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S1 Emperical estimations

S1.1 A differentiable coverage identifier

Given a prediction interval Ĉ(Xi) = [q̂αlo(Xi), q̂αlo(Xi)] for a point Xi, we approximate its coverage
indicator 1[Y ∈ Ĉ(Xi)] in the following way:

Ṽi = tanh (cmin{Yi − q̂αlo(Xi), q̂αhi(Xi)− Yi})

V̂i =
1

2

(
Ṽi + 1

) (S1)

where c ∈ R+ controls the slope of the step function. In the experiments, we set c to be equal
to 5 · 103. This approximation is differentiable and used in practice.

S2 Theoretical results

S2.1 Proof of proposition 1

Proof. Consider an l ∈ R, and v ∈ {0, 1}. To prove the theorem, it suffices to show that P(V = v |
L = l) = P(V = v). Denote gX , gX|L the density functions of X and X|L respectively, and denote
β = P(V = v | X = x). It is given that the interval constructed satisfies P(V = 1 | X = x) = 1−α
for all x ∈ X , and therefore β is a constant and equals 1− α if v = 1, or α if v = 0.

First, we show that P(V = v) = β:

P(V = v) =

∫
x∈X

P(V = v | X = x)gX(x) dx = β

∫
x∈X

gX(x) dx = β
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To conclude our proof, we show that P(V = v | L = l) = β as well.

P(V = v | L = l) =

∫
{x∈X|L=l}

P(V = v | L = l,X = x)gX|L(x | l) dx

=

∫
{x∈X|L=l}

P(V = v | X = x)gX|L(x | l) dx

=

∫
{x∈X|L=l}

βgX|L(x | l) dx

= β = P(V = v)

S2.2 Proof of corollary

Proof. The interval constructed by true conditional quantiles C(X) = [qαlo(X), qαhi(X)] satisfies
P(Y ∈ C(X)|X = x) = 1 − α for all x ∈ X , and hence, from Proposition 1 we conclude that
L ⊥⊥ V .

S2.3 Proof of theorem 1

Proof. The true quantiles minimize the first term in the sum, by the properties of pinball loss or
interval score loss. Moving to the next term. Assuming Y | X is continuous, from Corollary 1
the true conditional quantiles satisfy: V ⊥⊥ L, and this implies that their correlation, denoted as
CORR(L, V ), and HSIC are fixed and equal zero, and therefore:

CORR(L, V ) = 0⇒ Rcorr(L, V ) = |CORR(L, V )| = |0| = 0,

HSIC(L, V ) = 0⇒ RHSIC(L, V ) =
√

HSIC(L, V ) =
√

0 = 0.

This means that for either choice loss function, R(L, V ) = 0 which is the minimal value of the
second term, as it is non-negative. Therefore, the true quantiles are a solution to the minimization
problem, since they minimize both terms separately.

Turning to the uniqueness, assume there is a unique solution for γ = 0. Then, since the true quantiles
minimize the the pinball loss or interval score loss, it follows that the true conditional quantiles are
the unique solution. We proved that they attain R(L, V ) = 0, the minimum value this term could
achieve. Thus, we conclude that there is only one solution for all γ > 0.

S3 Datasets details

S3.1 Synthetic datasets details

The synthetic dataset is determined by the parameter λ which controls the variance of the response
value of the minority group. The generation of the feature vector and the response variable is done in
the following way:
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β̂ ∼ Uniform(0, 1)50, γ̂ ∼ Uniform(0, 1)50,

β =
β̂

‖β̂‖2
, γ =

γ̂

‖γ̂‖2
,

ε1,i ∼ N (0, 1), ε2,i ∼ N (0, 1), 1 ≤ i ≤ n,
Xi,1−49 ∼ Uniform(0, 5)49, 1 ≤ i ≤ n,

Xi,0 =

{
0, w.p. 0.8

1, otherwise
1 ≤ i ≤ n,

Yi =

{
0.03βTXiε1,i, Xi,0 = 0

0.03γTXiε1,i + λε2,i, Xi,0 = 1
1 ≤ i ≤ n,

where Uniform(a, b) is a uniform distribution on the interval (a, b), and N (0, 1) is the standard
Gaussian distribution. The dataset with minority noise level set to low was created with λ = 3,
and the one with the High noise level with λ = 10. Both datasets contain 7000 samples, and were
generated with a seed value equals to 1.

