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Abstract

Graph neural networks (GNNs) have limited expressive power, failing to represent
many graph classes correctly. While more expressive graph representation learning
(GRL) alternatives can distinguish some of these classes, they are significantly harder
to implement, may not scale well, and have not been shown to outperform well-tuned
GNNs in real-world tasks. Thus, devising simple, scalable, and expressive GRL
architectures that also achieve real-world improvements remains an open challenge.
In this work, we show the extent to which graph reconstruction—reconstructing
a graph from its subgraphs—can mitigate the theoretical and practical problems
currently faced by GRL architectures. First, we leverage graph reconstruction to build
two new classes of expressive graph representations. Secondly, we show how graph
reconstruction boosts the expressive power of any GNN architecture while being a
(provably) powerful inductive bias for invariances to vertex removals. Empirically, we
show how reconstruction can boost GNN’s expressive power—while maintaining its
invariance to permutations of the vertices—by solving seven graph property tasks not
solvable by the original GNN. Further, we demonstrate how it boosts state-of-the-art
GNN’s performance across nine real-world benchmark datasets.

1 Introduction

Supervised machine learning for graph-structured data, i.e., graph classification and regression, is
ubiquitous across application domains ranging from chemistry and bioinformatics [8, 94] to image [89],
and social network analysis [33]. Consequently, machine learning on graphs is an active research area
with numerous proposed approaches—notably GNNs [21, 42, 45] being the most representative case of
GRL methods.

Arguably, GRL’s most interesting results arise from a cross-over between graph theory and representation
learning. For instance, the representational limits of GNNs are upper-bounded by a simple heuristic
for the graph isomorphism problem [78, 105], the 1-dimensional Weisfeiler-Leman algorithm (1-
WL) [44, 73, 75, 101, 102], which might miss crucial structural information in the data [5]. Further
works show how GNNs cannot approximate graph properties such as diameter, radius, girth, and subgraph
counts [25, 38], inspiring architectures [6, 66, 77, 78] based on the more powerful κ-dimensional
Weisfeiler-Leman algorithm (κ-WL) [44].1 On the other hand, despite the limited expressiveness of
GNNs, they still can overfit the training data, offering limited generalization performance [105]. Hence,
devising GRL architectures that are simultaneously sufficiently expressive and avoid overfitting remains
an open problem.

1We opt for using κ instead of k, i.e., κ-WL instead of k-WL, to not confuse the reader with the hyperparameter
k of our models.
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An under-explored connection between graph theory and GRL is graph reconstruction, which studies
graphs and graph properties uniquely determined by their subgraphs. In this direction, both the
pioneering work of Shawe-Taylor [88] and the more recent work of Bouritsas et al. [18], show that
assuming the reconstruction conjecture (see Conjecture 1) holds, their models are most-expressive
representations (universal approximators) of graphs. Unfortunately, Shawe-Taylor’s computational
graph grows exponentially with the number of vertices, and Bouritsas et al.’s full representation power
requires performing multiple graph isomorphism tests on potentially large graphs (with n− 1 vertices).
Moreover, these methods were not inspired by the more general subject of graph reconstruction; instead,
they rely on the reconstruction conjecture to prove their architecture’s expressive powers.

Contributions. In this work, we directly connect graph reconstruction to GRL. We first show how
the k-reconstruction of graphs—reconstruction from induced k-vertex subgraphs—induces a natural
class of expressive GRL architectures for supervised learning with graphs, denoted k-Reconstruction
Neural Networks. We then show how several existing works have their expressive power limited by
k-reconstruction. Further, we show how the reconstruction conjecture’s insights lead to a provably
most expressive representation of graphs. Unlike Shawe-Taylor [88] and Bouritsas et al. [18], which,
for graph tasks, require fixed-size unattributed graphs and multiple (large) graph isomorphism tests,
respectively, our method represents bounded-size graphs with vertex attributes and does not rely on
isomorphism tests.

To make our models scalable, we propose k-Reconstruction GNNs, a general tool for boosting the
expressive power and performance of GNNs with graph reconstruction. Theoretically, we characterize
their expressive power showing that k-Reconstruction GNNs can distinguish graph classes that the
1-WL and 2-WL cannot, such as cycle graphs and strongly regular graphs, respectively. Further, to
explain gains in real-world tasks, we show how reconstruction can act as a lower-variance risk estimator
when the graph-generating distribution is invariant to vertex removals. Empirically, we show that
reconstruction enhances GNNs’ expressive power, making them solve multiple synthetic graph property
tasks in the literature not solvable by the original GNN. On real-world datasets, we show that the
increase in expressive power coupled with the lower-variance risk estimator boosts GNNs’ performance
up to 25%. Our combined theoretical and empirical results make another important connection between
graph theory and GRL.

1.1 Related work

We review related work from GNNs, their limitations, data augmentation, and the reconstruction
conjecture in the following. See Appendix A for a more detailed discussion.

GNNs. Notable instances of this architecture include, e.g., [31, 47, 97], and the spectral approaches
proposed in, e.g., [19, 30, 56, 72]—all of which descend from early work in [10, 57, 69, 70, 71, 87, 90].
Aligned with the field’s recent rise in popularity, there exists a plethora of surveys on recent advances in
GNN methods. Some of the most recent ones include [21, 104, 114].

