5

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

DegSum

DegProduct

Betweenness

^

⊗

⊠

▪
•
▲

(a)
^̂ ^⊗

⊗

⊗
⊗
⊗
⊗⊗

⊠

⊠

⊠
⊠
⊠
⊠⊠

▪▪▪•••▲▲▲

0 10 20 30 40 50

0

-0.5

-1.0

Number of Added Edges

∆
I
(G

)

Random

Exact

Approx

DegSum

DegProduct

Betweenness

^

⊗

⊠

▪
•
▲

(b)

Power-law distribution

Figure 2: Optimization results for six methods of edge addition on datasets: (a) Yeast, (b) GridWorm,
(c) Erdös992 and (d) Reality with three initial opinion distributions for varying k.

varying k and |EC | = 10000 candidate edges are displayed in Figures 2. We can see that SPGREEDY
achieves the best performance as expected, and the proposed FASTGREEDY (a): is very close to the
SPGREEDY method, and (b): consistently outperforms all four alternative methods.

In Table 1 we provide the results of running time and the drop of the P-D index ∆I(G) returned by
our two greedy algorithms. We observe that FASTGREEDY is significantly faster than SPGREEDY,
especially for large networks, while both algorithms almost yield the same value on ∆I(G). It is
worth noting that SPGREEDY is not applicable to the last eight networks marked with "∗" due to
the limitations of time and memory. In comparison with SPGREEDY, FASTGREEDY approximately
computes ∆I(G) within several hours. Therefore, our algorithm FASTGREEDY achieves remarkable
improvement in efficiency and is scalable to large networks with more than 106 nodes.

8 Conclusions

In this paper, we considered the problem of minimizing the disagreement polarization index I(G)
by strategically recommending k links. This problem belongs to the class of discrete optimization
that has found vast applications in various domains. We showed the objective function is monotone
but non-submodular. We then presented two greedy algorithms to solve the optimization problem:
the former returns a constant-factor approximation of the optimum solutions in time O(n3), while
the latter runs in time Õ(mkε−2). On the theoretic side, we provided analysis of the approximation
guarantee for these two algorithms. On the experimental aspect, we performed extensive experiments
on real-life networks, which demonstrate that both of our algorithms lead to almost optimal solutions,
and consistently outperform several alternative baseline heuristics. Particularly, our second algorithm
could yield a good approximation solution quickly on networks with more than one million nodes
within 2 hours, demonstrating excellent scalablity to massive networks.

10

Acknowledgments and Disclosure of Funding

This work was supported by the National Key R & D Program of China (No. 2018YFB1305104), the
National Natural Science Foundation of China (Nos. U20B2051 and 61872093), Shanghai Municipal
Science and Technology Major Project (Nos. 2018SHZDZX01 and 2021SHZDZX03), ZJ Lab, and
Shanghai Center for Brain Science and Brain-Inspired Technology.

References
[1] Rediet Abebe, Jon Kleinberg, David Parkes, and Charalampos E Tsourakakis. Opinion dy-

namics with varying susceptibility to persuasion. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1089–1098. ACM,
2018.

[2] Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the 20th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 274–281.
ACM, 2001.

[3] Victor Amelkin and Ambuj K Singh. Fighting opinion control in social networks via link
recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 677–685. ACM, 2019.

[4] Brian DO Anderson and Mengbin Ye. Recent advances in the modelling and analysis of
opinion dynamics on influence networks. International Journal of Automation and Computing,
16(2):129–149, 2019.

[5] Andrew An Bian, Joachim M Buhmann, Andreas Krause, and Sebastian Tschiatschek. Guaran-
tees for greedy maximization of non-submodular functions with applications. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 498–507. JMLR.
org, 2017.

[6] David Bindel, Jon Kleinberg, and Sigal Oren. How bad is forming your own opinion? Games
and Economic Behavior, 92:248–265, 2015.

[7] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology,
25(2):163–177, 2001.

[8] TH Chan, Zhibin Liang, and Mauro Sozio. Revisiting opinion dynamics with varying suscepti-
bility to persuasion via non-convex local search. In Proceedings of the 28th World Wide Web
Conference, pages 173–183. ACM, 2019.