S3.2 Real dataset details

Table S1 shows the size of each data set and the feature dimension.

Table S1: Real datasets information. Number of samples and feature dimension of each real dataset
we used in the experiments

Dataset Name Number of Samples Feature Dimension

facebook_1 [1] 40948 53

facebook_2 [1] 81311 53

blog_data [2] 52397 2805

bio [3] 45730 9

kin8nm [4] 8192 8

naval [5] 11934 17

meps_19 [6] 15785 139

meps_20 [7] 17541 139

meps_21 [8] 15656 139

S4 Experimental setup

S4.1 Setup

The network we used receives as an input a vector of size p+ 1 (where the feature dimention is p).
The first p variables in the input vector correspond to the elements of the feature vector, and the last
variable is the quantile level of the desired quantile. We trained quantile regression with pinball loss
over two quantile levels: 95% and 5% level quantiles, and trained quantile regression with interval
score over all quantile levels. For each model, we built prediction intervals using the 95%-th and
5%-th quantiles it outputted, as explained in 2.1. The code we used is based on the implementation
of [9]. The penalty multipliers for each dataset were chosen by an independent train-validation-test
split (with seed=42), so the coefficient that achieved the best performance was taken. The multipliers
tested for the real data are: 0.1, 0.5, for pinball loss, and 0.1, 0.5, 1, 3, for interval score loss. For the
synthetic data we checked: 0.1, 0.5 for both losses. When combining our penalty with pinball loss,
the coefficient given to the model is multiplied by 0.1.
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S4.2 Synthetic data experiments

We split the synthetic datasets into a training set (64%), a validation set (16%) for early stopping,
and a test set (20%) to evaluate performance. After that, the feature vectors and the labels were
preprocessed using z-score normalization. The neural network is made of 2 layers of 64 hidden units,
and a ReLU activation function. The network does not contain a dropout layer. The learning rate
used is 1e−3, the model’s optimizer is Adam [10], and the batch size is 1024 for all methods. The
maximum number of epochs is 10000, but the training is stopped early if the validation loss does not
increase for 200 epochs, and in this case the model with the lowest loss is taken as the final model.
The results were averaged over all seeds in the range between 0 and 29 (inclusive).

The decorrelation coefficients used in the experiments are: for pinball loss, 0.5 for both λ = 3, and
λ = 10, and for interval score loss 3 for both λ = 3, 10.

S4.3 Real data experiments

First, the datasets: facebook_1, facebook_2, blog_data, and bio, were log scaled: y =
log(y −min(y) + 1). We split each dataset it into a training set (54%), a validation set (6%)
for early stopping, and a test set (40%) to evaluate performance. After that, the feature vectors and the
labels were preprocessed using z-score normalization. The neural network is made of 3 layers of 64
hidden units, and ReLU activation function. The network contains a dropout layer with parameter 0.1.
The learning rate, training strategy and batch size are the same as described in S4.2. The maximum
number of epochs is 10000, and we used the same early stopping technique described in S4.2. The
results were averaged over all seeds in the range between 0 and 29 (inclusive).

Figure 2 was produced by splitting all test’s coverages and lengths over all seeds to hundred bins, and
averaging each bin separately. Both vanilla QR and orthogonal QR used pinball loss as an
objective function, and the penalty used by our method isRcorr.

Table S2 displays the multiplier used for each data set and method.

Table S2: Penalty multipliers used for each dataset

Pinball Loss

Dataset Name Decorr multiplier HSIC multiplier

facebook_1 0.5 0.5

facebook_2 0.5 0.5

blog_data 0.5 0.5

bio 0.1 0.1

kin8nm 0.1 0.1

naval 0.1 0.1

meps_19 0.5 0.1

meps_20 0.5 0.1

meps_21 0.5 0.5

Interval Score Loss

Dataset Name Decorr multiplier

facebook_1 0.5

facebook_2 0.5

blog_data 1

bio 0.1

kin8nm 0.5

naval 0.1

meps_19 3

meps_20 3

meps_21 3

S4.4 Conformalized quantile regression experiments

We used the same setting as in S4.3, except for the following changes. The dataset was split into a
training set (54%), a validation set (6%) for early stopping, a calibration set (20%) to achieve valid
marginal coverage, and a test set (20%) to evaluate performance. The calibration method used is
Conformalized Quantile Regression [11].