Limits of GNNs. Recently, connections to Weisfeiler-Leman type algorithms have been shown [9,
27, 39, 40, 64, 66, 77, 78, 105]. Specifically, the authors of [78, 105] show how the 1-WL limits the
expressive power of any possible GNN architecture. Morris et al. [78] introduce κ-dimensional GNNs
which rely on a more expressive message-passing scheme between subgraphs of cardinality κ. Later,
this was refined in [6, 66] and in [76] by deriving models equivalent to the more powerful κ-dimensional
Weisfeiler-Leman algorithm. Chen et al. [27] connect the theory of universal approximation of
permutation-invariant functions and graph isomorphism testing, further introducing a variation of the 2-
WL. Recently, a large body of work propose enhancements to GNNs, e.g., see [3, 11, 14, 18, 80, 98, 109],
making them more powerful than the 1-WL; see [75] for a survey and see Appendix A for a in-depth
discussion. For clarity, throughout this work, we will use the term GNNs to denote the class of
message-passing architectures limited by the 1-WL algorithm, where the class of distinguishable graphs
is well understood [5].

Data augmentation, generalization and subgraph-based inductive biases. There exist few works
proposing data augmentation for GNNs for graph classification. Kong et al. [59] introduces a simple
feature perturbation framework to achieve this, while Rong et al. [85], Feng et al. [34] focus on
vertex-level tasks. Garg et al. [38] study the generalization abilities of GNNs showing bounds on the
Rademacher complexity, while Liao et al. [62] offer a refined analysis within the PAC-Bayes framework.
Recently, Bouritsas et al. [18] proposed to use subgraph counts as vertex and edge features in GNNs.
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G Dn−1(G)

Figure 1: A graph G and its deck Dn−1(G), faded out vertices are not part of each card in the deck.

Although the authors show an increase in expressiveness, the extent, e.g., which graph classes their
model can distinguish, is still mostly unclear. Moreover, Yehudai et al. [107] investigate GNNs’ ability
to generalize to larger graphs. Concurrently, Bevilacqua et al. [12] show how subgraph densities can
be used to build size-invariant graph representations. However, the performance of such models in
in-distribution tasks, their expressiveness, and scalability remain unclear. Finally, Yuan et al. [111]
show how GNNs’ decisions can be explained by (often large) subgraphs, further motivating our use of
graph reconstruction as a powerful inductive bias for GRL.

Reconstruction conjecture. The reconstruction conjecture is a longstanding open problem in graph
theory, which has been solved in many particular settings. Such results come in two flavors. Either
proving that graphs from a specific class are reconstructible or determining which graph functions are
reconstructible. Known results of the former are, for instance, that regular graphs, disconnected graphs,
and trees are reconstructible [16, 53]. In particular, we highlight that outerplanar graphs, which account
for most molecule graphs, are known to be reconstructible [41]. For a comprehensive review of graph
reconstruction results, see Bondy [16].

2 Preliminaries

Here, we introduce notation and give an overview of the main results in graph reconstruction theory [16,
43], including the reconstruction conjecture [96], which forms the basis of the models in this work.

Notation and definitions. As usual, let [n] = {1, . . . , n} ⊂ N for n ≥ 1, and let {{. . . }} denote a
multiset. In an abuse of notation, for a set X with x in X , we denote by X − x the set X \ {x}. We
also assume elementary definitions from graph theory, such as graphs, directed graphs, vertices, edges,
neighbors, trees, isomorphism, et cetera; see Appendix B. The vertex and the edge set of a graph G
are denoted by V (G) and E(G), respectively. The size of a graph G is equal to its number of vertices.
Unless indicated otherwise, we use n := |V (G)|. If not otherwise stated, we assume that vertices and
edges are annoted with attributes, i.e., real-valued vectors.

We denote the set of all finite and simple graphs by G. The subset of G without edge attributes (or edge
directions) is denoted G ⊂ G. We write G ' H if the graphs G and H are isomorphic. Further, we
denote the isomorphism type, i.e., the equivalence class of the isomorphism relation, of a graph G as
I(G). Let S ⊆ V (G), then G[S] is the induced subgraph with edge set E(G)[S] = {S2 ∩ E(G)}.
We will refer to induced subgraphs simply as subgraphs in this work.

Let R be a family of graph representations, such that for d ≥ 1, r in R, r : G → Rd, assigns a
d-dimensional representation vector r(G) for a graph G in G. We say R can distinguish a graph G if
there exists r in R that assigns a unique representation to the isomorphism type of G, i.e., r(G) = r(H)
if and only if G ' H . Further, we say R distinguishes a pair of non-isomorphic graphs G and H if there
exists some r in R such that r(G) 6= r(H). Moreover, we write R1 � R2 if R2 distinguishes between
all graphs R1 does, and R1 ≡ R2 if both directions hold. The corresponding strict relation is denoted
by ≺. Finally, we say R is a most-expressive representation of a class of graphs if it distinguishes all
non-isomorphic graphs in that class.

Graph reconstruction. Intuitively, the reconstruction conjecture states that an undirected edge-
unattributed graph can be fully recovered up to its isomorphism type given the multiset of its vertex-
deleted subgraphs’ isomorphism types. This multiset of subgraphs is usually referred to as the
deck of the graph, see Figure 1 for an illustration. Formally, for a graph G, we define its deck as
Dn−1(G) = {{I(G[V (G) − v]) : v ∈ V (G)}}. We often call an element in Dn−1(G) a card. We
define the graph reconstruction problem as follows.

