A Omitted Derivations of Formulas

We have omitted a number of complicated formulas in the main text to provide clear intuition and concise proof sketch. We will list all mentioned formulas here for readers' reference.

$$
\begin{align*}
\sigma_{d}\left(A_{t+1}\right) \geq & \sigma_{d}\left(A_{t}+\eta\left(\Sigma-A_{t} A_{t}^{\top}\right) A_{t}\right)-\eta\left(3 \sqrt{2 \sigma_{1}}\left\|B_{t}\right\|_{o p}^{2}+\sqrt{2 \sigma_{1}}\left(\left\|K_{t}\right\|_{o p}^{2}+\left\|J_{t}\right\|_{o p}^{2}\right)\right) \\
\geq & \sqrt{\sigma_{d}\left(\bar{S}_{t+1}\right)}-\eta\left(3 \sqrt{2 \sigma_{1}} e_{b}^{2} \varepsilon^{2} d^{2}+\sqrt{2 \sigma_{1}} c^{2} \varepsilon^{2}(m+n)\right) \\
\geq & \sqrt{\left(1+\eta\left(\sigma_{d}-\sigma_{d}\left(A_{t}\right)^{2}\right)\right)^{2} \sigma_{d}\left(A_{t}\right)^{2}-22 \sigma_{1}^{3} \eta^{2}} \\
& -1.5 \sqrt{2 \sigma_{1}} \eta\left(e_{b}^{2}+c^{2}\right) \varepsilon^{2}(m+n) d \tag{20}
\end{align*}
$$

$$
\begin{align*}
\left\|C_{t}\right\|_{o p} & \leq 2 \sqrt{2 \sigma_{1}} e_{b}^{2} d^{2} \varepsilon^{2}+\sqrt{2 \sigma_{1}} c^{2} \varepsilon^{2}\left(\max \left\{d, m^{\prime}\right\}+\max \left\{d, n^{\prime}\right\}\right) \\
& \leq \sqrt{2 \sigma_{1}}\left(e_{b}^{2}+c^{2}\right)(m+n) d \varepsilon^{2} \\
\left\|D_{t}\right\|_{o p} & \leq 4 \sigma_{1} e_{b} d \varepsilon+\sqrt{2 \sigma_{1}} c^{2} \varepsilon^{2}\left(\max \left\{d, m^{\prime}\right\}+\max \left\{d, n^{\prime}\right\}\right) \\
& \leq 8 \sigma_{1} e_{b} d \varepsilon \tag{21}
\end{align*}
$$

$$
\left\|B_{t+1}\right\|_{F}^{2}-\left\|B_{t}\right\|_{F}^{2}=-2 \eta\left\langle B_{t} B_{t}^{\top}, \Sigma-A_{t} A_{t}^{\top}+B_{t} B_{t}^{\top}+\frac{K_{t}^{\top} K_{t}+J_{t}^{\top} J_{t}}{2}\right\rangle
$$

$$
-\eta\left\|A_{t} B_{t}^{\top}-B_{t} A_{t}^{\top}\right\|_{F}^{2}+\eta\left\langle B_{t}^{\top} A_{t}, K_{t}^{\top} K_{t}-J_{t}^{\top} J_{t}\right\rangle
$$

$$
+\eta^{2} \|\left(\Sigma-A_{t} A_{t}^{\top}+B_{t} B_{t}^{\top}\right) B_{t}+\left(A_{t} B_{t}^{\top}-B_{t} A_{t}^{\top}\right) A_{t}
$$

$$
-A_{t} \frac{K_{t}^{\top} K_{t}-J_{t}^{\top} J_{t}}{2}-B_{t} \frac{K_{t}^{\top} K_{t}+J_{t}^{\top} J_{t}}{2} \|_{F}^{2}
$$

$$
\leq-2 \eta \lambda_{d}\left(P_{t}\right)\left\|B_{t}\right\|_{F}^{2}+\eta\left\|B_{t}^{\top} A_{t}\right\|_{F}\left\|K_{t}^{\top} K_{t}-J_{t}^{\top} J_{t}\right\|_{F}
$$

$$
+\eta^{2} \|\left(\Sigma-A_{t} A_{t}^{\top}+B_{t} B_{t}^{\top}\right) B_{t}+\left(A_{t} B_{t}^{\top}-B_{t} A_{t}^{\top}\right) A_{t}
$$

$$
-A_{t} \frac{K_{t}^{\top} K_{t}-J_{t}^{\top} J_{t}}{2}-B_{t} \frac{K_{t}^{\top} K_{t}+J_{t}^{\top} J_{t}}{2} \|_{F}^{2}
$$

$$
\leq O\left(\eta e_{b}^{2} \varepsilon^{2}(m+n) d \kappa\right)\left\|B_{t}\right\|_{F}^{2}+O\left(\eta \sqrt{\sigma_{1}} e_{b}(m+n) d^{2} \varepsilon^{3}\right)
$$