S4.5 Machine’s spec

The resources used for the experiments are:

• CPU: Intel(R) Core(TM) i5-10600K CPU 4.10GHz.
• GPU: NVIDIA GeForce RTX 2060 SUPER.
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• OS: Windows 10.

S5 Additional results

S5.1 Synthetic data

S5.1.1 Interval score loss results

As shown in Table S3, when combined with interval score loss, the suggested penalty consistently
improves all metrics, and balances the coverage rates over the majority and minority subgroups.

Table S3: Simulated data experiments - using interval score loss with either QR (baseline) or
orthogonal QR (OQR) with penalty termRcorr. Refer to the caption of Table 1 for further details.
The standard errors for coverage and width are about 0.45, 0.1, respectively. See Table S10 for a full
reporting of all standard errors.

Minority
Group

Uncertainty
Majority Coverage (%) Minority Coverage (%) Majority Lengths Minority Lengths Improvement (%)

baseline / OQR baseline / OQR baseline / OQR baseline / OQR corr HSIC ∆WSC

Low 84.38 / 88.56 72.77 / 78.41 1.73 / 1.89 7.46 / 8.70 +35.03 +46.48 +49.80

High 85.99 / 89.89 74.08 / 80.05 2.22 / 2.53 24.99 / 29.07 +27.91 +7.00 +17.62

S5.1.2 Weighted quantile regression

Tables S4, S5 show that combining the proposed decorrelation penalty with weighted QR improves
the conditional coverage, according to the examined metrics. Specifically, while the values of corr
attained by weighted QR and its orthogonal variant (OWQR) are similar, the latter achieves better
performance in terms of the HSIC measure (that quantifies non linear relationships between L and
V ). Observe that our method also improves the group coverage, as the coverage rate of the minority
group is closer to the nominal level compared to the baseline approach. The weights we assign to
the samples are the absolute residuals of a regression model fitted to the training set (minimizing the
mean squared error). We have examined various options for choosing the weight function, including
absolute/squared residuals, and the inverse of the absolute/squared residuals. Another option we
tested is to assign weights that balance the majority and minority groups (all minority samples are
weighted with a factor of 4, and all majority samples are weighted by 1). Among all options, the
absolute residual weighting function achieves the best results. In short, this experiment reveals that
adding the orthogonality loss to this best version of weighted QR improves conditional coverage
as well.

S5.1.3 The orthogonality loss coefficient

In Figure S1 we demonstrate the effect of the Pearson’s corr loss coefficient γ on the resulted
intervals. This figure shows that the proposed loss increases the variability of the resulted intervals:
it widens the intervals of the minority group, and shortens those of the majority group, improving
conditional coverage. As a result, the variability increases but in a non-trivial way: the increased
adaptivity we gain improves conditional coverage.

Table S4: Simulated data experiments. Performance of neural network quantile regression, using
either WQR (baseline) or orthogonal weighted QR (OWQR) with penalty term Rcorr with
coefficient γ = 3. The performance are evaluated over 60 independent trials. The standard errors
for coverage and length are about 2.1, 0.16, respectively. The conditional coverage metrics and their
standard errors are presented in Table S5.

Minority
Noise Level

Majority Coverage (%) Minority Coverage (%) Majority Lengths Minority Lengths

baseline / OWQR baseline / OWQR baseline / OWQR baseline / OWQR

Low 90.87/ 91.87 69.04 / 84.25 6.02 / 5.02 7.33 / 10.75
High 90.20 / 94.73 68.89 / 87.58 18.35 / 15.76 23.56 / 36.18
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Table S5: Simulated data: Average metric value (standard error) - using pinball loss with either
weighted quantile regression (WQR) or orthogonal WQR (OWQR) with penalty term Rcorr. The
conditional coverage metrics are described in Section 4. See more details in Table S4.