Definition 1. Let G and H be graphs, then H is a reconstruction of G if H and G have the same deck,
denoted H ∼ G. A graph G is reconstructible if every reconstruction of G is isomorphic to G, i.e.,
H ∼ G implies H ' G.
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Similarly, we define function reconstruction, which relates functions that map two graphs to the same
value if they have the same deck.
Definition 2. Let f : G → Y be a function, then f is reconstructible if f(G) = f(H) for all graphs in
{(H,G) ∈ G2 : H ∼ G}, i.e., G ∼ H implies f(G) = f(H).
We can now state the reconstruction conjecture, which in short says that every G in G with |V | ≥ 3 is
reconstructible.
Conjecture 1 (Kelly [52], Ulam [96]). Let H and G in G be two finite, undirected, simple graphs with
at least three vertices. If H is a reconstruction of G, then H and G are isomorphic.
We note here that the reconstruction conjecture does not hold for directed graphs, hypergraphs, and
infinite graphs [16, 92, 93]. In particular, edge directions can be seen as edge attributes. Thus,
the reconstruction conjecture does not hold for the class G. In contrast, the conjecture has been
proved for practical-relevant graph classes, such as disconnected graphs, regular graphs, trees, and
outerplanar graphs [16]. Further, computational searches show that graphs with up to eleven vertices are
reconstructible [68]. Finally, many graph properties are known to be reconstructible, such as every size
subgraph count, degree sequence, number of edges, and the characteristic polynomial [16].

Graph k-reconstruction. Kelly et al. [53] generalized graph reconstruction, considering the multiset
of subgraphs of size k instead of n− 1, which we denote Dk(G) = {{I(H) : H ∈ S(k)(G)}}, where
S(k) is the set of all

(
n
k

)
k-size subsets of V . We often call an element in Dk(G) a k-card. From the

k-deck definition, it is easy to extend the concept of graph and function reconstruction, cf. Definitions 1
and 2, to graph and function k-reconstruction.
Definition 3. Let G and H be graphs, then H is a k-reconstruction of G if H and G have the same
k-deck, denoted H ∼k G. A graph G is k-reconstructible if every k-reconstruction of G is isomorphic
to G, i.e., H ∼k G implies H ' G.
Accordingly, we define k-function reconstruction as follows.
Definition 4. Let f : G → Y be a function, then f is k-reconstructible if f(G) = f(H) for all graphs
in {(H,G) ∈ G2 : H ∼k G}, i.e., G ∼k H implies f(G) = f(H).
Results for k-reconstruction usually state the least k as a function of n such that all graphs G in G (or
some subset) are k-reconstructible [84]. There exist extensive partial results in this direction, mostly
describing k-reconstructibility (as a function of n) for a particular family of graphs, such as trees,
disconnected graphs, complete multipartite graphs, and paths, see [84, 60]. More concretely, Nỳdl
[83], Spinoza and West [91] showed graphs with 2k vertices that are not k-reconstructible. In practice,
these results imply that for some fixed k there will be graphs with not many more vertices than k
that are not k-reconstructible. Further, k-reconstructible graph functions such as degree sequence and
connectedness have been studied in [65, 91] depending on the size of k. In Appendix C, we discuss
further such results.

3 Reconstruction Neural Networks

Building on the previous section, we propose two neural architectures based on graph k-reconstruction
and graph reconstruction. First, we look at k-Reconstruction Neural Networks, the most natural way
to use graph k-reconstruction. Secondly, we look at Full Reconstruction Neural Networks, where we
leverage the Reconstruction Conjecture to build a most-expressive representation for the class of graphs
of bounded size and unattributed edges.

k-Reconstruction Neural Networks. Intuitively, the key idea of k-Reconstruction Neural Networks
is that of learning a joint representation based on subgraphs induced by k vertices. Formally, let
fW : ∪∞m=1Rm×d → Rt be a (row-wise) permutation-invariant function and Gk = {G ∈ G : |V (G)| =
k} be the set of graphs with exactly k vertices. Further, let h(k) : Gk → R1×d be a graph representation
function such that two graphs G and H on k vertices are mapped to the same vectorial representation if
and only if they are isomorphic, i.e., h(k)(G) = h(k)(H) ⇐⇒ G ' H for all G and H in Gk. We
define k-Reconstruction Neural Networks over G as a function with parameters W in the form

r
(k)
W (G) = fW

(
CONCAT({{h(k)(G[S]) : S ∈ S(k)}})

)
,

where S(k) is the set of all k-size subsets of V (G) for some 3 ≤ k ≤ n, and CONCAT denotes row-wise
concatenation of a multi-set of vectors in some arbitrary order. Note that h(k) might also be a function
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with learnable parameters. In that case, we require it to be most-expressive for Gk. The following results
characterize the expressive power of the above architecture.

Proposition 1. Let fW be a universal approximator of multisets [112, 100, 79]. Then, r(k)W can
approximate a function if and only if the function is k-reconstructible.

Moreover, we can observe the following.
Observation 1 (Nỳdl [84], Kostochka and West [60]). For any graph G in G, its k-deck Dk(G)
determines its (k − 1)-deck Dk−1(G).

From Observation 1, we can derive a hierarchy in the expressive power of k-Reconstruction Neural
Networks with respect to the subgraph size k. That is, r(3)W � r(4)W � · · · � r(n−2)W � r(n−1)W .

In Appendix D, we show how many existing architectures have their expressive power limited by
k-reconstruction. We also refer to Appendix D for the proofs, a discussion on the model’s computational
complexity, approximation methods, and relation to existing work.

