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S1 Tuning the Kernel’s Bandwidth
It is important to properly tune the kernel scale/bandwidth σb, which determines its scale of
connectivity. Several studies have proposed schemes for tuning σb, see for example [10, 3, 12, 5]. Here,
we focus on two schemes, a global bandwidth and a local bandwidth. The local bandwidth proposed
in [12], involves setting a local-scale σi for each data point xi, i = 1, ..., n. The scale is chosen using
the L1 distance from the k-th nearest neighbor of the point xi. Explicitly, the calculation for each
point is

σi = C · ||xi − xk||2, i = 1, ..., N, (1)

where xk is the k-th nearest (Euclidean) neighbor of the point xi, and C is a predefined constant in
the range [1, 5]. A global scale σ̂b, is defined as the max over σi. Using this value the kernel values
are defined by

Ki,j = exp

(
−||xi − xj ||2

σ̂b

)
, i, j ∈ {1 . . . n}. (2)

This scale guarantees that all of the points are connected to at least k neighbors.

S2 Tuning the Regularization Parameter
The regularization parameter λ controls the amount of sparsity obtained by DUFS. A larger λ
would lead to a sparser solution in an earlier stage of training. If the number of desired features is
prescribed (say s), λ can be tuned to a value resulting in a solution sparsity close to s. However, this
procedure might often be time consuming. Alternatively, we propose here a “warm-up” procedure
(see Algorithm 1) for evaluating the optimal choice of λ in DUFS.

In Algorithm 1, we propose to first set a grid of hypothesis values, for instance λ ∈ {0.01, 0.1, 1, 10, 100},
then run DUFS with nepochs = 1, 000 for each value of λ. For each value we sort the gates and select
the leading s features with the largest gates coefficients. For each λ we denote the dataset restricted
to the leading s features as Xλ. We then evaluate each selected set by the feature scoring term
S(λ) = 1

sTr[Xλ
TL2

λXλ]. We return the λ values which maximizes this score. This λ could be used
to continue the training procedure for additional iterations.

Algorithm 1 Warm Start Pseudo-Code
Input: data {x1, . . . ,xn} ⊂ Rd, required number of features s, (the set of λ values can be input
as well).
for λ ∈ {0.01, 0.1, 1, 10} do
Run DUFS (Algorithm 1) on the data with λ, for T = 1, 000 epochs, and get the leading s
features.
Define Xλ to be the dataset restricted to the s leading features.
Compute the graph Laplacian Lλ ∈ Rn×n as described in (2).
Evaluate the Laplacian Score for the leading s features

S(λ) =
1

s
Tr[XT

λL
2
λXλ]

end for
Return λ with the largest S(λ)
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S3 Additional Experimental Details
In the following sections we provide additional experimental details required for reproduction of the
experiments provided in the main text. All the experiments are conducted using Intel(R) Xeon(R)
CPU E5-2620 v3 @2.4Ghz x2 (12 cores total).

S4 Feature selection on Image Datasets
Here, we provide a deeper look into the features identified by the proposed method when applied to
image data. We start with COIL20[7] which is a data that contains 20 objects captured at different
viewing angles. In Fig. S1 we present the leading {50, 100, ..., 300} features selected by DUFS and LS
along with the average clustering accuaracies based on the selected features. In this example DUFS
selects features which lie on the symmetry axis of COIL20, these features are more informative for
clustering COIL20 since the values of rotated objects vary slowly on this axis. Next, we present
a similar comparison on COIL100[7]. COIL100 contains 7200 samples of 100 objects captured
at different angles. Each image is of dimension [128, 128, 3]. In Fig. S2 we present the leading
{50, 100, ..., 300} features selected by DUFS and LS along with the average clustering accuracies
based on the selected features. Here, feature selection is performed based on a black and white
version of the RGB image and clustering is performed based on the corresponding subset of pixels
from the RGB tensor.

Finally, in Fig. S3 we present the results of application of DUFS to the noisy MNIST dataset.
This is an extension of the results presented in the paper. Specifically, we demonstrate the clustering
accuracies based on the leading {50, 100, ..., 300} features selected by DUFS and LS. In this experiment,
we focused on a random subset of 1000 samples of the digits 3 and 8.

S5 Raising L to the t’th Power
To suppress the smallest eigenvalues of the Laplacian, we have suggested to replace the Laplacian L
in equations (8) and (9) by its t-th power Lt with t > 1. As shown in [6] this corresponds for taking
t random walk steps on the graph of the data. In this subsection we empirically demonstrate the
effect of t using the two-moons dataset (described in the Experimental section of the main text). We
construct the two-moons dataset with different number of nuisance variables (d) and apply DUFS
(with the parameter free loss) computed based on L raised to the power of t = 1, 2 and 3. In Fig. S4
we present the clustering accuracy (averaged over 100 runs) based on k-means, which is applied to
the selected features. As evident in this plot the Laplacian based on t = 2 yields better performance
for a wider range of nuisance variables in this experiment. Following this result, we keep t = 2 in all
of our examples.

