
A Omitted Derivations of Formulas

We have omitted a number of complicated formulas in the main text to provide clear intuition and
concise proof sketch. We will list all mentioned formulas here for readers’ reference.

σd(At+1) ≥ σd(At + η(Σ−AtA>t )At)− η
(
3
√

2σ1‖Bt‖2op +
√

2σ1(‖Kt‖2op + ‖Jt‖2op)
)

≥
√
σd(St+1)− η

(
3
√

2σ1e
2
bε

2d2 +
√

2σ1c
2ε2(m+ n)

)
≥

√
(1 + η(σd − σd(At)2))2σd(At)2 − 22σ3

1η
2

−1.5
√

2σ1η(e2
b + c2)ε2(m+ n)d. (20)

‖Ct‖op ≤ 2
√

2σ1e
2
bd

2ε2 +
√

2σ1c
2ε2 (max{d,m′}+ max{d, n′})

≤
√

2σ1(e2
b + c2)(m+ n)dε2;

‖Dt‖op ≤ 4σ1ebdε+
√

2σ1c
2ε2 (max{d,m′}+ max{d, n′})

≤ 8σ1ebdε. (21)

‖Bt+1‖2F − ‖Bt‖2F = −2η

〈
BtB

>
t ,Σ−AtA>t +BtB

>
t +

K>t Kt + J>t Jt
2

〉
−η‖AtB>t −BtA>t ‖2F + η

〈
B>t At,K

>
t Kt − J>t Jt

〉
+η2‖(Σ−AtA>t +BtB

>
t )Bt + (AtB

>
t −BtA>t )At

−At
K>t Kt − J>t Jt

2
−Bt

K>t Kt + J>t Jt
2

‖2F

≤ −2ηλd(Pt)‖Bt‖2F + η‖B>t At‖F ‖K>t Kt − J>t Jt‖F
+η2‖(Σ−AtA>t +BtB

>
t )Bt + (AtB

>
t −BtA>t )At

−At
K>t Kt − J>t Jt

2
−Bt

K>t Kt + J>t Jt
2

‖2F
≤ O(ηe2

bε
2(m+ n)dκ)‖Bt‖2F +O(η

√
σ1eb(m+ n)d2ε3)

+O(η2σ2
1e

2
bd

2ε2).

= O(ηe2
bε

2(m+ n)dκ)‖Bt‖2F +O(η
√
σ1eb(m+ n)d2ε3). (22)

Σ− Ut+1+T0
V >t+1+T0

= (I − ηUt+T0
U>t+T0

)(Σ− Ut+T0
V >t+T0

)(I − ηVt+T0
V >t+T0

)

−η2Ut+T0U
>
t+T0

(Σ− Ut+T0V
>
t+T0

)Vt+T0V
>
t+T0

−η2(Σ− Ut+T0V
>
t+T0

)Vt+T0U
>
t+T0

(Σ− Ut+T0V
>
t+T0

)

+η(Ut+T0
+ η(Σ− Ut+T0

V >t+T0
)Vt+T0

)J>t+T0
Jt+T0

V >t+T0

+ηUt+T0
K>t+T0

Kt+T0
(Vt+T0

+ η(Σ− Ut+T0
V >t+T0

)>Ut+T0
)>

−η2Ut+T0K
>
t+T0

Kt+T0J
>
t+T0

Jt+T0V
>
t+T0

. (23)

B Dynamics in the Symmetric and Full-Rank Case

We consider the case where U = V = A and Σ is symmetric and full-rank, and we use gradient
flow. We can derive the dynamics of S = AA> as Ṡ := (Σ− S)S + S(Σ− S), which is a quadratic
ordinary differential equation and it is hard to solve directly.
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However, if we define X := S−1, we have SX ≡ I . Taking the derivative implies ṠX + SẊ = 0.
Hence, Ẋ = −S−1ṠS−1. Substitute Ṡ = (Σ− S)S + S(Σ− S) in it, we have

Ẋ = −S−1 ((Σ− S)S + S(Σ− S))S−1 = −XΣ− ΣX + 2I,

which is a linear ordinary differential equation.

For simplicity, define X := X − Σ−1. Then

Ẋ = −XΣ− ΣX. (24)

Solving this equation and we have

X(t) = e−tΣX0e
−tΣ. (25)

Finally, we could conclude that

S(t) =
(
e−tΣ(S−1

0 − Σ−1)e−tΣ + Σ−1
)−1

. (26)

Similarly, because P ’s dynamic is Ṗ = −(Σ− P )P − P (Σ− P ), we have

P (t) =
(
etΣ(P−1

0 − Σ−1)etΣ + Σ−1
)−1

, (27)
where P0 := Σ− S0.