Minority

Group

Uncertainty

corr HSIC ∆WSC

WQR OWQR WQR OWQR WQR OWQR

Low 0.049 (0.004) 0.054 (0.005) 7e-4 (4e-5) 4e-4 (4e-5) 1.744 (0.202) 1.839 (0.198)

High 0.066 (0.007) 0.073 (0.006) 0.001 (6e-5) 2e-4 (1e-5) 2.725 (0.215) 1.885 (0.163)

Figure S1: The effect of the Pearson’s corr loss coefficient γ on the interval’s length and its
variance on the synthetic data with λ = 3.

S5.2 Real data

The advantages of adding the suggested orthogonal loss to the interval score loss are summarized in
Table S6. Similarly to pinball loss, our regularizer improves the baseline method over all metrics in
most datasets. Also, the improvement over ∆WSC and ∆Node-Coverage metrics suggest that our
loss does help to better approximate conditional validity with interval score as well as pinball loss.
Overall, we can conclude that our proposal is useful for various scoring rules.

Table S6: Real data experiments - using interval score loss with either QR (baseline) or orthogonal
QR (OQR) with penalty termRcorr. Refer to the caption of Table 2 for further details. The standard
errors for coverage and width are about 0.6, 0.1, respectively. See Table S12 for a full reporting of all
standard errors.

Dataset Name Coverage (%) Length Improvement (%)

baseline OQR baseline OQR corr HSIC ∆WSC ∆ILS ∆Node

facebook_1 89.03 91.97 1.43 1.45 +79.02 +96.90 +15.91 +68.69 +1.15

facebook_2 88.82 93.35 1.35 1.38 +90.96 +98.71 +30.53 +69.23 +5.81

blog_data 82.94 87.25 1.58 1.65 +86.13 +94.47 +2.79 +89.66 +18.64

bio 89.93 89.76 2.19 2.19 +22.89 +37.16 -8.85 +48.56 -15.18

kin8nm 90.51 91.81 1.49 1.59 +28.63 +49.19 +13.67 +73.32 +22.77

naval 91.95 92.36 1.95 1.98 +14.18 +30.95 +20.33 +59.16 +26.28

meps_19 83.68 86.16 0.95 1.13 +17.15 +17.49 +24.28 +82.29 +27.97

meps_20 84.86 86.81 1.04 1.21 -10.31 -9.51 +1.36 +77.66 +24.69

meps_21 85.27 86.63 0.98 1.14 +20.88 -49.49 +17.14 +77.89 +10.89
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HSIC results

Table S7 presents the results of vanilla QR and orthogonal QR using HSIC penalty. Similarly
to the decorrelation penalty, the HSIC approach also improves the conditional coverage metrics in
most data sets.

Table S7: Real data experiments - using pinball loss with either vanilla QR (baseline) or
orthogonal QR (OQR) with penalty term RHSIC. Refer to the caption of Table 2 for further
details. The standard errors for coverage and width are about 0.5, 0.06, respectively. See Table S13
for a full reporting of all standard errors.

Dataset Name Coverage (%) Length Improvement (%)