Full Reconstruction Neural Networks. Here, we propose a recursive scheme based on the recon-
struction conjecture to build a most-expressive representation for graphs. Intuitively, Full Reconstruction
Neural Networks recursively compute subgraph representations based on smaller subgraph represen-
tations. Formally, let G†≤n∗ := {G ∈ G : |V (G)| ≤ n∗} be the class of undirected graphs with

unattributed edges and maximum size n∗. Further, let f (k)W : ∪∞m=1 Rm×d → Rt be a (row-wise)
permutation invariant function and let h{i,j} be a most-expressive representation of the two-vertex
subgraph induced by vertices i and j. We can now define the representation r(G[V (G)]) of a graph G
in G†≤n∗ in a recursive fashion as

r(G[S]) =

{
f
(|S|)
W (CONCAT({{r(G[S − v]) : v ∈ S}})) , if 3 ≤ |S| ≤ n
hS(G[S]), if |S| = 2.

Again, CONCAT is row-wise concatenation in some arbitrary order. Note that in practice, it is easier to
build the subgraph representations in a bottom-up fashion. First, use two-vertex subgraph representations
to compute all three-vertex subgraph representations. Then, perform this inductively until we arrive at a
single whole-graph representation. In Appendix E, we prove the expressive power of Full Reconstruction
Neural Networks, i.e., we show how if the reconstruction conjecture holds, it is a most-expressive
representation of undirected edge-unattributed graphs. Finally, we show its quadratic number of
parameters, exponential computational complexity, and relation to existing work.

4 Reconstruction Graph Neural Networks

Although Full Reconstruction Neural Networks provide a most-expressive representation for undi-
rected, unattributed-edge graphs, they are impractical due to their computational cost. Similarly,
k-Reconstruction Neural Networks are not scalable since increasing their expressive power requires
computing most-expressive representations of larger k-size subgraphs. Hence, to circumvent the
computational cost, we replace the most-expressive representations of subgraphs from k-Reconstruction
Neural Networks with GNN representations, resulting in what we name k-Reconstruction GNNs. This
change allows for scaling the model to larger subgraph sizes, such as n− 1, n− 2, . . . , et cetera.

Since, in the general case, graph reconstruction assumes most-expressive representations of subgraphs,
it cannot capture k-Reconstruction GNNs’ expressive power directly. Hence, we provide a theoretical
characterization of the expressive power of k-Reconstruction GNNs by coupling graph reconstruction and
the GNN expressive power characterization based on the 1-WL algorithm. Nevertheless, in Appendix F.2,
we devise conditions under which k-Reconstruction GNNs have the same power as k-Reconstruction
Neural Networks. Finally, we show how graph reconstruction can act as a (provably) powerful inductive
bias for invariances to vertex removals, which boosts the performance of GNNs even in tasks where all
graphs are already distinguishable by them (see Appendix G). We refer to Appendix F for a discussion
on the model’s relation to existing work.

Formally, let fW : ∪∞m=1Rm×d → Rt be a (row-wise) permutation invariant function and hGNN
W : G →

R1×d a GNN representation. Then, for 3 ≤ k < |V (G)|, a k-Reconstruction GNN takes the form

r
(k,GNN)
W (G)=fW1

(
CONCAT({{hGNN

W2
(G[S]) : S ∈ S(k)}})

)
,
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with parameters W = {W1,W2}, where S(k) is the set of all k-size subsets of V (G), and CONCAT
is row-wise concatenation in some arbitrary order.

Approximating r(k,GNN)
W . By design, k-Reconstruction GNNs require computing GNN representations

for all k-vertex subgraphs, which might not be feasible for large graphs or datasets. To address this, we
discuss a direction to circumvent computing all subgraphs, i.e., approximating r(k,GNN)

W by sampling.

One possible choice for fW is Deep Sets [112], which we use for the experiments in Sec-
tion 5, where the representation is a sum decomposition taking the form r

(k,GNN)
W (G) =

ρW1

(∑
S∈S(k) φW2

(
hGNN
W3

(G[S])
))

, where ρW1 and φW2 are permutation sensitive functions,

such as feed-forward networks. We can learn the k-Reconstruction GNN model over a training dataset
D(tr) := {(Gi, yi)}N

(tr)

i=1 and a loss function l by minimizing the empirical risk

R̂k(D(tr);W1,W2,W3) =
1

N tr

N tr∑
i=1

l
(
r
(k,GNN)
W (Gi), yi

)
. (1)

Equation (1) is impractical for all but the smallest graphs, since r
(k,GNN)
W is a sum over

all k-vertex induced subgraphs S(k) of G. Hence, we approximate r
(k,GNN)
W using a sam-

ple S(k)B ⊂ S(k) drawn uniformly at random at every gradient step, i.e., r̂(k,GNN)
W (G) =

ρW1

(
|S(k)|/|S(k)B |

∑
S∈S(k)

B

φW2

(
h
(GNN)
W3

(G[S])
))

. Due to non-linearities in ρW1 and l, plug-

ging r̂(k,GNN)
W into Equation (1) does not provide us with an unbiased estimate of R̂k. However,

if l(ρW1
(a), y) is convex in a, in expectation, we will be minimizing a proper upper bound of our loss,

i.e., 1/N tr∑N tr

i=1 l
(
r
(k,GNN)
W (Gi), yi

)
≤ 1/N tr∑N tr

i=1 l
(
r̂
(k,GNN)
W (Gi), yi

)
. In practice, many models

rely on this approximation and provide scalable and reliable training procedures, cf. [48, 79, 80, 112].

4.1 Expressive power

Now, we analyze the expressive power of k-Reconstruction GNNs. It is clear that k-Reconstruction
GNNs � k-Reconstruction Neural Networks, however the relationship between k-Reconstruction
GNNs and GNNs is not that straightforward. At first, one expects that there exists a well-defined
hierarchy—such as the one in k-Reconstruction Neural Networks (see Observation 1)—between GNNs,
(n− 1)-Reconstruction GNNs, (n− 2)-Reconstruction GNNs, and so on. However, there is no such
hierarchy, as we see next.