And it is interesting to verify that S(t) + P (t) ≡ Σ by using the following lemma.
Lemma B.1. Suppose S, P,E ∈ Rd×d are three positive definite matrices. Σ = S + P . Suppose E
commutes with Σ. Then(

E(S−1 − Σ−1)E + Σ−1
)−1

+
(
E−1(P−1 − Σ−1)E−1 + Σ−1

)−1
= Σ.

C Proof of Lemmas

Proof of lemma B.1. Since Σ is invertible, we only need to verify the equation after right multiplying
both side by Σ−1. We have(

E(S−1 − Σ−1)E + Σ−1
)−1

Σ−1 +
(
E−1(P−1 − Σ−1)E−1 + Σ−1

)−1
Σ−1

=
(
E(ΣS−1 − I)E + I

)−1
+
(
E−1(ΣP−1 − I)E−1 + I

)−1
(28)

=
(
E(PS−1)E + I

)−1
+
(
E−1(SP−1)E−1 + I

)−1
(29)

= (Z + I)−1 + (Z−1 + I)−1 (we denote E(PS−1)E by Z here) (30)

= (Z + I)−1 + Z(Z + I)−1

= I

= ΣΣ−1,

where (28) is because Σ commutes with E, (29) is because Σ = S + P and finally (30) is because(
E(PS−1)E

)−1
= E−1(SP−1)E−1.

General analysis for lemma 3.2 and 3.3 Suppose S̄, S̃ and Σ are three symmetric matrices. Define
D = S̄ − S̃. Then we have equation

(I + η(Σ− S̄))S̄(I + η(Σ− S̄))− (I + η(Σ− S̃))S̃(I + η(Σ− S̃))

= S̄ − S̃ + η
(

(Σ− S̄)S̄ + S̄(Σ− S̄)− (Σ− S̃)S̃ + S̃(Σ− S̃)
)

+η2
(

(Σ− S̄)S̄(Σ− S̄)− (Σ− S̃)S̃(Σ− S̃)
)

= D + η((Σ− S̄ − S̃)D +D(Σ− S̄ − S̃))

+η2
(

(Σ− S̄)S̄(Σ− S̄)− (Σ− S̃)S̃(Σ− S̃)
)

=
(
I + η(Σ− S̄ − S̃)

)
D
(
I + η(Σ− S̄ − S̃)

)
+η2

(
(Σ− S̄ − S̃)D(Σ− S̄ − S̃) + (Σ− S̄)S̄(Σ− S̄)− (Σ− S̃)S̃(Σ− S̃)

)
. (31)
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Proof of lemma 3.2. First of all, we can expand the expression of S′ and split it in the following
terms.

σd(S
′) ≥ λd

(
βS − 2ηS2 + η2S3

)
+ σd

(
(1− β)S + ηΣS + ηSΣ +

η2

1− β
ΣSΣ

)
+η2λd

(
− β

1− β
ΣSΣ− ΣSS − SSΣ

)
.

For the first term βS − 2ηS2 + η2S3, its eigenvalues are βsi − 2ηs2
i + η2s3

i since S is commutable
with itself, where si is the ith largest singular value of S. By the assumptions si ≤ 2σ1 and η ≤ β

8σ1
,

we see the smallest eigenvalue of βS − 2ηS2 + η2S3 is exactly βs− 2ηs2 + η2s3.

For the second term, it can be rewritten as

(1− β)S+ ηΣS+ ηSΣ +
η2

1− β
ΣSΣ ≡

(√
1− βI +

η√
1− β

Σ

)
S

(√
1− βI +

η√
1− β

Σ

)
.

Hence, the minimal singular value can be bounded by
(√

1− β + ησd√
1−β

)2

s.

Finally, the last term can be lower bounded by−η2σ1

(
− β

1−βΣSΣ− ΣSS − SSΣ
)
≥ − 8+6β

1−β η
2σ3

1 .
Summing up all three terms and we get

s′ ≥
(
βs− 2ηs2 + η2s3

)
+

(√
1− β +

ησd√
1− β

)2

s− 8 + 6β

1− β
η2σ3

1

= (1 + η(σd − s))2s+
βσ2

d

1− β
η2s+ 2σdη

2s2 − 8 + 6β

1− β
σ3

1η
2

≥ (1 + η(σd − s))2s− 8 + 6β

1− β
σ3

1η
2.