baseline OQR baseline OQR corr HSIC ∆WSC ∆ILS ∆Node

facebook_1 88.10 93.86 1.09 1.43 +73.51 +88.41 +32.76 +76.86 +38.15

facebook_2 87.38 94.77 1.07 1.37 +88.49 +98.77 +42.68 +82.77 +57.24

blog_data 82.89 92.88 1.36 1.64 +63.79 +35.79 +32.58 +89.66 +41.74

bio 88.42 89.47 1.88 2.03 +11.26 +16.18 -42.33 +43.76 -25.75

kin8nm 84.63 88.22 0.98 1.20 +9.00 +25.34 -42.92 +52.75 +27.39

naval 89.89 89.72 0.56 1.21 +49.73 +5.52 -51.05 +61.98 +8.52

meps_19 82.44 85.47 0.84 0.94 +9.21 -8.17 +12.26 +78.54 +19.16

meps_20 82.81 86.02 0.86 0.96 -20.63 -34.17 +2.57 +81.03 +14.74

meps_21 82.50 82.51 0.86 0.94 -19.50 +10.39 +8.00 +84.43 +24.41

Table S8 compares the two proposed loss functions, and displays the improvement obtained by
regularizing with decorrelation instead of HSIC. As expected, the method optimizing Pearson’s
corr consistently achieves better results over this metric compared to pinball loss combined with
HSIC regularizer. Surprisingly, in most datasets the model that uses decorrelation penalty attains
a better HSIC value than the one optimizing directly this metric. These empirical drawbacks of
HSIC regularization compared to our suggested penalty might have been caused by the fact that
the latter receives twice as many samples in each gradient step, or its coefficients were more tuned.
Nevertheless, the method using HSIC is able to achieve better statistical efficiency, which is probably
due to its strength. Overall, we can conclude that thanks to the low computational burden, it is easier
to fine tune the coefficients of the decorrelation loss and use more samples, but it might not be as
strong as HSIC.

Table S8: Real data experiments. Performance of a neural network model for quantile regression,
orthogonal QR using either (RHSIC) penalty or (Rcorr) penalty. Refer to the caption of Table 2
for further details. The standard errors for coverage and width are about 0.5, 0.06, respectively. See
Tables S11,S13 for a full reporting of all standard errors.

Dataset Name Coverage (%) Length Improvement (%)

RHSIC Rcorr RHSIC Rcorr corr HSIC ∆WSC

facebook_1 93.86 90.48 1.43 1.44 +28.59 -100.51 +0.98

facebook_2 94.77 91.13 1.37 1.41 +24.18 -195.60 -15.38

blog_data 92.88 88.92 1.64 1.64 +37.84 -52.21 -16.51

bio 89.47 89.08 2.03 2.03 +47.59 +70.83 -1.69

kin8nm 88.22 88.62 1.20 1.28 +20.38 +30.98 +40.50

naval 89.72 89.50 1.21 1.49 +50.64 +30.12 -4.28

meps_19 85.47 85.16 0.94 1.00 +49.51 +28.12 +35.35

meps_20 86.02 84.27 0.96 1.03 +53.17 +26.95 +22.05

meps_21 82.51 84.07 0.94 0.99 +64.40 +3.60 +13.89
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S6 Standard error results

S6.1 Synthetic data

In the following tables we present the mean value and standard errors received for each metric in the
synthetic data experiments.

Table S9: Simulated data: Average metric value (standard error) - using pinball loss with either
vanilla QR (QR) or orthogonal QR (OQR) with penalty termRcorr.

Minority

Group

Uncertainty

corr HSIC ∆WSC

QR OQR QR OQR QR OQR

Low .105 (.005) .038 (.008) .001 (1e-5) 1e-4 (1e-5) 2.195 (.337) 2.500 (.373)

High .115 (.006) .032 (.006) 1e-4 (1e-5) 1e-4 (1e-4) 3.240 (.384) 2.658 (.335)

Table S10: Simulated data: Average metric value (standard error) - using interval score loss with
either quantile regression (QR) or orthogonal QR (OQR) with penalty termRcorr.

Minority

Group

Uncertainty

corr HSIC ∆WSC

QR OQR QR OQR QR OQR

Low .094 (.008) .061 (.008) 1e-4 (1e-4) 1e-4 (1e-5) 3.062 (.322) 1.537 (.339)

High .124 (.009) .089 (.014) 1e-4 (1e-5) 1e-4 (1e-4) 3.196 (.369) 2.633 (.359)

S6.2 Real data

In the following tables, we present the mean value and standard errors received for each metric in the
real data experiments. Table S15 reports the results of quantile regression forests on the real datasets.

Table S11: Real data: Average metric value (standard error) - using pinball loss with either vanilla
QR (QR) or orthogonal QR (OQR) with penalty termRcorr.