Are GNNs more expressive than k-Reconstruction GNNs? It is well-known that GNNs cannot
distinguish regular graphs [5, 78]. By leveraging the fact that regular graphs are reconstructible [53], we
show that cycles and circular skip link (CSL) graphs—two classes of regular graphs—can indeed be
distinguished by k-Reconstruction GNNs, implying that k-Reconstruction GNNs are not less expressive
than GNNs. We start by showing that k-Reconstruction GNNs can distinguish the class of cycle graphs.

Theorem 1 (k-Reconstruction GNNs can distinguish cycles). Let G ∈ G be a cycle graph with n
vertices and k := n− `. An (n− `)-Reconstruction GNN assigns a unique representation to G if

i) ` < (1 + o(1))
(

2 logn
log logn

)1/2
and ii) n ≥ (`− log `+ 1)

(
e+e log `+e+1
(`−1) log `−1

)
+ 1 hold.

The following results shows that k-Reconstruction GNNs can distinguish the class of CSL graphs.

Theorem 2 (k-Reconstruction GNNs can distinguish CSL graphs). Let G,H ∈ G be two non-
isomorphic circular skip link (CSL) graphs (a class of 4-regular graphs, cf. [23, 80]). Then, (n− 1)-
Reconstruction GNNs can distinguish G and H .

Hence, if the conditions in Theorem 1 hold, GNNs 6� (n − `)-Reconstruction GNNs. Figure 2 (cf.
Appendix F) depicts how k-Reconstruction GNNs can distinguish a graph that GNNs cannot. The
process essentially breaks the local symmetries that make GNNs struggle by removing one (or a few)
vertices from the graph. By doing so, we arrive at distinguishable subgraphs. Since we can reconstruct
the original graph with its unique subgraph representations, we can identify it. See Appendix F for the
complete proofs of Theorems 1 and 2.
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Are GNNs less expressive than k-Reconstruction GNNs? We now show that GNNs can distinguish
graphs that k-Reconstruction GNNs with small k cannot. We start with Proposition 2 stating that there
exist some graphs that GNNs can distinguish which k-Reconstruction GNNs with small k cannot.
Proposition 2. GNNs 6� k-Reconstruction GNNs for k ≤ dn/2e.
On the other hand, the analysis is more interesting for larger subgraph sizes, e.g., n − 1, where
there are no known examples of (undirected, edge-unattributed) non-reconstructible graphs. There
are graphs distinguishable by GNNs with at least one subgraph not distinguishable by them; see
Appendix F. However, the analysis is whether the multiset of all subgraphs’ representations can
distinguish the original graph. Since we could not find any counter-examples, we conjecture that every
graph distinguishable by a GNN is also distinguishable by a k-Reconstruction GNN with k = n− 1
or possibly more generally with any k close enough to n. In Appendix F, we state and discuss the
conjecture, which we name WL reconstruction conjecture. If true, the conjecture implies GNNs ≺
(n − 1)-Reconstruction GNNs. Moreover, if we use the original GNN representation together with
k-Reconstruction GNNs, Theorems 1 and 2 imply that the resulting model is strictly more powerful
than the original GNN.

Are k-Reconstruction GNNs less expressive than higher-order (κ-WL) GNNs?

Recently a line of work, e.g., [6, 67, 76], explored higher-order GNNs aligning with the κ-WL hierarchy.
Such architectures have, in principle, the same power as the κ-WL algorithm in distinguishing non-
isomorphic graphs. Hence, one might wonder how k-Reconstruction GNNs stack up to κ-WL-based
algorithms. The following result shows that pairs of non-isomorphic graphs exist that a (n − 2)-
Reconstruction GNN can distinguish but the 2-WL cannot.
Proposition 3. Let 2-GNNs be neural architectures with the same expressiveness as the 2-WL algorithm.
Then, (n− 2)-Reconstruction GNN 6� 2-GNNs ≡ 2-WL.

As a result of Proposition 3, using a (n− 2)-Reconstruction GNN representation together with a 2-GNN
increases the original 2-GNN’s expressive power.

4.2 Reconstruction as a powerful extra invariance for general graphs

An essential feature of modern machine learning models is capturing invariances of the problem of
interest [63]. It reduces degrees of freedom while allowing for better generalization [13, 63]. GRL is
predicated on invariance to vertex permutations, i.e., assigning the same representation to isomorphic
graphs. But are there other invariances that could improve the generalization error?

k-reconstruction is an extra invariance. Let P (G, Y ) be the joint probability of observing a graph
G with label Y . Any k-reconstruction-based model, such as k-Reconstruction Neural Networks
and k-Reconstruction GNNs, by definition assumes P (G, Y ) to be invariant to the k-deck, i.e.,
P (G, Y ) = P (H,Y ) if Dk(G) = Dk(H). Hence, our neural architectures for k-Reconstruction
Neural Networks and k-Reconstruction GNNs directly define this extra invariance beyond permutation
invariance. How we do know it is an extra invariance and not a consequence of permutation invariance?
It does not hold on directed graphs [93], where permutation invariance still holds.