$$
+O\left(\eta^{2} \sigma_{1}^{2} e_{b}^{2} d^{2} \varepsilon^{2}\right)
$$

$$
\begin{equation*}
=O\left(\eta e_{b}^{2} \varepsilon^{2}(m+n) d \kappa\right)\left\|B_{t}\right\|_{F}^{2}+O\left(\eta \sqrt{\sigma_{1}} e_{b}(m+n) d^{2} \varepsilon^{3}\right) \tag{22}
\end{equation*}
$$

$$
\begin{align*}
\Sigma-U_{t+1+T_{0}} V_{t+1+T_{0}}^{\top}= & \left(I-\eta U_{t+T_{0}} U_{t+T_{0}}^{\top}\right)\left(\Sigma-U_{t+T_{0}} V_{t+T_{0}}^{\top}\right)\left(I-\eta V_{t+T_{0}} V_{t+T_{0}}^{\top}\right) \\
& -\eta^{2} U_{t+T_{0}} U_{t+T_{0}}^{\top}\left(\Sigma-U_{t+T_{0}} V_{t+T_{0}}^{\top}\right) V_{t+T_{0}} V_{t+T_{0}}^{\top} \\
& -\eta^{2}\left(\Sigma-U_{t+T_{0}} V_{t+T_{0}}^{\top}\right) V_{t+T_{0}} U_{t+T_{0}}^{\top}\left(\Sigma-U_{t+T_{0}} V_{t+T_{0}}^{\top}\right) \\
& +\eta\left(U_{t+T_{0}}+\eta\left(\Sigma-U_{t+T_{0}} V_{t+T_{0}}^{\top}\right) V_{t+T_{0}}\right) J_{t+T_{0}}^{\top} J_{t+T_{0}} V_{t+T_{0}}^{\top} \\
& +\eta U_{t+T_{0}} K_{t+T_{0}}^{\top} K_{t+T_{0}}\left(V_{t+T_{0}}+\eta\left(\Sigma-U_{t+T_{0}} V_{t+T_{0}}^{\top}\right)^{\top} U_{t+T_{0}}\right)^{\top} \\
& -\eta^{2} U_{t+T_{0}} K_{t+T_{0}}^{\top} K_{t+T_{0}} J_{t+T_{0}}^{\top} J_{t+T_{0}} V_{t+T_{0}}^{\top} . \tag{23}
\end{align*}
$$

B Dynamics in the Symmetric and Full-Rank Case

We consider the case where $U=V=A$ and Σ is symmetric and full-rank, and we use gradient flow. We can derive the dynamics of $S=A A^{\top}$ as $\dot{S}:=(\Sigma-S) S+S(\Sigma-S)$, which is a quadratic ordinary differential equation and it is hard to solve directly.

However, if we define $\bar{X}:=S^{-1}$, we have $S \bar{X} \equiv I$. Taking the derivative implies $\dot{S} \bar{X}+S \dot{\bar{X}}=0$. Hence, $\dot{\bar{X}}=-S^{-1} \dot{S} S^{-1}$. Substitute $\dot{S}=(\Sigma-S) S+S(\Sigma-S)$ in it, we have

$$
\dot{\bar{X}}=-S^{-1}((\Sigma-S) S+S(\Sigma-S)) S^{-1}=-\bar{X} \Sigma-\Sigma \bar{X}+2 I
$$

which is a linear ordinary differential equation.
For simplicity, define $X:=\bar{X}-\Sigma^{-1}$. Then

$$
\begin{equation*}
\dot{X}=-X \Sigma-\Sigma X \tag{24}
\end{equation*}
$$

Solving this equation and we have

$$
\begin{equation*}
X(t)=e^{-t \Sigma} X_{0} e^{-t \Sigma} \tag{25}
\end{equation*}
$$

Finally, we could conclude that

$$
\begin{equation*}
S(t)=\left(e^{-t \Sigma}\left(S_{0}^{-1}-\Sigma^{-1}\right) e^{-t \Sigma}+\Sigma^{-1}\right)^{-1} \tag{26}
\end{equation*}
$$

Similarly, because P 's dynamic is $\dot{P}=-(\Sigma-P) P-P(\Sigma-P)$, we have

$$
\begin{equation*}
P(t)=\left(e^{t \Sigma}\left(P_{0}^{-1}-\Sigma^{-1}\right) e^{t \Sigma}+\Sigma^{-1}\right)^{-1} \tag{27}
\end{equation*}
$$

where $P_{0}:=\Sigma-S_{0}$.
And it is interesting to verify that $S(t)+P(t) \equiv \Sigma$ by using the following lemma.
Lemma B.1. Suppose $S, P, E \in \mathbb{R}^{d \times d}$ are three positive definite matrices. $\Sigma=S+P$. Suppose E commutes with Σ. Then

$$
\left(E\left(S^{-1}-\Sigma^{-1}\right) E+\Sigma^{-1}\right)^{-1}+\left(E^{-1}\left(P^{-1}-\Sigma^{-1}\right) E^{-1}+\Sigma^{-1}\right)^{-1}=\Sigma
$$