Remark: If we choose S̄ = S and S̃ = σd(S)I in equation (31), we know D = S̄ − S̃ � 0. Hence
σd(S

′) ≥ (1 + η(σd − s))2s−O(σ3
1η

2).

Proof of lemma 3.3. If p ≥ 0, it suggests that P is positive semi-definite, and P ′ is positive semi-
definite, too. Hence p′ ≥ 0 if p ≥ 0.

If p ≤ 0, we can expand the expression of P ′ and split it in the following terms.

λd(P
′) ≥ λd

(
βP + 2ηP 2 + η2P 3

)
+ λd

(
(1− β)P − ηΣP − ηPΣ +

η2

1− β
ΣPΣ

)
+η2λd

(
− β

1− β
ΣPΣ− ΣPP − PPΣ

)
.

For the first term βP + 2ηP 2 + η2P 3, its eigenvalues are βpi + 2ηp2
i + η2p3

i since P is commutable
with itself, where pi is the ith largest eigenvalue of P . By the assumptions |pi| ≤ 2σ1 and η ≤ β

8σ1
,

we see the smallest eigenvalue of βP + 2ηP 2 + η2P 3 is exactly βp+ 2ηp2 + η2p3.

For the second term, it can be rewritten as

(1−β)P −ηΣP −ηPΣ+
η2

1− β
ΣPΣ ≡

(√
1− βI − η√

1− β
Σ

)
P

(√
1− βI − η√

1− β
Σ

)
.

Hence, the minimal eigenvalue can be bounded by
(√

1− β − ησd√
1−β

)2

p if p ≤ 0.
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Finally, the last term can be lower bounded by −η2σ1

(
− β

1−βΣPΣ− ΣPP − PPΣ
)
≥

− 8+6β
1−β η

2σ3
1 . Summing up all three terms and we get that when p ≤ 0,

p′ ≥
(
βp+ 2ηp2 + η2p3

)
+

(√
1− β − ησd√

1− β

)2

p− 8 + 6β

1− β
η2σ3

1

= (1− η(σd − p))2p+
βσ2

d

1− β
η2p+ 2σdη

2p2 − 8 + 6β

1− β
σ3

1η
2

≥ (1− η(σd − p))2p− 8 + 6β

1− β
σ3

1η
2

≥ (1− ησd)2p− 8 + 6β

1− β
σ3

1η
2.

Remark: Similarly, if we choose S̄ = P and S̃ = λd(P )I in equation (31), we have D =
P − λd(P )I � 0. Hence we have λd(P ′) ≥ min

{
0, (1− ησd)2p+O(σ3

1η
2)
}

.

D Solving the Iteration Formula of a

In this section we analyze the iteration formula (15).

We first consider the case when at ≤
√

σd
2 . Notice that at ≥ ε

c
√
d

, we have√
(1 + η(σd − σd(At)2))2σd(At)2 − 22σ3

1η
2 ≥ (1 + η(σd − σd(At)2))σd(At)− 22

c
√
d

ε
σ3

1η
2,

where we choose η so small that 22σ3
1η

2 ≤ ε2

c2d .

By taking ε = O
(

σd√
d3σ1e2b(m+n)

)
and η = O

(
σdε

2

dσ3
1

)
, we have 1

2η(σd − a2
t )at ≥ 1

2η
σd
2

ε
c
√
d
≥

22 c
√
d
ε σ3

1η
2 + 1.5

√
2σ1η(e2

b + c2)ε2(m+ n)d, hence,

at+1 ≥
(

1 +
η

2
(σd − a2

t )
)
at, (32)

and

st+1 ≥
(

1 +
η

2
(σd − st)

)2

st ≥ (1 + η(σd − st)) st. (33)

Subtracting σd by (33), we have

σd − st+1 ≤ (1− ηst)(σd − st). (34)

Dividing (33) by (34) we have

st+1

σd − st+1
≥ 1 + η(σd − st)

1− ηst
st

σd − st
≥ (1 + ησd)

st
σd − st

.

Hence, sT
σd−sT ≥ (1 + ησd)

T s0
σd

. So, it takes at most T1 := O
(

1
ησd

ln dσd
ε2

)
iterations to bring at to

at least
√

σd
2 .

