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Proof of Lemma 1. This lemma is proved in [14]. We provide an alternative and simplified proof
for completeness, and with an approach that fits our subsequent analysis. The first observation is
that the noise variance of a terminal node j is the inverse of the corresponding diagonal entry of the
precision matrix obtained by removing all descendants of j. Thus, if j has no descendants in a set S,
then σ−2

S,j = [ΘS ]j,j . The second observation is that the noise variance of a node in a restricted SEM
is affected by only its ancestors. Therefore, the noise variance of a node j in a restricted SEM over S
is equal to that of over a set S ∩ an(j), i.e., σS,j = σS∩an(j),j . Due to the second observation, we will
consider only the restricted SEMs over the sets of the form S = an(j) \ Uj , where Uj denotes the
ancestors of j that lie out of this restricted SEM. Let us denote the precision matrix of the restricted
SEM over an(j) by Φ , Θan(j). We obtain the variance of the noise term for a node j ∈ S as
follows:

ΦS = ΦS,S − ΦS,Uj
(ΦUj ,Uj

)−1ΦUj ,S , (12)
1
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, (14)

where the first line is due to Schur’s complement; the second line is due to the observations mentioned
above since j is a terminal node in both sets S and an(j); and the last line is due to (2) and
Proposition 4 of [25].

We use the Markov property to characterize edge weights in a restricted SEM. Conditioned on all of
its parents, node j is independent of the remaining nodes. Hence, [Ban(j)]k,j = Bk,j . We consider
the same set S = an(j) \ Uj , Φ = Θan(j) and derive the edge weights as follows:
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[Θan(j)]Uj ,k) , (18)

where the last line follows from [ΦS ]j,k = −[BS ]k,j/σ
2
S,j . Note that this last equality is correct since

S contains only the ancestors of j. Similarly, we can write [ΘS ]j,j = 1/σ2
S,j if S contains only the

ancestors of j.

Proof of Proposition 1. Let us consider the restricted SEM over set S and let Uj = an(j) \ S
denote the ancestors of j that are not included in the restricted SEM. Note that the restricted SEM
over an(j) has edge weights Ban(j) = [B]an(j),an(j) and noise covariance Ωan(j) = [Ω]an(j),an(j).
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Therefore, for nodes u, v ∈ Uj , we can use Lemma 1 to obtain,

[Θan(j)]u,v = − [Ban(j)]u,v
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Now we will prove the first statement. If S contains anI(j) and their parents pa(anI(j)), we know
that neither u, v nor their children belong to I. Therefore, [Θan(j)]u,v and [Θan(j)]u,u are invariant
due to (20) and (22), respectively. Subsequently, we have [∆Θan(j)

]Uj ,Uj = 0. Furthermore, since
j /∈ I, we have that [∆B ]k,j = 0 for k ∈ [p]. Using the Lemma 1 again, we obtain

σ2
S,j = σ2

j

(
σ4
j −B>Uj ,j [Θan(j)]

−1
Uj ,Uj

BUj ,j

)−1

, (23)

where we note that σj , BUj ,j , and [Θan(j)]Uj ,Uj
are all invariant and, subsequently, σ(1)

S,j = σ
(2)
S,j

is invariant. This proves the first statement regarding the invariance of the noise term for a non-
intervened node under certain restricted SEMs.

For the last part, Assumption 1 ensures that σ(1)
S,i 6= σ

(2)
S,i for i ∈ I, and we have [∆ΘS

]i,i 6= 0.
Similarly, Assumption 1 states that if [BS ]j,i 6= 0 for either model, then [∆ΘS

]j,i 6= 0.

Proof of Theorem 1. We will follow the steps of the Algorithm 1 to obtain the consistency results.
We assume that the covariance estimates are perfect, i.e., they are equal to the population-level
statistics. Therefore, we can compute ∆ΘS

for any S ⊆ [p] correctly. Instead of estimating I directly,
we, equivalently, aim to identify its complement IC.

Forming S∆. In Step 1, we first estimate ∆Θ over [p] to obtain the nodes that are affected by the
interventions. Note that σ(1)

i 6= σ
(2)
i for intervened nodes i ∈ I and [∆B ]k,j = 0 for non-intervened

nodes j /∈ I and k ∈ [p]. According to (2) and (3), [∆B ]k,k 6= 0 if and only if either k ∈ I or there
exists k → i for which i ∈ I. In other words, by forming the set S∆ = {k : k ∈ [p], [∆Θ]k,k 6=
0} = I ∪ ⋃i∈I pa(i), we can discard the nodes in [p] \ S∆. The discarded nodes consist of the
non-intervened nodes that do not have children in I. Next, we will show computationally, some of
the non-intervened nodes in S∆ can be identified easier than the others.