C Proof of Lemmas

Proof of lemma B.1. Since Σ is invertible, we only need to verify the equation after right multiplying both side by Σ^{-1}. We have

$$
\begin{align*}
& \left(E\left(S^{-1}-\Sigma^{-1}\right) E+\Sigma^{-1}\right)^{-1} \Sigma^{-1}+\left(E^{-1}\left(P^{-1}-\Sigma^{-1}\right) E^{-1}+\Sigma^{-1}\right)^{-1} \Sigma^{-1} \\
= & \left(E\left(\Sigma S^{-1}-I\right) E+I\right)^{-1}+\left(E^{-1}\left(\Sigma P^{-1}-I\right) E^{-1}+I\right)^{-1} \tag{28}\\
= & \left(E\left(P S^{-1}\right) E+I\right)^{-1}+\left(E^{-1}\left(S P^{-1}\right) E^{-1}+I\right)^{-1} \tag{29}\\
= & (Z+I)^{-1}+\left(Z^{-1}+I\right)^{-1} \quad\left(\text { we denote } E\left(P S^{-1}\right) E \text { by } Z \text { here }\right) \tag{30}\\
= & (Z+I)^{-1}+Z(Z+I)^{-1} \\
= & I \\
= & \Sigma \Sigma^{-1},
\end{align*}
$$

where 28 is because Σ commutes with E, 29) is because $\Sigma=S+P$ and finally 30 is because $\left(E\left(P S^{-1}\right) E\right)^{-1}=E^{-1}\left(S P^{-1}\right) E^{-1}$.

General analysis for lemma 3.2 and 3.3 Suppose \bar{S}, \tilde{S} and Σ are three symmetric matrices. Define $D=\bar{S}-\tilde{S}$. Then we have equation

$$
\begin{array}{ll}
& (I+\eta(\Sigma-\bar{S})) \bar{S}(I+\eta(\Sigma-\bar{S}))-(I+\eta(\Sigma-\tilde{S})) \tilde{S}(I+\eta(\Sigma-\tilde{S})) \\
= & \bar{S}-\tilde{S}+\eta((\Sigma-\bar{S}) \bar{S}+\bar{S}(\Sigma-\bar{S})-(\Sigma-\tilde{S}) \tilde{S}+\tilde{S}(\Sigma-\tilde{S})) \\
& +\eta^{2}((\Sigma-\bar{S}) \bar{S}(\Sigma-\bar{S})-(\Sigma-\tilde{S}) \tilde{S}(\Sigma-\tilde{S})) \\
= & D+\eta((\Sigma-\bar{S}-\tilde{S}) D+D(\Sigma-\bar{S}-\tilde{S})) \\
& +\eta^{2}((\Sigma-\bar{S}) \bar{S}(\Sigma-\bar{S})-(\Sigma-\tilde{S}) \tilde{S}(\Sigma-\tilde{S})) \\
= & (I+\eta(\Sigma-\bar{S}-\tilde{S})) D(I+\eta(\Sigma-\bar{S}-\tilde{S})) \\
& +\eta^{2}((\Sigma-\bar{S}-\tilde{S}) D(\Sigma-\bar{S}-\tilde{S})+(\Sigma-\bar{S}) \bar{S}(\Sigma-\bar{S})-(\Sigma-\tilde{S}) \tilde{S}(\Sigma-\tilde{S})) . \tag{31}
\end{array}
$$

Proof of lemma 3.2 First of all, we can expand the expression of S^{\prime} and split it in the following terms.

$$
\begin{aligned}
\sigma_{d}\left(S^{\prime}\right) \geq & \lambda_{d}\left(\beta S-2 \eta S^{2}+\eta^{2} S^{3}\right)+\sigma_{d}\left((1-\beta) S+\eta \Sigma S+\eta S \Sigma+\frac{\eta^{2}}{1-\beta} \Sigma S \Sigma\right) \\
& +\eta^{2} \lambda_{d}\left(-\frac{\beta}{1-\beta} \Sigma S \Sigma-\Sigma S S-S S \Sigma\right)
\end{aligned}
$$

For the first term $\beta S-2 \eta S^{2}+\eta^{2} S^{3}$, its eigenvalues are $\beta s_{i}-2 \eta s_{i}^{2}+\eta^{2} s_{i}^{3}$ since S is commutable with itself, where s_{i} is the $i^{\text {th }}$ largest singular value of S. By the assumptions $s_{i} \leq 2 \sigma_{1}$ and $\eta \leq \frac{\beta}{8 \sigma_{1}}$, we see the smallest eigenvalue of $\beta S-2 \eta S^{2}+\eta^{2} S^{3}$ is exactly $\beta s-2 \eta s^{2}+\eta^{2} s^{3}$.