Hereditary property variance reduction. We now show that the invariance imposed by k-
reconstruction helps in tasks based on hereditary properties [17]. A graph property µ(G) is called
hereditary if it is invariant to vertex removals, i.e. µ(G) = µ(G[V (G)− v]) for every v ∈ V (G) and
G ∈ G. By induction the property is invariant to every size subgraph, i.e., µ(G) = µ(G[S]) for every
S ∈ S(k), k ∈ [n] where S(k) is the set of all k-size subsets of V (G). Here, the property is invariant
to any given subgraph. For example, every subgraph of a planar graph is also planar, every subgraph
of an acyclic graph is also acyclic, any subgraph of a j-colorable graph is also j-colorable. A more
practically interesting (weaker) invariance would be invariance to a few vertex removals. Next we define
δ-hereditary properties (a special case of a �-hereditary property). In short, a property is δ-hereditary if
it is a hereditary property for graphs with more than δ vertices.
Definition 5 (δ-hereditary property). A graph property µ : G → Y is said to be δ-hereditary if
µ(G) = µ(G[V (G)− v]), ∀ v ∈ V (G), G ∈ {H ∈ G : |V (H)| > δ}. That is, µ is uniform in G and
all subgraphs of G with more than δ vertices.

Consider the task of predicting Y |G := µ(G). Theorem 3 shows that k-Reconstruction GNNs is an
invariance that reduces the variance of the empirical risk associated with δ-hereditary property tasks.
See Appendix F for the proof.
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Theorem 3 (k-Reconstruction GNNs for variance reduction of δ-hereditary tasks). Let P (G, Y ) be a
δ-hereditary distribution, i.e., Y := µ(G) where µ is a δ-hereditary property. Further, let P (G, Y ) = 0
for all G ∈ G with |V (G)| ≥ δ + `, ` > 0. Then, for k-Reconstruction GNNs taking the form

ρW1

(
1/|S(k)|

∑
S∈S(k) φW2

(
hGNN
W3

(G[S])
))

, if l(ρW1(a), y) is convex in a, we have

Var[R̂k] ≤ Var[R̂GNN],

where R̂k is the empirical risk of k-Reconstruction GNNs with k := n− ` (cf. Equation (1)) and R̂GNN
is the empirical risk of GNNs.

5 Experimental Evaluation
In this section, we investigate the benefits of k-Reconstruction GNNs against GNN baselines on both
synthetic and real-world tasks. Concretely, we address the following questions:
Q1. Does the increase in expressive power from reconstruction (cf. Section 4.1) make k-Reconstruction
GNNs solve graph property tasks not originally solvable by GNNs?
Q2. Can reconstruction boost the original GNNs performance on real-world tasks? If so, why?
Q3. What is the influence of the subgraph size in both graph property and real-world tasks?

Synthetic graph property datasets. For Q1 and Q3, we chose the synthetic graph property tasks in
Table 1, for which GNNs are provably incapable to solve due to their limited expressive power [38, 81].
The tasks are CSL [32], where we classify CSL graphs, the cycle detection tasks 4 CYCLES, 6 CYCLES
and 8 CYCLES [98] and the multi-task regression from Corso et al. [28], where we want to determine
whether a graph is connected, its diameter, and its spectral radius. See Appendix H for datasets statistics.
Real-world datasets. To address Q2 and Q3, we evaluated k-Reconstruction GNNs on a diverse
set of large-scale, standard benchmark instances [49, 74]. Specifically, we used the ZINC (10K) [32],
ALCHEMY (10K) [23], OGBG-MOLFREESOLV, OGBG-MOLESOL, and OGBG-MOLLIPO [49] regression
datasets. For the case of graph classification, we used OGBG-MOLHIV, OGBG-MOLPCBA, OGBG-TOX21,
and OGBG-TOXCAST [49]. See Appendix H for datasets statistics.
Neural architectures. We used the GIN [106], GCN [56], and the PNA [28] architectures as GNN
baselines. We always replicated the exact architectures from the original paper, building on the respective
PyTorch Geometric implementation [35]. For the OGBG regression datasets, we noticed how using a
jumping knowledge layer yields better validation and test results for GIN and GCN. Thus we made this
small change. For each of these three architectures, we implemented k-Reconstruction GNNs for k
in {n− 1, n− 2, n− 3, dn/2e} using a Deep Sets function [112] over the exact same original GNN
architecture. For more details, see Appendix G.
Experimental setup. To establish fair comparisons, we retain all hyperparameters and training
procedures from the original GNNs to train the corresponding k-Reconstruction GNNs. Tables 1 and 2
and Table 6 in Appendix I present results with the same number of runs as previous work [28, 32, 49, 77,
98], i.e., five for all datasets execpt the OGBG datasets, where we use ten runs. For more details, such as
the number of subgraphs sampled for each k-Reconstruction GNN and each dataset, see Appendix G.
Non-GNN baselines. For the graph property tasks, original work used vertex identifiers or Laplacian
embeddings to make GNNs solve them. This trick is effective for the tasks but violates an important
premise of graph representations, invariance to vertex permutations. To illustrate this line of work, we
compare against Positional GIN, which uses Laplacian embeddings [32] for the CSL task and vertex
identifiers for the others [98, 28]. To compare against other methods that like k-Reconstruction GNNs
are invariant to vertex permutations and increase the expressive power of GNNs, we compare against
Ring-GNNs [27] and (3-WL) PPGNs [66]. For real-world tasks, Table 6 in Appendix I shows the
results from GRL alternatives that incorporate higher-order representations in different ways, LRP [27],
GSN [18], δ-2-LGNN [77], and SMP [98].

All results are fully reproducible from the source and are available at https://github.com/
PurdueMINDS/reconstruction-gnns.

Results and discussion.