Forming non-intervened source nodes J0. Note that if a node j has an intervened ancestor, the
distribution of Xj changes and, subsequently, Σ

(1)
j,j 6= Σ

(2)
j,j . If a node i is intervened, the distribution

of Xi changes too, and it results in Σ
(1)
i,i 6= Σ

(2)
i,i . Therefore, we are able to find non-intervened source

nodes directly from Σ(1) and Σ(2). Since we have already narrowed down our focus to set S∆, we
define non-intervened source nodes as

J0 , {j : j ∈ S∆, j /∈ I, anI(j) = ∅} (24)

= {j : j ∈ S∆, Σ
(1)
j,j = Σ

(2)
j,j } . (25)

Sets S∆ and J0 are subsequently fed into the next steps of the algorithm.

Forming source ancestral sets Jk0 . In Proposition 1 we have shown that for any non-intervened node
j, there exists sets S that makes σS,j invariant, and the condition is closely related to ancestors of j
that are affected by the intervention being included in S. On the other hand, such a restricted SEM
does not exist for any intervened node. Therefore, we can identify all the non-intervened nodes in
S∆ \ J0 by finding a proper restricted SEM over a subset of S∆. Hence, finding the ancestors of
non-intervened nodes is critical. Now consider pair {j, k} such that j ∈ J0, k ∈ S∆ \ J0. Σj,j is
invariant and Σk,k is changing. If j and k have a common ancestor, which can be j itself, then Σj,k is
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nonzero and [∆Θ{j,k} ]j,k 6= 0. Otherwise, Σj,k = 0 and [∆Θ{j,k} ]j,k = 0. Subsequently, we define
the source ancestral set Jk0 for each node k ∈ S∆ \ J0, that consists of the nodes in J0 that have a
common ancestor with k, i.e.,

Jk0 , {j : j ∈ J0, [∆Θ{j,k} ]j,k 6= 0} , ∀k ∈ S∆ \ J0

= {j : j ∈ J0, an(j) ∩ an(k) 6= ∅} . (26)

Next, we will use these source ancestral sets to group the nodes that have similar ancestors together.

Forming equivalence classes from J0. We note that some of the nodes in S∆ \ J0 will have identical
source ancestral sets. Therefore, we can decompose the set S∆ \J0 into equivalence classes such that
all the nodes in a class have the same source ancestral sets. We denote these equivalence classes by
A1, . . . ,AL, and the source ancestral set corresponding to the class A` by JA`

0 for ` ∈ [L]. Formally,

S∆ \ J0 =
⋃
`∈[L]

A` , (27)

A`1 ∩ A`2 = ∅ , for `1 6= `2 , (28)

JA`
0 , Jk1

0 = Jk2
0 , ∀k1, k2 ∈ A` , for ` ∈ [L] . (29)

We note that we order these classes according to a topological order such that for 1 ≤ ` < `′ ≤ L,
J
A`′
0 6⊂ JA`

0 . In other words, the class corresponding to the superset of any JA`
0 should appear after

A` in the sequence A1, . . . ,AL. This ordering is important since we do not need descendants of a
non-intervened node in a restricted SEM to conclude its invariance. In the next step, we will show how
searching for such restricted SEMs for non-intervened nodes is simplified with this decomposition to
equivalence classes.

d-separation property for invariance. We establish the connection between d-separation in inter-
ventional graphs and the precision differences. Consider the augmented graph characterization of
interventions presented in [7]. A new node, F , is introduced to the graph to represent the interven-
tional distribution. There are edges from F to i for any intervened node i ∈ I in the augmented graph.
As there is no edge between F and non-intervened node j, there exists a set S that d-separates F and
j in the augmented graph. This implies that the probability distribution of the node j is invariant given
S \ {j}, which in turn implies that both conditional mean and variance of the node j does not change.
Subsequently, σS,j is invariant for this set S. Applying the results of [26] and [9], [ΘS ]j,j = σ−2

S,j is
also invariant. Therefore, the set S that d-separates F and non-intervened j results in [∆ΘS

]j,j = 0.