For the second term, it can be rewritten as

$$
(1-\beta) S+\eta \Sigma S+\eta S \Sigma+\frac{\eta^{2}}{1-\beta} \Sigma S \Sigma \equiv\left(\sqrt{1-\beta} I+\frac{\eta}{\sqrt{1-\beta}} \Sigma\right) S\left(\sqrt{1-\beta} I+\frac{\eta}{\sqrt{1-\beta}} \Sigma\right)
$$

Hence, the minimal singular value can be bounded by $\left(\sqrt{1-\beta}+\frac{\eta \sigma_{d}}{\sqrt{1-\beta}}\right)^{2} s$.
Finally, the last term can be lower bounded by $-\eta^{2} \sigma_{1}\left(-\frac{\beta}{1-\beta} \Sigma S \Sigma-\Sigma S S-S S \Sigma\right) \geq-\frac{8+6 \beta}{1-\beta} \eta^{2} \sigma_{1}^{3}$. Summing up all three terms and we get

$$
\begin{aligned}
s^{\prime} & \geq\left(\beta s-2 \eta s^{2}+\eta^{2} s^{3}\right)+\left(\sqrt{1-\beta}+\frac{\eta \sigma_{d}}{\sqrt{1-\beta}}\right)^{2} s-\frac{8+6 \beta}{1-\beta} \eta^{2} \sigma_{1}^{3} \\
& =\left(1+\eta\left(\sigma_{d}-s\right)\right)^{2} s+\frac{\beta \sigma_{d}^{2}}{1-\beta} \eta^{2} s+2 \sigma_{d} \eta^{2} s^{2}-\frac{8+6 \beta}{1-\beta} \sigma_{1}^{3} \eta^{2} \\
& \geq\left(1+\eta\left(\sigma_{d}-s\right)\right)^{2} s-\frac{8+6 \beta}{1-\beta} \sigma_{1}^{3} \eta^{2} .
\end{aligned}
$$

Remark: If we choose $\bar{S}=S$ and $\tilde{S}=\sigma_{d}(S) I$ in equation (31), we know $D=\bar{S}-\tilde{S} \succeq 0$. Hence $\sigma_{d}\left(S^{\prime}\right) \geq\left(1+\eta\left(\sigma_{d}-s\right)\right)^{2} s-O\left(\sigma_{1}^{3} \eta^{2}\right)$.

Proof of lemma 3.3 If $p \geq 0$, it suggests that P is positive semi-definite, and P^{\prime} is positive semidefinite, too. Hence $p^{\prime} \geq 0$ if $p \geq 0$.
If $p \leq 0$, we can expand the expression of P^{\prime} and split it in the following terms.

$$
\begin{aligned}
\lambda_{d}\left(P^{\prime}\right) \geq & \lambda_{d}\left(\beta P+2 \eta P^{2}+\eta^{2} P^{3}\right)+\lambda_{d}\left((1-\beta) P-\eta \Sigma P-\eta P \Sigma+\frac{\eta^{2}}{1-\beta} \Sigma P \Sigma\right) \\
& +\eta^{2} \lambda_{d}\left(-\frac{\beta}{1-\beta} \Sigma P \Sigma-\Sigma P P-P P \Sigma\right)
\end{aligned}
$$

For the first term $\beta P+2 \eta P^{2}+\eta^{2} P^{3}$, its eigenvalues are $\beta p_{i}+2 \eta p_{i}^{2}+\eta^{2} p_{i}^{3}$ since P is commutable with itself, where p_{i} is the $i^{\text {th }}$ largest eigenvalue of P. By the assumptions $\left|p_{i}\right| \leq 2 \sigma_{1}$ and $\eta \leq \frac{\beta}{8 \sigma_{1}}$, we see the smallest eigenvalue of $\beta P+2 \eta P^{2}+\eta^{2} P^{3}$ is exactly $\beta p+2 \eta p^{2}+\eta^{2} p^{3}$.
For the second term, it can be rewritten as

$$
(1-\beta) P-\eta \Sigma P-\eta P \Sigma+\frac{\eta^{2}}{1-\beta} \Sigma P \Sigma \equiv\left(\sqrt{1-\beta} I-\frac{\eta}{\sqrt{1-\beta}} \Sigma\right) P\left(\sqrt{1-\beta} I-\frac{\eta}{\sqrt{1-\beta}} \Sigma\right)
$$

Hence, the minimal eigenvalue can be bounded by $\left(\sqrt{1-\beta}-\frac{\eta \sigma_{d}}{\sqrt{1-\beta}}\right)^{2} p$ if $p \leq 0$.