E Solving the Iteration Formula on B

The iteration formula can be summarized as

‖Bt+1‖2F ≤ (1 + p)‖Bt‖2F + q,
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where p = O(ηe2
bε

2(m+ n)dκ) and q = O(η
√
σ1eb(m+ n)d2ε3). Moreover, we have

‖BT ‖2F ≤ (1 + p)T ‖B0‖2F + ((1 + p)T − 1)
q

p
.

Suppose T ≤ T0 = O
(

1
ησd

ln dσd
ε2

)
. By choosing ε = Õ

( √
σd

eb
√

(m+n)dκ

)
12, we have pT ≤ pT0 ≤

1. Then (1+p)T = 1+
(
T
1

)
p+
(
T
2

)
p2+· · ·+

(
T
T

)
pT ≤ 1+Tp

(
1 + 1

2! + · · ·+ 1
T !

)
≤ 1+(e−1)Tp ≤

1 + 2pT . Hence,
‖BT ‖2F ≤ (1 + 2pT )‖B0‖2F + 2qT.

Similarly, by choosing ε = Õ
(

σd√
σ1eb(m+n)

)
, we have qT ≤ c2d2ε2. By taking eb = 2c, we have

‖BT ‖2F ≤ 3‖B0‖2F + c2d2ε2 ≤ 4c2d2ε2 = e2
bd

2ε2,

induction succeeds.

F Proof of Stage Two

Here is the full version of the proof. Initially, ‖∆0‖op = ‖PT0
+QT0

‖op where Q = AB> −BA>.
Hence ‖∆0‖op ≤ σ1(PT0) + σ1(QT0) ≤ σd

4 +
√

2σ1σ1(BT0) ≤ σd
3 . Then for UT0 we have 2σd

3 ≤
σd(Σ)−σ1(∆0) ≤ σd(UT0V

>
T0

) ≤ σd(UT0U
>
T0

)−2σ1(UT0B
>
T0

) ≤ σd(UT0U
>
T0

)−4
√

2σ1O
(
σd√
σ1

)
.

Hence σd(UT0
) ≥

√
σd
2 . We can do the same thing on VT0

.

First of all, by equations (8) and (9), we have

‖Jt+T0‖op ≤ cε
(

1− ησd
2

)t√
max{m′, d},

and
‖Kt+T0‖op ≤ cε

(
1− ησd

2

)t√
max{n′, d}.

Expanding Σ− Ut+1+T0V
>
t+1+T0

by brute force13, we get

∆t+1 ≤
(

1− ησd
2

)2

∆t +O(η2σ2
1)∆t +O

(
ηε2σ1(m+ n)

) (
1− ησd

2

)2t

≤
(

1− ησd
2

)
∆t +O

(
ηε2σ1(m+ n)

) (
1− ησd

2

)2t

.

Then,

∆t+1(
1− ησd

2

)t+1 ≤ ∆t(
1− ησd

2

)t +O
(
ηε2σ1(m+ n)

) (
1− ησd

2

)t−1

≤ ∆0 +O
(
ε2κ(m+ n)

)
≤ 2

5
σd.

Thus we can now verify that ∆t ≤
(
1− ησd

2

)t 2
5σd. Together with the linear convergence of J and

K, we know the gradient descent converge linearly. Notice that by using the operator norm of ∆t, we
can easily prove that σd(U) and σd(V ) in the next iteration is at least

√
σd
2 once given ‖BT0+t‖F is

small.

To give an upper bound on ‖B‖F , we still use equation (19).

First of all, we have ‖P‖2F + ‖Q‖2F = ‖Σ− UV >‖2F , since P +Q = Σ− UV >, and 〈P,Q〉 = 0.
Hence, ‖Pt+T0‖F ≤

√
d∆t and ‖Qt+T0‖F ≤

√
d∆t.

12Here Õ means there might be some log terms about m,n, κ and eb on the denominator.
13Please see (23) for the result of the expanding.
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Finally,

‖Bt+1+T0
‖2F ≤

(
1 + 2η

(
1− ησd

2

)t 2

5
σd

)
‖Bt+T0

‖2F +O
(
ησd(m+ n)dε2

) (
1− ησd

2

)2t

+O

(
η2dσ1σ

2
d

(
1− ησd

2

)2t
)
.