A1 (Graph property tasks). Table 1 confirms Theorem 2, where the increase in expressive power
from reconstruction allows k-Reconstruction GNNs to distinguish CSL graphs, a task that GNNs cannot
solve. Here, k-Reconstruction GNNs boost the accuracy of standard GNNs between 10× and 20×.
Theorem 2 only guarantees GNN expressiveness boosting for (n− 1)-Reconstruction, but our empirical
results also show benefits for k-Reconstruction with k ≤ n−2. Table 1 also confirms Theorem 1, where
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Table 1: Synthetic graph property tasks. We highlight in green k-Reconstruction GNNs boosting the original GNN
architecture. †: Std. not reported in original work. +: Laplacian embeddings used as positional features. ∗: Vertex
identifiers used as positional features.

Multi-task
Invariant to

CSL 4 CYCLES 6 CYCLES 8 CYCLES CONNECTIVITY DIAMETER SPECTRAL RADIUS
(Accuracy % %) ↑ (Accuracy % %) ↑ (Accuracy %) ↑ (Accuracy %) ↑ (log MSE) ↓ (log MSE) ↓ (log MSE) ↓ vertex permutations?

GIN (orig.) 4.66 ± 4.00 93.0† 92.7† 92.5† -3.419 ± 0.320 0.588 ± 0.354 -2.130 ± 1.396 "

R
ec

on
st

r. (n− 1) 88.66 ± 22.66 95.17 ± 4.91 97.35 ± 0.74 94.69 ± 2.34 -3.575 ± 0.395 -0.195 ± 0.714 -2.732 ± 0.793 "

(n− 2) 78.66 ± 22.17 94.06 ± 5.10 97.50 ± 0.72 95.04 ± 2.69 -3.799 ± 0.187 -0.207 ± 0.381 -2.344 ± 0.569 "

(n− 3) 73.33 ± 16.19 96.61 ± 1.40 97.84 ± 1.37 94.48 ± 2.13 -3.779 ± 0.064 0.105 ± 0.225 -1.908 ± 0.860 "

dn/2e 40.66 ± 9.04 75.13 ± 0.26 63.28 ± 0.59 63.53 ± 1.14 -3.765 ± 0.083 0.564 ± 0.025 -2.130 ± 0.166 "

GCN(orig.) 6.66 ± 2.10 98.336 ± 0.24 95.73 ± 2.72 87.14 ± 12.73 -3.781 ± 0.075 0.087 ± 0.186 -2.204 ± 0.362 "

R
ec

on
st

r. (n− 1) 100.00 ± 0.00 99.00 ± 0.10 97.63 ± 0.19 94.99 ± 2.31 -4.039 ± 0.101 -1.175 ± 0.425 -3.625 ± 0.536 "

(n− 2) 100.00 ± 0.00 98.77 ± 0.61 97.89 ± 0.69 97.82 ± 1.10 -3.970 ± 0.059 -0.577 ± 0.135 -3.397 ± 0.273 "

(n− 3) 96.00 ± 6.46 99.11 ± 0.19 98.31 ± 0.52 97.18 ± 0.58 -3.995 ± 0.031 -0.333 ± 0.117 -3.105 ± 0.286 "

dn/2e 49.33 ± 7.42 75.19 ± 0.19 66.04 ± 0.59 63.66 ± 0.51 -3.693 ± 0.063 0.8518 ± 0.016 -1.838 ± 0.054 "

PNA (orig.) 10.00 ± 2.98 81.59 ± 19.86 95.57 ± 0.36 84.81 ± 16.48 -3.794 ± 0.155 -0.605 ± 0.097 -3.610 ± 0.137 "

R
ec

on
st

r. (n− 1) 100.00 ± 0.00 97.88 ± 2.19 99.18 ± 0.20 98.92 ± 0.72 -3.904 ± 0.001 -0.765 ± 0.032 -3.954 ± 0.118 "

(n− 2) 95.33 ± 7.77 99.12 ± 0.28 99.10 ± 0.57 99.22 ± 0.27 -3.781 ± 0.085 -0.090 ± 0.135 -3.478 ± 0.206 "

(n− 3) 95.33 ± 5.81 89.36 ± 0.22 99.34 ± 0.26 93.92 ± 8.15 -3.710 ± 0.209 0.042 ± 0.047 -3.311 ± 0.067 "

dn/2e 42.66 ± 11.03 75.34 ±0.18 65.58 ± 0.95 64.01 ± 0.30 -2.977 ± 0.065 1.445 ± 0.037 -1.073 ± 0.075 "

Positional GIN 99.33+ ± 1.33 88.3† 96.1† 95.3† -1.61† -2.17† -2.66† %
Ring-GNN 10.00 ± 0.00 99.9† 100.0† 71.4† — — — "
PPGN (3-WL) 97.80 ± 10.91 99.8† 87.1† 76.5† — — — "

Table 2: OGBG molecule graph classification and regression tasks. We highlight in green k-Reconstruction GNNs
boosting the original GNN architecture.