Processing equivalence classes. We process equivalence classes A1, . . . ,AL individually, i.e., at
stage `, we consider the nodes in A`. Let us defineM` = J0 ∪

⋃
1≤b<`Ab. We will prove that for a

non-intervened node j ∈ A`, we can determine its invariance via 2|A`| PDE. Due to our ordering
of the equivalence classes, any ancestor of j in S∆ will lie in eitherM` or A`. Consider the set
S =M` ∪ anI(j) ∪ pa(anI(j)) which is also of the formM` ∪A for some A ⊆ A`. Note that S
does not contain any descendant of j.

We will use d-separation property for invariance to show that this set S yields [∆ΘS
]j,j = 0.

Specifically, we will show that there does not exist a d-connecting path between the augmented node
F and j. Suppose the contrary and let π : 〈F → i . . . j〉 be a d-connecting path where i ∈ I. If j
has a tail end on π, there is a collider node k on the path that is a descendant of j. Since S does
not contain any descendant of j, neither node k nor its descendants are in S, and it blocks the path.
Therefore, the path should be of the form 〈F → i · · · → j〉. If i is a collider and not in S, it means it
is not an ancestor of S. Therefore, its descendants are also not in S, and i blocks the path. If i is a
collider and in S, it is either inM` or in anI(j). In either case, the parent of i on the path is also in
S and it blocks the path. If i is not a collider, the path will be 〈F → i → · · · → j〉. If i is in S, it
blocks the path. If i is not in S, it is not an ancestor of j. Then, there is a collider k on the path that is
a descendant of i. Since i is not in S, none of its descendants are neither in S. Therefore, k blocks the
path. We have ruled out all possible active paths and shown that there does not exist a d-connecting
path between F and j for S = M` ∪ anI(j) ∪ pa(anI(j)). Subsequently, [∆ΘS

]j,j = 0 due to
d-separation for invariance property. As we have noted before, set S can be written as S =M` ∪A
for some A ⊆ A`, and we can check the existence of such A, i.e., whether j is non-intervened by
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using PDE only 2|A`| times. Formally, the process equivalence class returns

I` = {i : i ∈ A` ∩ I} , and J` = {j : j ∈ A` ∩ IC} . (30)

This concludes the proof that Algorithm 1 consistently estimates I set.

Remark 3 After forming A1, . . . ,AL classes with corresponding sets JA1
0 , . . . , JAL

0 , consider a
pair A`,A′` where 1 ≤ ` < `′ ≤ L. Note that for any node pair (u, v) where u ∈ A` and v ∈ A`′ ,
u is not a descendant of v. Additionally, if JA`

0 6⊂ J
A`′
0 , u is not an ancestor of v. Hence, while

considering A` step of Algorithm 1, taking M` = JA`
0 ∪ ⋃b∈B`

Ab where B` , {b : JAb
0 ⊂

JA`
0 , 1 ≤ b < `} is equivalent to takingM` = J0 ∪

⋃
1≤b<`Ab. We use the former simplified

approach to reduce the computational burden by having fewer nodes for subsequent ∆Θ estimates.

Proof of Theorem 2. While processing a class A` in Algorithm 1, we declare a node j non-
intervened if there exist a set A ⊂ A` such that [∆ΘM`∪A

]j,j = 0. Note that there may exist more
than one suchM` ∪A, in which case we denote the smallest one by Nj .
Now, define cj , ` for all j ∈ A`, where ` is the index of the equivalence class that contains node j.
We have shown in Section 4.2 that finding {j → i}j /∈I,i∈I is sufficient to update MEC into I-MEC.
Therefore, our goal for a non-intervened node is to find all of its intervened children. Consider
j ∈ Jcj and i ∈ Ici such that cj ≤ ci. If i ∈ Nj , it immediately implies that j is not a parent of i.
Suppose that i /∈ Nj .
Consider S =Mci ∪ pa(i) ∪ {i} that is also of the formMci ∪ A for some A ⊆ Aci . Therefore,
we compute PDE for this S in ci-th stage of process equivalence class. If j /∈ pa(i), all the paths
j · · · → i are blocked with a parent of i that is given in S. On the other hand, if the path ends with
← i, the path contains a collider node k that is a descendant of i. Since i is the youngest node in
S, that collider k blocks the path. Therefore, [ΘS ]j,i = 0 and [∆ΘS

]j,i = 0 if j /∈ pa(i). From
Assumption 1, if j ∈ pa(i), [∆ΘS

]j,i 6= 0. Therefore, we identify all the non-intervened parents of
intervened node i.