To solve this iteration formula, we first notice that the product of the main coefficient is bounded by a
universal constant,

ΞT :=

T−1∏
i=0

(
1 + 2η

(
1− ησd

2

)t 2

5
σd

)
≤ exp

(
T−1∑
i=0

2η
(

1− ησd
2

)t 2

5
σd

)
≤ e 8

5 ,

we can then write it into an iteration formula about ‖Bt+T0‖
2
F

Ξt
,

‖Bt+1+T0‖2F
Ξt+1

≤ ‖Bt+T0‖2F
Ξt

+O
(
ησd(m+ n)dε2

) (
1− ησd

2

)2t

+O

(
η2dσ1σ

2
d

(
1− ησd

2

)2t
)

≤ ‖BT0
‖2F +O

(
(m+ n)dε2

)
+O (ηdσ1σd) .

By taking ε = O

(
σd√

σ1(m+n)d

)
and η = O

(
σd
dσ2

1

)
, induction on ‖B‖F holds.

G Matrix sensing problem

We only consider full-rank case here, i.e. Σ is a d× d full-rank matrix, and we would like to factorize
Σ into U × V >, where U, V ∈ Rd×d.

For a sufficiently large integer N , consider measurements M1,M2, · · · ,MN ∈ Rd×d generated by
i.i.d. Gaussian distribution. Define labels yi := 〈Mi,Σ〉 for i ∈ [N ].

The objective function is defined as

f(U, V ) =
1

2N

∑
i∈[N ]

(
〈
Mi, UV

>〉− yi)2,

which can be equivalently written as 1
2N

∑
i∈[N ]

〈
Mi, UV

> − Σ
〉2

.

And the gradient descent with learning rate η can be written as

Ut+1 = Ut −
η

N

∑
i∈[N ]

〈
Mi, UV

> − Σ
〉
MiV ;

Vt+1 = Vt −
η

N

∑
i∈[N ]

〈
Mi, UV

> − Σ
〉
M>i U.

G.1 Symmetrization

Suppose the SVD of Σ is ΦΣ′Ψ>. Then if we replace the objective matrix by Σ′, replace the
measurements by Φ>MiΨ and replace the initial parameter matrices by Φ>U and Ψ>V , then
everything, including the objective function, the gradient descent process, the loss value, etc. are the
same. Hence, we can assume, without loss of generality, Σ is a positive semi-definite matrix. (We
could also check that the initialization and measurements are still i.i.d. Gaussian generated.)

To simplify the notation, we define a linear operator Λ : Rd×d → Rd×d,Λ(X) :=
1
N

∑
i∈[N ]

〈Mi, X〉Mi. A standard concentration analysis shows that when there are sufficiently large

number of measurements, then with large probability, Λ is sufficiently close to an identity operator,
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with respect to operator norm. Define the error term E : Rd×d → Rd×d, E(X) = Λ(X)−X . The
error term E can be described by RIP.

Hence, the gradient process can now be written as

Ut+1 = Ut − η(UtV
>
t − Σ)Vt − ηE(UtV

>
t − Σ)Vt;

Vt+1 = Vt − η(UtV
>
t − Σ)>Ut − ηE(UtV

>
t − Σ)>Ut.

Hence, we can define At = Ut+Vt
2 and Bt = Ut−Vt

2 . Then the iteration formula becomes

At+1 = At + η(Σ−AtA>t +BtB
>
t − E+

t )At − η(AtB
>
t −BtA>t − E−t )Bt;

Bt+1 = Bt − η(Σ−AtA>t +BtB
>
t + E−t )Bt + η(AtB

>
t −BtA>t + E+

t )At,

where E+
t =

E(UtV
>
t −Σ)+E(UtV

>
t −Σ)>

2 and E−t =
E(UtV

>
t −Σ)−E(UtV

>
t −Σ)>

2 are small matrices.

By lemma 3.2 we know that ifB andE+/− is small, the minimal singular value ofA is monotonically
increasing. And similarly, we could define P and hopefully we could also use lemma 3.3 to prove
that the minimal eigenvalue of P is not very small and hence the F-norm of B won’t be too large.
Remark G.2. As for deep matrix factorization problem, there could be some similar techniques to
handle it. For instance, if we would like to factorize Σ into 2m matrices

∏
i∈[2m]

Ui, one naive idea is

to first symmetrize Σ and then define Ai = Ui+U2m−i
2 and Bi = Ui−U2m−i

2 for i ∈ [m]. If we can
find any monotonic value in these matrices (possibly the minimal singular values of Ai), it would
guide us to the global convergence.
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