OGBG-MOLTOX21 OGBG-MOLTOXCAST OGBG-MOLFREESOLV OGBG-MOLESOL OGBG-MOLLIPO OGBG-MOLPCBA
(ROC-AUC %) ↑ (ROC-AUC %) ↑ (RSMSE) ↓ (RSMSE) ↓ (RSMSE) ↓ (AP %) ↑

GIN (orig.) 74.91 ± 0.51 63.41 ± 0.74 2.411 ± 0.123 1.111 ± 0.038 0.754 ± 0.010 21.16 ± 0.28

R
ec

on
st

r. (n− 1) 75.15 ± 1.40 63.95 ± 0.53 2.283 ± 0.279 1.026 ± 0.033 0.716 ± 0.020 23.60 ± 0.02

(n− 2) 76.84 ± 0.62 65.36 ± 0.49 2.117 ± 0.181 1.006 ± 0.030 0.736 ± 0.025 23.25 ± 0.00

(n− 3) 76.78 ± 0.64 64.84 ± 0.71 2.370 ± 0.326 1.055 ± 0.031 0.738 ± 0.018 23.33 ± 0.09
dn/2e 74.40 ± 0.75 62.29 ± 0.28 2.531 ± 0.206 1.343 ± 0.053 0.842 ± 0.020 13.50 ± 0.32

GCN (orig.) 75.29 ± 0.69 63.54 ± 0.42 2.417 ± 0.178 1.106 ± 0.036 0.793 ± 0.040 20.20 ± 0.24

R
ec

on
st

r. (n− 1) 76.46 ± 0.77 64.51 ± 0.60 2.524 ± 0.300 1.096 ± 0.045 0.760 ± 0.015 21.25 ± 0.25

(n− 2) 75.58 ± 0.99 64.38 ± 0.39 2.467 ± 0.231 1.086 ± 0.048 0.766 ± 0.025 20.10 ± 0.08

(n− 3) 75.88 ± 0.73 64.70 ± 0.81 2.345 ± 0.261 1.114 ± 0.047 0.754 ± 0.021 19.04 ± 0.03
dn/2e 74.03 ± 0.63 62.80 ± 0.77 2.599 ± 0.161 1.372 ± 0.048 0.835 ± 0.020 11.69 ± 1.41

PNA (orig.) 74.28 ± 0.52 62.69 ± 0.63 2.192 ± 0.125 1.140 ± 0.032 0.759 ± 0.017 25.45 ± 0.04

R
ec

on
st

r. (n− 1) 73.64 ± 0.74 64.14 ± 0.76 2.341 ± 0.070 1.723 ± 0.145 0.743 ± 0.015 23.11 ± 0.05

(n− 2) 74.89 ± 0.29 65.22 ± 0.47 2.298 ± 0.115 1.392 ± 0.272 0.794 ± 0.065 22.10 ± 0.03

(n− 3) 75.10 ± 0.73 65.03 ± 0.58 2.133 ± 0.086 1.360 ± 0.163 0.785 ± 0.041 20.05 ± 0.15
dn/2e 73.71 ± 0.61 61.25 ± 0.49 2.185 ± 0.231 1.157 ± 0.056 0.843 ± 0.018 12.33 ± 1.20

k-Reconstruction GNNs provide significant accuracy boosts on all cycle detection tasks (4 CYCLES, 6
CYCLES and 8 CYCLES). See Appendix J.1, for a detailed discussion on results for CONNECTIVITY,
DIAMETER, and SPECTRAL RADIUS, which also show boostings.
A2 (Real-world tasks). Table 2 and Table 6 in Appendix I show that applying k-reconstruction
to GNNs significantly boosts their performance across all eight real-world tasks. In particular, in
Table 2, we see a boost of up to 5% while achieving the best results in five out of six datasets. The
(n − 2)-reconstruction applied to GIN gives the best results in the OGBG tasks, with the exception
of OGBG-MOLLIPO and OGBG-MOLPCBA where (n − 1)-reconstruction performs better. The only
settings where we did not get any boost were PNA for OGBG-MOLESOL and OGBG-MOLPCBA. Table 6
in Appendix I also shows consistent boost in GNNs’ performance of up to 25% in other datasets. On
ZINC, k-Reconstruction yields better results than the higher-order alternatives LRP and δ-2-LGNN.
While GSN gives the best ZINC results, we note that GSN requires application-specific features. In
OGBG-MOLHIV, k-reconstruction is able to boost both GIN and GCN. The results in Appendix G show
that nearly 100% of the graphs in our real-world datasets are distinguishable by the 1-WL algorithm,
thus we can conclude that traditional GNNs are expressive enough for all our real-world tasks. Hence,
real-world boosts of reconstruction over GNNs can be attributed to the gains from invariances to vertex
removals (cf. Section 4.2) rather than the boost in expressive power (cf. Section 4.1).

A3 (Subgraph sizes). Overall we observe that removing one vertex (k=n−1) is enough to improve
the performance of GNNs in most experiments. At the other extreme end of vertex removals, k=dn/2e,
there is a significant loss in expressiveness compared to the original GNN. In most real-world tasks,
Table 2 and Table 6 in Appendix I show a variety of performance boosts also with k ∈ {n−2, n−3}.
For GCN and PNA in OGBG-MOLESOL, specifically, we only see k-Reconstruction boosts over smaller
subgraphs such as n−3, which might be due to the task’s need of more invariance to vertex removals (cf.
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Section 4.2). In the graph property tasks (Table 1), we see significant boosts also for k ∈ {n−2, n−3}
in all models across most tasks, except PNA. However, as in real-world tasks the extreme case of small
subgraphs k = dn/2e significantly harms the ability to solve tasks with k-Reconstruction GNNs.

6 Conclusions
Our work connected graph (k-)reconstruction and modern GRL. We first showed how such connection
results in two natural expressive graph representation classes. To make our models practical, we
combined insights from graph reconstruction and GNNs, resulting in k-Reconstruction GNNs. Our
theory shows that reconstruction boosts the expressiveness of GNNs and has a lower-variance risk
estimator in distributions invariant to vertex removals. Empirically, we showed how the theoretical gains
of k-Reconstruction GNNs translate into practice, solving graph property tasks not originally solvable
by GNNs and boosting their performance on real-world tasks.
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