Orienting more edges. In addition to finding {j → i}j /∈I,i∈I , which is the main objective of
Theorem 2, we can also recover the edges {k → i}{k,i}∈I,ck 6=ci . Consider nodes k ∈ Ick and
i ∈ Ici such that ck < ci. In other words, k and i are both intervened but they belong to different
equivalence classes. Similar to the previous case, by considering set S =Mci ∪ pa(i) ∪ i, we obtain
[∆ΘS

]k,i 6= 0 if k ∈ pa(i) and [∆ΘS
]k,i = 0 otherwise. Therefore, k /∈ pa(i), and we can orient all

k → i edges if both nodes are intervened and belong to different equivalence classes.

Proof of Theorem 3. We use the ADMM-based approach of [12] as our PDE function to esti-
mate ∆ = Θ(1) − Θ(2). Theorem 1 of [12] gives the sample complexity of this estimation as
O(MΣMΓ,ΓT d4 log p). In Theorem 3, we further assume that the product MΣMΓ,ΓT is bounded.

Accordingly, with n = O
(
d4

ε2
log p
δ

)
samples, PDE’s output ∆̂ satisfies ‖∆̂ − ∆‖∞ < ε with a

probability at least 1− δ. We note that the conditions in Theorem 3 are given for the linear SEM over
[p] and the associated covariance matrices. If these conditions hold, they also hold for the restricted
SEM over any S ⊂ [p]. Therefore, if we have ‖∆̂Θ−∆Θ‖∞ < ε, we also have ‖∆̂ΘS

−∆ΘS
‖∞ < ε

for any set S. Subsequently, we can threshold PDE outputs ∆̂ΘS
by ε to exactly recover the support

of ∆ΘS
for any set S.

Note that Algorithm 1 requires only the support of ∆ΘS
for a number of sets S. Therefore, with

n = O
(
d4

ε2
log p
δ

)
samples, Algorithm 1 identifies I with a probability at least 1− δ. We have shown

in the proof of Theorem 2 that finding {j → i}j /∈I,i∈I does not require any additional ∆Θ estimates.

Therefore, with n = O
(
d4

ε2
log p
δ

)
samples, Algorithm 1 also identifies the non-intervened parents of

the intervened nodes {j → i}j /∈I,i∈I with a probability at least 1− δ.

We finally note that Corollary 1 of [12] explicitly assumes that both MΣ and MΓ,ΓT are bounded
to remove MΣMΓ,ΓT from the sample complexity. However, it can be readily relaxed to
MΣMΓ,ΓT < +∞ since both terms always appear within the same product. We note that this
relaxation brings about a significant level of flexibility in choosing covariance matrices. Indeed, this
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product is closely related to the condition number of the estimation problem. Two terms correspond
to the norm of the inverse of Hessian of the optimization problem and the norm of the covariance,
respectively. Product of these terms, the condition number, appears in similar matrix inference
problems such as graphical lasso [27].

B Additional experiments

B.1 Intervention recovery

We have compared the results of our algorithm and those of UT-IGSP for estimating intervention
targets under shift intervention model in Section 5.1. We expand the simulations to various settings
in this subsection. Specifically, we report the results for shift intervention model with higher density
c = 2.5 in Table 2, increased variance setting with c = 2.5 in Table 3, and randomized intervention
setting with with c = 2.5 in Table 4.

Our algorithm works well in all settings. Especially, increasing the dimension does not adversely
affect accuracy and time complexity.

Table 2: I estimation in the shift intervention model - 50 repetitions with 5000 samples - density 2.5
UT-IGSP ( [19]) Algorithm 1

p Precision Recall F1 Time(s) Precision Recall F1 Time(s)

20 0.95 0.99 0.97 0.2 0.90 0.86 0.88 0.2
40 0.89 0.99 0.94 0.6 0.87 0.91 0.89 0.3
60 0.88 1 0.94 2.0 0.86 0.96 0.91 0.4
80 0.80 1 0.89 7.0 0.86 0.94 0.90 0.5
100 0.77 1 0.87 17.7 0.87 0.98 0.92 0.5