[9] P. Yu Chebotarev and E. V. Shamis. The matrix-forest theorem and measuring relations in small
social groups. Automation and Remote Control, 58(9):1505–1514, 1997.

[10] P. Yu Chebotarev and E. V. Shamis. On proximity measures for graph vertices. Automation and
Remote Control, 59(10):1443–1459, 1998.

[11] Pavel Chebotarev. Spanning forests and the golden ratio. Discrete Applied Mathematics,
156(5):813–821, 2008.

[12] Xi Chen, Jefrey Lijffijt, and Tijl De Bie. Quantifying and minimizing risk of conflict in social
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1197–1205. ACM, 2018.

[13] Uthsav Chitra and Christopher Musco. Analyzing the impact of filter bubbles on social network
polarization. In Proceedings of the 13th ACM International Conference on Web Search and
Data Mining, pages 115–123. ACM, 2020.

[14] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM Review, 51(4):661–703, 2009.

[15] Pierluigi Crescenzi, Gianlorenzo D’angelo, Lorenzo Severini, and Yllka Velaj. Greedily
improving our own closeness centrality in a network. ACM Transactions on Knowledge
Discovery from Data, 11(1):9, 2016.

11

[16] Pranav Dandekar, Ashish Goel, and David T Lee. Biased assimilation, homophily, and the
dynamics of polarization. Proceedings of the National Academy of Sciences, 110(15):5791–
5796, 2013.

[17] Gianlorenzo D’Angelo, Martin Olsen, and Lorenzo Severini. Coverage centrality maximization
in undirected networks. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
pages 501–508. AAAI, 2019.

[18] Abhimanyu Das, Sreenivas Gollapudi, Rina Panigrahy, and Mahyar Salek. Debiasing social
wisdom. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 500–508. ACM, 2013.

[19] Yucheng Dong, Min Zhan, Gang Kou, Zhaogang Ding, and Haiming Liang. A survey on the
fusion process in opinion dynamics. Information Fusion, 43:57–65, 2018.

[20] Noah E Friedkin and Eugene C Johnsen. Social influence and opinions. Journal of Mathematical
Sociology, 15(3-4):193–206, 1990.

[21] J. Gaitonde, J. Kleinberg, and Éva Tardos. Adversarial perturbations of opinion dynamics in
networks. In Proceedings of the 21st ACM Conference on Economics and Computation, pages
471–472. ACM, 2020.

[22] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael Mathioudakis.
Reducing controversy by connecting opposing views. In Proceedings of the 10th ACM Interna-
tional Conference on Web Search and Data Mining, pages 81–90. ACM, 2017.

[23] Kiran Garimella, Aristides Gionis, Nikos Parotsidis, and Nikolaj Tatti. Balancing information
exposure in social networks. In Proceedings of the 31st Conference on Neural Information
Processing Systems, page 4666–4674. ACM, 2017.

[24] Javad Ghaderi and Rayadurgam Srikant. Opinion dynamics in social networks with stubborn
agents: Equilibrium and convergence rate. Automatica, 50(12):3209–3215, 2014.

[25] Aristides Gionis, Evimaria Terzi, and Panayiotis Tsaparas. Opinion maximization in social
networks. In Proceedings of the 13th SIAM International Conference on Data Mining, pages
387–395, 2013.

[26] VE Golender, VV Drboglav, and AB Rosenblit. Graph potentials method and its application for
chemical information processing. Journal of Chemical Information and Computer Sciences,
21(4):196–204, 1981.

[27] Shahrzad Haddadan, Cristina Menghini, Matteo Riondato, and Eli Upfal. Repbublik: Reducing
polarized bubble radius with link insertions. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pages 139–147. ACM, 2021.

[28] Guang He, Wenbing Zhang, Jing Liu, and Haoyue Ruan. Opinion dynamics with the increasing
peer pressure and prejudice on the signed graph. Nonlinear Dynamics, 99:1–13, 2020.

[29] Peng Jia, Anahita MirTabatabaei, Noah E Friedkin, and Francesco Bullo. Opinion dynamics
and the evolution of social power in influence networks. SIAM Review, 57(3):367–397, 2015.