S6 Extended Clustering Results
In the next experiment, we evaluate the effectiveness of the proposed method for different numbers of
selected features on 3 datasets. We compare DUFS versus LS by performing k-means clustering using
the features selected by each method. In Fig. S5, we present the clustering accuracies (averaged
over 20 runs) based on the leading {50, 100, ..., 300} features. We see that DUFS consistently selects
features which provide higher clustering capabilities compared to LS.
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(a) DUFS

(b) LS

Figure S1: Features selected by DUFS and LS in the COIL20 dataset. Top: selected features (cyan
dots) and clustering accuracy based on DUFS. Note that as COIL20 contains different angles of
each object, the selected feature lie approximately on the symmetry axis. Bottom: selected features
(magenta dots) and clustering accuracy based on LS.
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(a) DUFS

(b) LS

Figure S2: Same as for S1 but for the COIL100 dataset. Note that as COIL100 contains different
angles of each object, the selected feature lie approximately on the symmetry axis. In this example,
the LS also selects features on the symmetry axis, however the LS based selected features are
condensed at a small region near the top part of the image. These features are informative for
clustering wide vs. long objects but less informative for clustering all 100 objects.
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(a) DUFS

(b) LS

Figure S3: Selected features on MNIST dataset. Top: selected features and clustering accuracy based
on DUFS. Bottom: selected features and clustering accuracy based on LS. In this example, DUFS
outperforms the LS when it is regularized to select a small number of features. However, when the
regularization is set to select > 150 features in DUFS, the features with top scores in both methods
are similar. 6



Figure S4: Taking powers of the graph Laplacian. Clustering accuracy vs. number of nuisance
dimensions in the two-moons datasts. We apply the parameter free variant of DUFS using a Laplacian
L raised to the power of t. Clustering is performed using k-means applied to the selected features
and averaged over 100 runs of DUFS.

Figure S5: Clustering accuracy on three real world datasets. Clustering was performed by applying
k-means to features selected by DUFS and LS. The averages and standard deviations based on 20
runs are shown.
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S7 Experimental Details
In this subsection we describe all required details for conducting the experiments provided in the
main text. The datasets are all publicly available and can be downloaded from 1,2,3. The scRNA-seq
datasets were collected by the following authors [1, 9, 2, 8].

We use SGD for all the experiments which are conducted using Intel(R) Xeon(R) CPU E5-2620
v3 @2.4Ghz x2 (12 cores total). For LS, MCFS, and NDFS we use a python implementation from 4.
For LLCFS and SRCFS we use a Matlab implementation from 5 and 6. For CAE we use a python
implementation available at 7. For DUFS and LS, we use k = 2 (number of nearest neighbors) which
worked well on all of the datastes, except for the GISSETE dataset in which we used k = 5. The
factor C (see Eq. 1) in all experiments is 5 except for SRBCT, COIL20 and PIX10 in which C = 2.
All datasets are publicly available at 8, except RCV1 which is available at 9. RCV1 is a multi-class
multi-label datasets, in our analysis we use a binary subset of RCV1. To create this subset, we focus
on the first two classes and remove all samples that have multiple labels, then we balance the classes
by down sampling the larger class. For NDFS, MCFS and SRCFS we use k = 5 for the affinity
matrix W , note that NDFS and LLCFS use the number of clusters for selecting features. The tuning
process for hyper-parameters of all method follows the grid search described described in [11].

In all examples except RCV1, COIL100 and COIL20 we use a full batch size for computing the
kernel, for COIL100 and COIL20 the batch size is 1000. For all two-moons examples presented in
Fig. 1 we use the parameter free loss term with a learning rate (LR) of 1 and 5000 epochs. For
PROSTATE data, we use a learning rate of 1, 12000 epochs and λ is evaluated in the range [0.01, 1].
For GLIOMA data we use a learning rate of 0.3, 12000 epochs and λ is evaluated in the range [3, 30].
For ALLAML data we use a learning rate of 0.3, 20000 epochs and λ is evaluated in the range [1, 5].
For COIL20 data we use a learning rate of 0.3, 26000 epochs and λ is evaluated in the range [0.01, 2].
For COIL100 data we use a learning rate of 1, 6000 epochs and λ is evaluated in the range [0.01, 2].
For PIX10 data we use a learning rate of 0.3, 20000 epochs and λ is evaluated in the range [0.05, 1].
For SRBCT, BIASE, INTESTINE, FAN, and Pollen datasets we use a learning rate of 0.3, 20000
epochs and λ is evaluated [0.001, 0.1].