Table 3: I estimation in the increased variance model - 50 repetitions with 5000 samples - density 2.5
UT-IGSP ( [19]) Algorithm 1

p Precision Recall F1 Time(s) Precision Recall F1 Time(s)

20 0.90 0.99 0.95 0.2 0.89 0.86 0.87 0.2
40 0.85 1 0.92 0.6 0.87 0.93 0.90 0.3
60 0.88 1 0.93 2.4 0.89 0.97 0.92 0.3
80 0.80 1 0.89 5.8 0.86 0.97 0.91 0.4

Table 4: I estimation in the randomized intervention - 50 repetitions with 5000 samples - density 2.5
UT-IGSP ( [19]) Algorithm 1

p Precision Recall F1 Time(s) Precision Recall F1 Time(s)

20 0.92 1 0.96 0.2 0.86 0.91 0.88 0.2
40 0.82 1 0.90 0.7 0.88 0.94 0.91 0.3
60 0.81 1 0.90 2.8 0.84 0.96 0.90 0.5
80 0.74 1 0.85 8.4 0.86 0.92 0.89 0.6

Comparison with Ghoshal’s algorithm [14]. Ghoshal’s algorithm in [14] is designed to estimate
∆B , and its performance critically hinges on the noise variances to be invariant. Even though it is
not designed to return intervention targets, we can define the estimated intervention set of Ghoshal’s
algorithm as Î , {i : i, ∃ j, (∆B)j,i 6= 0}. We run our algorithm and Ghoshal’s algorithm on the
randomized intervention setting described in Section 5.1 and report the results in Table 5. Expectedly,
Ghoshal’s algorithm does not perform well due to violation of the invariant noise variance assumption.
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Table 5: I estimation in the randomized intervention model - 100 repetitions with 10000 samples -
density 2.5

Ghoshal [14] Algorithm 1

p Precision Recall F1 Time(s) Precision Recall F1 Time(s)

20 0.74 0.62 0.67 <0.1 0.92 0.92 0.92 0.6
40 0.73 0.68 0.70 0.1 0.91 0.94 0.93 0.6
60 0.70 0.69 0.69 0.2 0.91 0.96 0.94 0.6
80 0.69 0.66 0.67 0.3 0.91 0.96 0.93 0.6
100 0.66 0.63 0.64 0.4 0.91 0.95 0.93 0.7

Increased number of samples. Theorem 1 states that our algorithm is consistent. Figure 1 shows
that the performance of the algorithm increases significantly with the increased number of samples in
all of the considered settings. We provide additional evidence of this fact. We generate 50 random
graphs with density c = 2.5 for each of the shift intervention, increased variance, and randomized
intervention settings. We report the F1 scores for each setting with 5000, 10000, and 20000 samples
in Table 6.

Table 6: I estimation with increased number of samples - 50 repetitions - density 2.5
Shift Intervention Increased Variance Randomized Intervention

p 5000 10000 20000 5000 10000 20000 5000 10000 20000

40 0.87 0.90 0.91 0.95 0.96 0.96 0.90 0.92 0.94
60 0.90 0.92 0.93 0.93 0.96 0.97 0.91 0.93 0.95
80 0.90 0.91 0.94 0.93 0.97 0.98 0.91 0.94 0.95
100 0.93 0.94 0.96 0.94 0.97 0.97 0.89 0.93 0.92

B.2 Causal structure learning

In Section 4.2, we have shown that our method recovers the new information that can be gained
through interventions. Hence, Algorithm 1 refines the given MEC into the I-MEC. Accordingly, we
test our algorithm for the causal structure recovery task in this subsection.

First, we take the correct CPDAG of G(1) and apply our algorithm’s findings to obtain I-CPDAG.
We run 100 realizations of Erdős-Rényi graphs with c = 2 and 10000 samples. For different values
of graph size p, we consider fixed target set size |I| = 5 or growing target set size |I| = p/10. We
report the results for recovery of I-directed edges in Table 7.