Finally, the last term can be lower bounded by $-\eta^{2} \sigma_{1}\left(-\frac{\beta}{1-\beta} \Sigma P \Sigma-\Sigma P P-P P \Sigma\right) \geq$ $-\frac{8+6 \beta}{1-\beta} \eta^{2} \sigma_{1}^{3}$. Summing up all three terms and we get that when $p \leq 0$,

$$
\begin{aligned}
p^{\prime} & \geq\left(\beta p+2 \eta p^{2}+\eta^{2} p^{3}\right)+\left(\sqrt{1-\beta}-\frac{\eta \sigma_{d}}{\sqrt{1-\beta}}\right)^{2} p-\frac{8+6 \beta}{1-\beta} \eta^{2} \sigma_{1}^{3} \\
& =\left(1-\eta\left(\sigma_{d}-p\right)\right)^{2} p+\frac{\beta \sigma_{d}^{2}}{1-\beta} \eta^{2} p+2 \sigma_{d} \eta^{2} p^{2}-\frac{8+6 \beta}{1-\beta} \sigma_{1}^{3} \eta^{2} \\
& \geq\left(1-\eta\left(\sigma_{d}-p\right)\right)^{2} p-\frac{8+6 \beta}{1-\beta} \sigma_{1}^{3} \eta^{2} \\
& \geq\left(1-\eta \sigma_{d}\right)^{2} p-\frac{8+6 \beta}{1-\beta} \sigma_{1}^{3} \eta^{2}
\end{aligned}
$$

Remark: Similarly, if we choose $\bar{S}=P$ and $\tilde{S}=\lambda_{d}(P) I$ in equation (31), we have $D=$ $P-\lambda_{d}(P) I \succeq 0$. Hence we have $\lambda_{d}\left(P^{\prime}\right) \geq \min \left\{0,\left(1-\eta \sigma_{d}\right)^{2} p+O\left(\sigma_{1}^{3} \eta^{2}\right)\right\}$.

D Solving the Iteration Formula of a

In this section we analyze the iteration formula (15).
We first consider the case when $a_{t} \leq \sqrt{\frac{\sigma_{d}}{2}}$. Notice that $a_{t} \geq \frac{\varepsilon}{c \sqrt{d}}$, we have

$$
\sqrt{\left(1+\eta\left(\sigma_{d}-\sigma_{d}\left(A_{t}\right)^{2}\right)\right)^{2} \sigma_{d}\left(A_{t}\right)^{2}-22 \sigma_{1}^{3} \eta^{2}} \geq\left(1+\eta\left(\sigma_{d}-\sigma_{d}\left(A_{t}\right)^{2}\right)\right) \sigma_{d}\left(A_{t}\right)-22 \frac{c \sqrt{d}}{\varepsilon} \sigma_{1}^{3} \eta^{2}
$$

where we choose η so small that $22 \sigma_{1}^{3} \eta^{2} \leq \frac{\varepsilon^{2}}{c^{2} d}$.
By taking $\varepsilon=O\left(\frac{\sigma_{d}}{\sqrt{d^{3} \sigma_{1}} e_{b}^{2}(m+n)}\right)$ and $\eta=O\left(\frac{\sigma_{d} \varepsilon^{2}}{d \sigma_{1}^{3}}\right)$, we have $\frac{1}{2} \eta\left(\sigma_{d}-a_{t}^{2}\right) a_{t} \geq \frac{1}{2} \eta \frac{\sigma_{d}}{2} \frac{\varepsilon}{c \sqrt{d}} \geq$ $22 \frac{c \sqrt{d}}{\varepsilon} \sigma_{1}^{3} \eta^{2}+1.5 \sqrt{2 \sigma_{1}} \eta\left(e_{b}^{2}+c^{2}\right) \varepsilon^{2}(m+n) d$, hence,

$$
\begin{equation*}
a_{t+1} \geq\left(1+\frac{\eta}{2}\left(\sigma_{d}-a_{t}^{2}\right)\right) a_{t} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{t+1} \geq\left(1+\frac{\eta}{2}\left(\sigma_{d}-s_{t}\right)\right)^{2} s_{t} \geq\left(1+\eta\left(\sigma_{d}-s_{t}\right)\right) s_{t} \tag{33}
\end{equation*}
$$

Subtracting σ_{d} by (33), we have

$$
\begin{equation*}
\sigma_{d}-s_{t+1} \leq\left(1-\eta s_{t}\right)\left(\sigma_{d}-s_{t}\right) \tag{34}
\end{equation*}
$$

Dividing (33) by (34) we have

$$
\frac{s_{t+1}}{\sigma_{d}-s_{t+1}} \geq \frac{1+\eta\left(\sigma_{d}-s_{t}\right)}{1-\eta s_{t}} \frac{s_{t}}{\sigma_{d}-s_{t}} \geq\left(1+\eta \sigma_{d}\right) \frac{s_{t}}{\sigma_{d}-s_{t}}
$$

Hence, $\frac{s_{T}}{\sigma_{d}-s_{T}} \geq\left(1+\eta \sigma_{d}\right)^{T} \frac{s_{0}}{\sigma_{d}}$. So, it takes at most $T_{1}:=O\left(\frac{1}{\eta \sigma_{d}} \ln \frac{d \sigma_{d}}{\varepsilon^{2}}\right)$ iterations to bring a_{t} to at least $\sqrt{\frac{\sigma_{d}}{2}}$.