S8 Strengths and Limitations
The proposed method provides several advantages compared to the classic Laplacian Score: (1)
it sparsifies the Laplacian and therefore, can identify subsets of low-frequency feature even in the
presence of a large number of nuisance variables, (2) it can be computed in small batches, therefore is
computationally lighter than the Laplacian Score. The success of our method relies on the assumption
that the data contains nuisance variables that are of high-frequency nature. However, often real
datasets contain variables that are weakly correlated with the structure of the data. In such cases,
DUFS may capture these weakly correlated variables even though removing them might be beneficial
for downstream analysis tasks. In the future, we plan to extend DUFS to handle correlated variables.

1http://featureselection.asu.edu/datasets.php
2We use a binary subset of RCV1
3For SRBCT we removed 4 samples that had 3 labels. The data can be found on [4]
4https://github.com/jundongl/scikit-feature
5https://github.com/huangdonghere/SRCFS
6https://www.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library
7https://github.com/mfbalin/Concrete-Autoencoders
8http://featureselection.asu.edu/datasets.php
9https://scikit-learn.org/0.18/datasets/rcv1.html
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Datasets LS MCFS NDFS LLCFS SRCFS CAE DUFS All Dim/Samples/Classes/Type

GISETTE 75.8 (1.9E-2) 56.5 (2.2E-14) 69.3 (7.5E-1) 72.5 (2.2E-2) 68.5 (2.7E-1) 77.3 (2E-2) 99.5 (1.1E-14) 74.4 (3.3E-1) 4955 / 6000 / 2 / Image
PIX10 76.6 (8.1) 75.9 (8.59) 76.7 (8.52) 69.1 (4.5E-2) 75.9 (7.0) 94.1 (5.6E-1) 88.4 (3.7) 74.3 (12.1) 10000 / 100 / 10 / Image
COIL20 60.0 (3.3) 59.7 (2.3) 60.1 (1.6) 48.1 (1.9E-2) 59.9 (2.3E-2) 65.6 (2.1) 65.8 (2.6) 53.6 (1.9) 1024 / 1444 / 20 /Image
Yale 42.7 (2.6) 41.7 (2.2) 42.5 (1.6) 42.6 (2E-2) 46.3 (2.5) 45.4 (3.4) 47.9 (2.5) 38.3 (2.2) 1024 / 165 / 15 /Image
RCV1 54.9 (2.1) 50.1 (7.5E-2) 55.1 (1.4E-2) 55.0 (1.1E-14) 53.7 (1.6E-2) 54.9 (4.2) 62.2 (11.1) 50.0 24408 / 21232 / 2 / Text
TOX-171 47.5 (7.6E-1) 42.5 (2.6) 46.1 (5.4E-1) 46.7 (1.5) 45.8 (5.7) 47.7 (7.5E-1) 49.1 (2.7) 41.5 (2.1) 5748 / 171 / 4 / Bio
ALLAML 73.2 (1.1E-14) 72.9 (1.7) 72.2 (1E-14) 77.8 (3.3E-14) 67.7 (6.1) 73.5 (3E-1) 74.5 (6E-1) 67.3 (3.1) 7192 / 72 / 2 / Bio
PROSTATE 58.6 (1.1E-14) 57.3 (1.1E-14) 58.3 (1.1E-14) 57.8 (1.1E-14) 60.6 (1.8) 56.9 (4.6E-1) 64.7 (2.14E-1) 58.1 (1.1E-14) 5966 / 102 / 2 /Bio
SRBCT 41.1(2.8) 43.7(2.6) 41(2.2) 34.58(5.2) 33.49(5.2) 62.6 (7.3) 51.7 (0.5) 39.6(2.8) 2308 / 83 / 4 / Bio
BIASE 83.8 (0.39) 95.5 (3.3) 100 (0) 52.2 (5.1) 50.8 (4.9) 85.1 (1.6) 100 (0) 41.8 (8.5) 25683 / 56 / 4 / Bio
INTESTINE 43.2 (3.5) 48.2 (4.0) 42.3 (2.0) 63.3 (10.3) 58.1 (6.9) 51.9 (3.8) 71.9 (6.9) 54.8 (2.6) 3775 / 238 / 13 / Bio
FAN 42.9 (0.86) 45.5 (2.6) 48.8 (1.0) 29.0 (3.4) 29.0 (3.1) 35.2 (3.4) 49.0 (1E-14) 37.5 (0.72) 25683 / 56 / 8 / Bio
POLLEN 46.9 (9.9E-2) 66.5 (3.0) 48.9 (3.6) 35.0 (5.3) 34.9 (2.9) 58.0 (4.3) 60.2 (0.24) 54.9 (5.6) 21810 / 301 / 4 / Bio

Table S1: Left sub-table- Average clustering accuracy on several benchmark datasets. Clustering is
performed by applying k-means 20 times using the features selected by the different methods. The
standard deviation is shown in parenthesis. Last column represents the clustering accuracies when
using all features. Right sub-table- Properties of the real world data used for empirical evaluation.
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