Table 7: Recovery of I-directed edges in the increased variance model
|I| = 5 |I| = p/10

p Precision Recall F1 Time(s) Precision Recall F1 Time(s)

40 0.69 0.93 0.80 0.15 0.73 0.94 0.82 0.11
60 0.73 0.93 0.82 0.24 0.73 0.93 0.82 0.25
80 0.75 0.93 0.83 0.28 0.73 0.96 0.83 0.45
100 0.82 0.97 0.89 0.42 0.72 0.93 0.81 0.86

Next, we consider recovering the non-intervened parents of the intervened nodes, i.e., {j → i}j /∈I,i∈I .
We note that we do not use any given MEC information in this setting. Therefore, a comparison with
UT-IGSP algorithm becomes feasible. We report the results for |I| = 5 in Table 8. Similar to the
intervention recovery task, our algorithm’s runtime does not suffer from increasing the dimension
while the runtime of UT-IGSP grows very quickly.
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Table 8: Recovery of non-intervened parents of intervened nodes
UT-IGSP ( [19]) Algorithm 1

p Precision Recall F1 Time(s) Precision Recall F1 Time(s)

20 0.76 0.98 0.86 0.32 0.81 0.81 0.81 0.15
40 0.82 0.98 0.89 2.30 0.85 0.79 0.82 0.22
60 0.84 0.98 0.91 10.11 0.88 0.85 0.86 0.26
80 0.89 0.99 0.93 32.97 0.92 0.78 0.85 0.28

B.3 Application to real data

We have investigated directed edge recovery results for two real biological datasets in Section 5.3. In
this subsection, we give the skeleton recovery results for the same datasets. Figure 3 illustrates that
our observations from the directed edge recovery hold for the skeleton recovery as well. Comparison
of figures 2 and 3 reveals that our algorithm orients fewer number of edges incorrectly with respect to
UT-IGSP algorithm.

Hyperparameters. We have defined the regularization parameters λ1, λ2, and λ3 for our algorithm
and cut-off value α for UT-IGSP in Section 5. Specifically, we have used λ1 ∈ [0.1, 0.3], λ2 = 0.2,
and λ3 ∈ [0.05, 0.2] for Algorithm 1, and α ∈ [0.0001, 0.5] for UT-IGSP while creating figures 2a
and 3a. Similarly, we have used λ1 = 0.1, λ2 = 0.05, and λ3 ∈ [0.005, 0.1] for Algorithm 1, and
α ∈ [0.005, 0.1] for UT-IGSP while creating figures 2b and 3b.
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(a) Sachs [22] dataset skeleton recovery
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(b) Dixit [24] dataset skeleton recovery

Figure 3: ROC curves for skeleton recovery. The solid grey line corresponds to random guessing.

B.4 Computational complexity

We have stated in Section 4 that the computational complexity of our algorithm is exponential in the
size of the largest equivalence class, max |A`|. This can be as large as p∆ in some extreme examples.
One possible scenario for this case is if the parents of intervention targets are also intervened. In
this case, J0 will be the empty set and all nodes in S∆ will belong to the same group. However, this
requires the interventions to concentrate in one neighborhood such that parents of the intervened
nodes will also be intervened. In reality, such scenarios happen rarely, and interventions are generally
distributed.

We generate 1000 instances of random graphs with p = 100, various densities, and target set sizes to
demonstrate the much smaller size ofA` groups with respect to S∆. Figure 4 illustrates that max |A`|
is much smaller than p∆. Indeed, Fig. 4 also shows the limitations of some of the related work
that has computational complexity exponential in p∆ strictly. For instance, for p = 100, |I| = 5,
and c = 5 in Fig. 4a, the 90%-th percentile of p∆ is 25, whereas max` |A`| is only 4. Gains of our
algorithm become more dramatic when the target set is larger. For instance, for p = 100, |I| = 10,
and c = 5 in Fig. 4b, the 50%-th percentile of p∆ is 34, whereas the 90%-th percentile of max` |A`|
is only 10. Therefore, our algorithm can scale up to higher dimensions.
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Figure 4: Exponential factor in the computational complexity of our algorithm, max` |A`|, is much
smaller than the size of the affected nodes p∆ = |S∆|. x-axis shows the percentile values over 1000
different random DAG instances. Largest class size maxl |A`| and p∆ are plotted for three different
density values.

We finally comment on the computational complexity of the PDE routine. The ADMM-based PDE
algorithm of [12] has O(p3) complexity. We note that we run PDE with all [p] nodes only once during
the S∆ estimation in Step 1. Hence, the estimation with O(p3) complexity will only be performed
once. The rest of the PDE instances require much smaller number of nodes as stated in Remark 3. We
note that a related study in [14] uses another PDE algorithm that has complexity O(p4). Reducing it
to O(p3) is a significant gain, which allows us to process hundreds of nodes.
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