E Solving the Iteration Formula on B

The iteration formula can be summarized as

$$
\left\|B_{t+1}\right\|_{F}^{2} \leq(1+p)\left\|B_{t}\right\|_{F}^{2}+q
$$

where $p=O\left(\eta e_{b}^{2} \varepsilon^{2}(m+n) d \kappa\right)$ and $q=O\left(\eta \sqrt{\sigma_{1}} e_{b}(m+n) d^{2} \varepsilon^{3}\right)$. Moreover, we have

$$
\left\|B_{T}\right\|_{F}^{2} \leq(1+p)^{T}\left\|B_{0}\right\|_{F}^{2}+\left((1+p)^{T}-1\right) \frac{q}{p}
$$

Suppose $T \leq T_{0}=O\left(\frac{1}{\eta \sigma_{d}} \ln \frac{d \sigma_{d}}{\varepsilon^{2}}\right)$. By choosing $\varepsilon=\tilde{O}\left(\frac{\sqrt{\sigma_{d}}}{e_{b} \sqrt{(m+n) d \kappa}}\right)$ 12 we have $p T \leq p T_{0} \leq$ 1. Then $(1+p)^{T}=1+\binom{T}{1} p+\binom{T}{2} p^{2}+\cdots+\binom{T}{T} p^{T} \leq 1+T p\left(1+\frac{1}{2!}+\cdots+\frac{1}{T!}\right) \leq 1+(e-1) T p \leq$ $1+2 p T$. Hence,

$$
\left\|B_{T}\right\|_{F}^{2} \leq(1+2 p T)\left\|B_{0}\right\|_{F}^{2}+2 q T
$$

Similarly, by choosing $\varepsilon=\tilde{O}\left(\frac{\sigma_{d}}{\sqrt{\sigma_{1}} e_{b}(m+n)}\right)$, we have $q T \leq c^{2} d^{2} \varepsilon^{2}$. By taking $e_{b}=2 c$, we have

$$
\left\|B_{T}\right\|_{F}^{2} \leq 3\left\|B_{0}\right\|_{F}^{2}+c^{2} d^{2} \varepsilon^{2} \leq 4 c^{2} d^{2} \varepsilon^{2}=e_{b}^{2} d^{2} \varepsilon^{2}
$$

induction succeeds.

F Proof of Stage Two

Here is the full version of the proof. Initially, $\left\|\Delta_{0}\right\|_{o p}=\left\|P_{T_{0}}+Q_{T_{0}}\right\|_{o p}$ where $Q=A B^{\top}-B A^{\top}$. Hence $\left\|\Delta_{0}\right\|_{o p} \leq \sigma_{1}\left(P_{T_{0}}\right)+\sigma_{1}\left(Q_{T_{0}}\right) \leq \frac{\sigma_{d}}{4}+\sqrt{2 \sigma_{1}} \sigma_{1}\left(B_{T_{0}}\right) \leq \frac{\sigma_{d}}{3}$. Then for $U_{T_{0}}$ we have $\frac{2 \sigma_{d}}{3} \leq$ $\sigma_{d}(\Sigma)-\sigma_{1}\left(\Delta_{0}\right) \leq \sigma_{d}\left(U_{T_{0}} V_{T_{0}}^{\top}\right) \leq \sigma_{d}\left(U_{T_{0}} U_{T_{0}}^{\top}\right)-2 \sigma_{1}\left(U_{T_{0}} B_{T_{0}}^{\top}\right) \leq \sigma_{d}\left(U_{T_{0}} U_{T_{0}}^{\top}\right)-4 \sqrt{2 \sigma_{1}} O\left(\frac{\sigma_{d}}{\sqrt{\sigma_{1}}}\right)$. Hence $\sigma_{d}\left(U_{T_{0}}\right) \geq \sqrt{\frac{\sigma_{d}}{2}}$. We can do the same thing on $V_{T_{0}}$.
First of all, by equations (8) and (9), we have

$$
\left\|J_{t+T_{0}}\right\|_{o p} \leq c \varepsilon\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t} \sqrt{\max \left\{m^{\prime}, d\right\}}
$$

and

$$
\left\|K_{t+T_{0}}\right\|_{o p} \leq c \varepsilon\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t} \sqrt{\max \left\{n^{\prime}, d\right\}}
$$