Dataset Name corr HSIC ∆WSC ∆ILS ∆Node

QR OQR QR OQR QR OQR QR OQR QR OQR

facebook_1 .057 (.013) .011 (.002) 1e-4 (1e-4) 1e-5 (1e-6) 6.371 (.731) 4.242 (.399) 9.345 (.520) 3.195 (.185) 3.555 (.491) 1.874 (.238)

facebook_2 .099 (.028) .009 (.002) .002 (.001) 1e-5 (1e-6) 6.810 (1.239) 4.504 (.314) 10.104 (.986) 3.465 (.117) 4.654 (1.433) 2.065 (.284)

blog_data .043 (.002) .010 (.002) 1e-5 (1e-5) 1e-5 (1e-5) 10.037 (.330) 7.885 (.306) 12.773 (.261) 1.285 (.178) 4.823 (.386) 3.163 (.322)

bio .084 (.002) .039 (.002) 1e-4 (1e-5) 1e-5 (1e-6) 1.218 (.192) 1.762 (.248) 8.461 (.263) 4.806 (.167) .912 (.153) .846 (.116)

kin8nm .283 (.003) .205 (.006) .002 (1e-5) .001 (1e-5) 1.638 (.216) 1.393 (.205) 16.770 (.452) 7.148 (.283) 1.471 (.256) 1.713 (.347)

naval .269 (.006) .067 (.006) .001 (1e-5) 1e-4 (1e-5) 2.824 (.394) 4.449 (.563) 8.674 (.633) 2.398 (.278) 2.410 (.312) 2.756 (.427)

meps_19 .056 (.006) .026 (.004) 1e-4 (1e-6) 1e-5 (1e-5) 8.580 (.644) 4.866 (.496) 12.976 (.551) 1.550 (.204) 7.204 (1.066) 3.931 (.584)

meps_20 .048 (.005) .027 (.005) 1e-5 (1e-6) 1e-5 (1e-5) 7.269 (.697) 5.520 (.590) 11.351 (.459) 1.735 (.270) 5.328 (.850) 2.830 (.494)

meps_21 .064 (.006) .027 (.004) 1e-4 (1e-5) 1e-4 (1e-5) 8.745 (.687) 6.927 (.738) 12.940 (.507) 1.938 (.236) 6.043 (.911) 3.730 (.569)

References
[1] Facebook comment volume data set. https://archive.ics.uci.edu/ml/

datasets/Facebook+Comment+Volume+Dataset. Accessed: January, 2019.

[2] Blogfeedback data set. https://archive.ics.uci.edu/ml/datasets/
BlogFeedback. Accessed: January, 2019.

8

https://archive.ics.uci.edu/ml/datasets/Facebook+Comment+Volume+Dataset
https://archive.ics.uci.edu/ml/datasets/Facebook+Comment+Volume+Dataset
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/BlogFeedback


Table S12: Real data: Average metric value (standard error) - using interval score loss with either
quantile regression (QR) or orthogonal QR (OQR) with penalty termRcorr.

Dataset Name corr HSIC ∆WSC ∆ILS ∆Node

QR OQR QR OQR QR OQR QR OQR QR OQR

facebook_1 .075 (.020) .016 (.003) .001 (.001) 1e-5 (1e-6) 3.392 (1.079) 2.853 (.405) 7.230 (.661) 2.264 (.190) 1.189 (.190) 1.175 (.168)

facebook_2 .083 (.028) .007 (.002) .002 (.002) 1e-5 (1e-6) 4.161 (1.483) 2.891 (.227) 6.707 (.660) 2.063 (.131) 2.065 (.708) 1.945 (.330)

blog_data .081 (.026) .011 (.002) .001 (1e-4) 1e-5 (1e-6) 10.468 (.450) 10.176 (.656) 10.610 (.338) 1.097 (.180) 4.875 (.657) 3.966 (.670)

bio .089 (.004) .069 (.004) 1e-4 (1e-5) 1e-4 (1e-5) 1.761 (.167) 1.917 (.204) 7.853 (.684) 4.040 (.290) .796 (.154) .917 (.137)

kin8nm .250 (.004) .178 (.006) .001 (1e-5) 1e-4 (1e-5) 1.740 (.234) 1.502 (.231) 14.186 (.823) 3.785 (.276) 1.775 (.286) 1.371 (.212)