[30] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

[31] Jérôme Kunegis. Konect: The koblenz network collection. In Proceedings of the 22th World
Wide Web Conference, pages 1343–1350. ACM, 2013.

[32] Heidi Ledford. How facebook, twitter and other data troves are revolutionizing social science.
Nature, 582(7812):328–330, 2020.

[33] Jure Leskovec and Rok Sosič. SNAP: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology, 8(1):1, 2016.

[34] Huan Li and Aaron Schild. Spectral subspace sparsification. In Proceedings of the 59nd IEEE
Annual Symposium on Foundations of Computer Science, pages 385–396. IEEE, 2018.

12

[35] Erika Mackin and Stacy Patterson. Maximizing diversity of opinion in social networks. In
Proceedings of the 59th American Control Conference, pages 2728–2734. IEEE, 2019.

[36] Antonis Matakos, Evimaria Terzi, and Panayiotis Tsaparas. Measuring and moderating opinion
polarization in social networks. Data Mining and Knowledge Discovery, 31(5):1480–1505,
2017.

[37] Antonis Matakos, Sijing Tu, and Aristides Gionis. Tell me something my friends do not know:
Diversity maximization in social networks. Knowledge and Information Systems, 62(9):3697–
3726, 2020.

[38] Carl D Meyer, Jr. Generalized inversion of modified matrices. SIAM Journal on Applied
Mathematics, 24(3):315–323, 1973.

[39] Cameron Musco, Christopher Musco, and Charalampos E Tsourakakis. Minimizing polarization
and disagreement in social networks. In Proceedings of the 27th World Wide Web Conference,
pages 369–378. ACM, 2018.

[40] Anton V Proskurnikov and Roberto Tempo. A tutorial on modeling and analysis of dynamic
social networks. part I. Annual Reviews in Control, 43:65–79, 2017.

[41] Chiara Ravazzi, Paolo Frasca, Roberto Tempo, and Hideaki Ishii. Ergodic randomized al-
gorithms and dynamics over networks. IEEE Transactions on Control of Network Systems,
1(2):78–87, 2015.

[42] Justin Semonsen, Christopher Griffin, Anna Squicciarini, and Sarah Rajtmajer. Opinion dy-
namics in the presence of increasing agreement pressure. IEEE Transactions on Cybernetics,
49(4):1270–1278, 2019.

[43] Liren Shan, Yuhao Yi, and Zhongzhi Zhang. Improving information centrality of a node in
complex networks by adding edges. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 3535–3541. AAAI, 2018.

[44] D. Spielman and S. Teng. Nearly linear time algorithms for preconditioning and solving sym-
metric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and Applications,
35(3):835–885, 2014.

[45] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal of Computing, 40(6):1913–1926, 2011.

[46] Sijing Tu, Cigdem Aslay, and Aristides Gionis. Co-exposure maximization in online social
networks. In Proceedings of the 34th Conference on Neural Information Processing Systems,
pages 3232–3243. ACM, 2020.

[47] Pinghua Xu, Wenbin Hu, Jia Wu, and Weiwei Liu. Opinion maximization in social trust
networks. In Proceedings of the 29th International Joint Conference on Artificial Intelligence,
pages 1251–1257. AAAI, 2020.

[48] Wanyue Xu, Qi Bao, and Zhongzhi Zhang. Fast evaluation for relevant quantities of opinion
dynamics. In Proceedings of the 30th World Wide Web Conference, pages 2037–2045. ACM,
2021.

[49] Yuhao Yi, Timothy Castiglia, and Stacy Patterson. Shifting opinions in a social network through
leader selection. IEEE Transactions on Control of Network Systems, 8(3):1116–1127, 2021.

[50] Yuhao Yi and Stacy Patterson. Disagreement and polarization in two-party social networks.
IFAC-PapersOnLine, 53(2):2568–2575, 2020.

13

	Introduction
	Related work
	Preliminaries
	Problem Formulation
	SpGreedy: Simple Greedy Algorithm
	FastGreedy: Fast Greedy Algorithm
	Experiments
	Conclusions