Expanding $\Sigma-U_{t+1+T_{0}} V_{t+1+T_{0}}^{\top}$ by brute force ${ }^{13}$, we get

$$
\begin{aligned}
\Delta_{t+1} & \leq\left(1-\frac{\eta \sigma_{d}}{2}\right)^{2} \Delta_{t}+O\left(\eta^{2} \sigma_{1}^{2}\right) \Delta_{t}+O\left(\eta \varepsilon^{2} \sigma_{1}(m+n)\right)\left(1-\frac{\eta \sigma_{d}}{2}\right)^{2 t} \\
& \leq\left(1-\frac{\eta \sigma_{d}}{2}\right) \Delta_{t}+O\left(\eta \varepsilon^{2} \sigma_{1}(m+n)\right)\left(1-\frac{\eta \sigma_{d}}{2}\right)^{2 t}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\frac{\Delta_{t+1}}{\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t+1}} & \leq \frac{\Delta_{t}}{\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t}}+O\left(\eta \varepsilon^{2} \sigma_{1}(m+n)\right)\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t-1} \\
& \leq \Delta_{0}+O\left(\varepsilon^{2} \kappa(m+n)\right) \\
& \leq \frac{2}{5} \sigma_{d}
\end{aligned}
$$

Thus we can now verify that $\Delta_{t} \leq\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t} \frac{2}{5} \sigma_{d}$. Together with the linear convergence of J and K, we know the gradient descent converge linearly. Notice that by using the operator norm of Δ_{t}, we can easily prove that $\sigma_{d}(U)$ and $\sigma_{d}(V)$ in the next iteration is at least $\sqrt{\frac{\sigma_{d}}{2}}$ once given $\left\|B_{T_{0}+t}\right\|_{F}$ is small.
To give an upper bound on $\|B\|_{F}$, we still use equation (19).
First of all, we have $\|P\|_{F}^{2}+\|Q\|_{F}^{2}=\left\|\Sigma-U V^{\top}\right\|_{F}^{2}$, since $P+Q=\Sigma-U V^{\top}$, and $\langle P, Q\rangle=0$. Hence, $\left\|P_{t+T_{0}}\right\|_{F} \leq \sqrt{d} \Delta_{t}$ and $\left\|Q_{t+T_{0}}\right\|_{F} \leq \sqrt{d} \Delta_{t}$.

[^0]Finally,

$$
\begin{aligned}
\left\|B_{t+1+T_{0}}\right\|_{F}^{2} \leq & \left(1+2 \eta\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t} \frac{2}{5} \sigma_{d}\right)\left\|B_{t+T_{0}}\right\|_{F}^{2}+O\left(\eta \sigma_{d}(m+n) d \varepsilon^{2}\right)\left(1-\frac{\eta \sigma_{d}}{2}\right)^{2 t} \\
& +O\left(\eta^{2} d \sigma_{1} \sigma_{d}^{2}\left(1-\frac{\eta \sigma_{d}}{2}\right)^{2 t}\right)
\end{aligned}
$$

To solve this iteration formula, we first notice that the product of the main coefficient is bounded by a universal constant,

$$
\Xi_{T}:=\prod_{i=0}^{T-1}\left(1+2 \eta\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t} \frac{2}{5} \sigma_{d}\right) \leq \exp \left(\sum_{i=0}^{T-1} 2 \eta\left(1-\frac{\eta \sigma_{d}}{2}\right)^{t} \frac{2}{5} \sigma_{d}\right) \leq e^{\frac{8}{5}}
$$

we can then write it into an iteration formula about $\frac{\left\|B_{t+T_{0}}\right\|_{F}^{2}}{\Xi_{t}}$,

$$
\begin{aligned}
\frac{\left\|B_{t+1+T_{0}}\right\|_{F}^{2} \leq}{\Xi_{t+1}} \leq & \frac{\left\|B_{t+T_{0}}\right\|_{F}^{2}}{\Xi_{t}}+O\left(\eta \sigma_{d}(m+n) d \varepsilon^{2}\right)\left(1-\frac{\eta \sigma_{d}}{2}\right)^{2 t} \\
& +O\left(\eta^{2} d \sigma_{1} \sigma_{d}^{2}\left(1-\frac{\eta \sigma_{d}}{2}\right)^{2 t}\right) \\
\leq & \left\|B_{T_{0}}\right\|_{F}^{2}+O\left((m+n) d \varepsilon^{2}\right)+O\left(\eta d \sigma_{1} \sigma_{d}\right)
\end{aligned}
$$

By taking $\varepsilon=O\left(\frac{\sigma_{d}}{\sqrt{\sigma_{1}(m+n) d}}\right)$ and $\eta=O\left(\frac{\sigma_{d}}{d \sigma_{1}^{2}}\right)$, induction on $\|B\|_{F}$ holds.