naval .157 (.003) .135 (.005) 1e-4 (1e-5) 1e-4 (1e-5) 4.189 (.601) 3.337 (.560) 9.506 (.937) 3.883 (.378) 1.450 (.233) 1.069 (.166)

meps_19 .040 (.010) .033 (.005) 1e-4 (1e-5) 1e-4 (1e-5) 10.867 (1.001) 8.228 (1.018) 11.066 (1.220) 1.960 (.288) 6.720 (.917) 4.841 (.659)

meps_20 .028 (.005) .031 (.005) 1e-4 (1e-5) 1e-4 (1e-5) 7.898 (.430) 7.790 (.634) 8.513 (.476) 1.902 (.222) 4.234 (.763) 3.189 (.565)

meps_21 .047 (.004) .037 (.004) 1e-4 (1e-5) 1e-4 (1e-5) 9.295 (.668) 7.702 (.789) 9.743 (.459) 2.154 (.258) 5.771 (1.112) 5.143 (.820)

Table S13: Real data: Average metric value (standard error) - using pinball loss with either vanilla
QR (QR) or orthogonal QR (OQR) with penalty termRHSIC.

Dataset Name corr HSIC ∆WSC ∆ILS ∆Node

QR OQR QR OQR QR OQR QR OQR QR OQR

facebook_1 .057 (.013) .015 (.003) 1e-4 (1e-4) 1e-5 (1e-6) 6.371 (.731) 4.284 (.357) 9.620 (.521) 2.226 (.141) 3.300 (.552) 2.041 (.346)

facebook_2 .099 (.028) .011 (.002) .002 (.001) 1e-5 (1e-6) 6.810 (1.239) 3.904 (.247) 11.088 (1.170) 1.910 (.103) 5.849 (1.887) 2.501 (.355)

blog_data .043 (.002) .016 (.004) 1e-5 (1e-5) 1e-5 (1e-6) 10.037 (.330) 6.768 (.270) 13.524 (.286) 1.399 (.102) 4.851 (.467) 2.826 (.403)

bio .084 (.002) .075 (.002) 1e-4 (1e-5) 1e-4 (1e-5) 1.218 (.192) 1.733 (.239) 8.530 (.210) 4.797 (.107) .772 (.130) .971 (.162)

kin8nm .283 (.003) .257 (.004) .002 (1e-5) .001 (1e-5) 1.638 (.216) 2.341 (.326) 17.769 (.500) 8.396 (.189) 1.813 (.327) 1.317 (.212)

naval .269 (.006) .135 (.006) .001 (1e-5) .001 (1e-5) 2.824 (.394) 4.266 (.513) 6.480 (.640) 2.464 (.273) 2.374 (.380) 2.172 (.327)

meps_19 .056 (.006) .051 (.006) 1e-4 (1e-6) 1e-4 (1e-5) 8.580 (.644) 7.528 (.632) 11.940 (.299) 2.563 (.273) 6.736 (1.050) 5.446 (.854)

meps_20 .048 (.005) .057 (.008) 1e-5 (1e-6) 1e-4 (1e-5) 7.269 (.697) 7.082 (.655) 11.128 (.468) 2.111 (.274) 4.979 (.916) 4.245 (.800)

meps_21 .064 (.006) .077 (.014) 1e-4 (1e-5) 1e-4 (1e-5) 8.745 (.687) 8.045 (.754) 12.333 (.507) 1.920 (.283) 3.899 (.673) 2.947 (.528)

Table S14: Real data: Average metric value (standard error) - using pinball loss with conformalization
and either vanilla CQR (CQR) or orthogonal CQR (COQR) with penalty termRcorr.

Dataset Name corr HSIC ∆WSC ∆ILS ∆Node

CQR COQR CQR COQR CQR COQR CQR COQR CQR COQR

facebook_1 .039 (.009) .016 (.003) 1e-4 (1e-5) 1e-5 (1e-6) 5.187 (.408) 3.379 (.410) 10.395 (.376) 3.348 (.168) 2.945 (.534) 2.078 (.334)

facebook_2 .068 (.011) .016 (.003) 1e-4 (1e-5) 1e-5 (1e-5) 5.175 (.342) 3.648 (.317) 8.625 (.278) 4.026 (.153) 3.538 (.427) 1.682 (.238)

blog_data .018 (.003) .016 (.003) 1e-5 (1e-6) 1e-5 (1e-5) 9.658 (.318) 7.303 (.402) 14.131 (.348) 1.332 (.175) 6.216 (.677) 3.768 (.344)

bio .080 (.002) .039 (.003) 1e-4 (1e-6) 1e-5 (1e-6) 1.222 (.142) 1.598 (.206) 7.565 (.286) 4.601 (.114) .757 (.120) 1.064 (.179)

kin8nm .231 (.003) .189 (.007) 1e-4 (1e-5) 1e-4 (1e-5) 1.708 (.265) 2.896 (.375) 14.443 (.509) 6.046 (.327) 1.833 (.322) 1.859 (.218)

naval .270 (.005) .061 (.007) .001 (1e-5) 1e-4 (1e-5) 2.338 (.406) 4.142 (.632) 8.718 (.557) 2.769 (.332) 2.280 (.322) 2.512 (.469)

meps_19 .122 (.007) .060 (.007) 1e-4 (1e-5) 1e-5 (1e-5) 11.942 (.708) 4.915 (.565) 14.824 (.563) 2.406 (.302) 8.570 (1.345) 5.413 (.969)

meps_20 .104 (.006) .059 (.007) 1e-4 (1e-5) 1e-5 (1e-5) 9.638 (.802) 5.060 (.606) 13.447 (.544) 2.134 (.297) 7.278 (1.430) 4.084 (.754)

meps_21 .118 (.008) .069 (.006) 1e-4 (1e-5) 1e-4 (1e-5) 10.310 (.926) 6.860 (.639) 14.119 (.578) 2.899 (.364) 7.204 (1.294) 4.515 (.858)

9



Table S15: Real data: Average metric value (standard error) of a quantile regression forest model,
fitted with 200 estimators and having at least 40 samples per leaf.

Dataset Name Coverage (%) Length corr HSIC ∆WSC

facebook_1 96.349 (0.073) 1.132 (0.006) 0.049 (0.005) 3e-5 (3e-6) 1.325 (0.557)

blog_data 96.477 (0.005) 1.411 (0.003) 0.059 (0.002) 3e-5 (1e-5) 0.279 (0.174)

bio 93.797 (0.166) 2.173 (0.004) 0.043 (0.002) 1e-5 (1e-6) 1.508 (0.847)

kin8nm 93.887 (0.225) 2.475 (0.007) 0.033 (0.021) 2e-5 (9e-6) 2.389 (0.519)

naval 99.546 (0.015) 1.313 (0.004) 0.077 (0.009) 9e-6 (1e-6) 1.018 (0.215)

meps_19 95.745 (0.146) 1.218 (0.016) 0.049 (0.009) 1e-5 (1e-6) 0.753 (0.065)

meps_20 95.829 (0.076) 1.233 (0.023) 0.047 (0.015) 1e-5 (7e-6) 0.909 (0.211)

meps_21 95.668 (0.076) 1.221 (0.016) 0.047 (0.007) 2e-5 (6e-6) 0.89 (0.265)

[3] Physicochemical properties of protein tertiary structure data set. https://archive.
ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+
Tertiary+Structure. Accessed: January, 2019.

[4] Kinematics of an 8 link robot arm. http://ftp.cs.toronto.edu/pub/neuron/
delve/data/tarfiles/kin-family/. Accessed: May, 2021.

[5] Condition based maintenance of naval propulsion plants data set. http://archive.
ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+
Propulsion+Plants. Accessed: May, 2021.

[6] Medical expenditure panel survey, panel 19. https://meps.ahrq.gov/mepsweb/
data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181.
Accessed: January, 2019.

[7] Medical expenditure panel survey, panel 20. https://meps.ahrq.gov/mepsweb/
data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181.
Accessed: January, 2019.

[8] Medical expenditure panel survey, panel 21. https://meps.ahrq.gov/mepsweb/
data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192.
Accessed: January, 2019.
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2020.
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