G Matrix sensing problem

We only consider full-rank case here, i.e. Σ is a $d \times d$ full-rank matrix, and we would like to factorize Σ into $U \times V^{\top}$, where $U, V \in \mathbb{R}^{d \times d}$.
For a sufficiently large integer N, consider measurements $M_{1}, M_{2}, \cdots, M_{N} \in \mathbb{R}^{d \times d}$ generated by i.i.d. Gaussian distribution. Define labels $y_{i}:=\left\langle M_{i}, \Sigma\right\rangle$ for $i \in[N]$.

The objective function is defined as

$$
f(U, V)=\frac{1}{2 N} \sum_{i \in[N]}\left(\left\langle M_{i}, U V^{\top}\right\rangle-y_{i}\right)^{2}
$$

which can be equivalently written as $\frac{1}{2 N} \sum_{i \in[N]}\left\langle M_{i}, U V^{\top}-\Sigma\right\rangle^{2}$.
And the gradient descent with learning rate η can be written as

$$
\begin{aligned}
U_{t+1} & =U_{t}-\frac{\eta}{N} \sum_{i \in[N]}\left\langle M_{i}, U V^{\top}-\Sigma\right\rangle M_{i} V \\
V_{t+1} & =V_{t}-\frac{\eta}{N} \sum_{i \in[N]}\left\langle M_{i}, U V^{\top}-\Sigma\right\rangle M_{i}^{\top} U
\end{aligned}
$$

G. 1 Symmetrization

Suppose the SVD of Σ is $\Phi \Sigma^{\prime} \Psi^{\top}$. Then if we replace the objective matrix by Σ^{\prime}, replace the measurements by $\Phi^{\top} M_{i} \Psi$ and replace the initial parameter matrices by $\Phi^{\top} U$ and $\Psi^{\top} V$, then everything, including the objective function, the gradient descent process, the loss value, etc. are the same. Hence, we can assume, without loss of generality, Σ is a positive semi-definite matrix. (We could also check that the initialization and measurements are still i.i.d. Gaussian generated.)
To simplify the notation, we define a linear operator $\Lambda: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d \times d}, \Lambda(X):=$ $\frac{1}{N} \sum_{i \in[N]}\left\langle M_{i}, X\right\rangle M_{i}$. A standard concentration analysis shows that when there are sufficiently large number of measurements, then with large probability, Λ is sufficiently close to an identity operator,
with respect to operator norm. Define the error term $E: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d \times d}, E(X)=\Lambda(X)-X$. The error term E can be described by RIP.

Hence, the gradient process can now be written as

$$
\begin{aligned}
U_{t+1} & =U_{t}-\eta\left(U_{t} V_{t}^{\top}-\Sigma\right) V_{t}-\eta E\left(U_{t} V_{t}^{\top}-\Sigma\right) V_{t} \\
V_{t+1} & =V_{t}-\eta\left(U_{t} V_{t}^{\top}-\Sigma\right)^{\top} U_{t}-\eta E\left(U_{t} V_{t}^{\top}-\Sigma\right)^{\top} U_{t}
\end{aligned}
$$

Hence, we can define $A_{t}=\frac{U_{t}+V_{t}}{2}$ and $B_{t}=\frac{U_{t}-V_{t}}{2}$. Then the iteration formula becomes

$$
\begin{aligned}
A_{t+1} & =A_{t}+\eta\left(\Sigma-A_{t} A_{t}^{\top}+B_{t} B_{t}^{\top}-E_{t}^{+}\right) A_{t}-\eta\left(A_{t} B_{t}^{\top}-B_{t} A_{t}^{\top}-E_{t}^{-}\right) B_{t} \\
B_{t+1} & =B_{t}-\eta\left(\Sigma-A_{t} A_{t}^{\top}+B_{t} B_{t}^{\top}+E_{t}^{-}\right) B_{t}+\eta\left(A_{t} B_{t}^{\top}-B_{t} A_{t}^{\top}+E_{t}^{+}\right) A_{t}
\end{aligned}
$$

where $E_{t}^{+}=\frac{E\left(U_{t} V_{t}^{\top}-\Sigma\right)+E\left(U_{t} V_{t}^{\top}-\Sigma\right)^{\top}}{2}$ and $E_{t}^{-}=\frac{E\left(U_{t} V_{t}^{\top}-\Sigma\right)-E\left(U_{t} V_{t}^{\top}-\Sigma\right)^{\top}}{2}$ are small matrices.
By lemma 3.2 we know that if B and $E^{+/-}$is small, the minimal singular value of A is monotonically increasing. And similarly, we could define P and hopefully we could also use lemma 3.3 to prove that the minimal eigenvalue of P is not very small and hence the F-norm of B won't be too large.
Remark G.2. As for deep matrix factorization problem, there could be some similar techniques to handle it. For instance, if we would like to factorize Σ into $2 m$ matrices $\prod_{i \in[2 m]} U_{i}$, one naive idea is to first symmetrize Σ and then define $A_{i}=\frac{U_{i}+U_{2 m-i}}{2}$ and $B_{i}=\frac{U_{i}-U_{2 m-i}}{2}$ for $i \in[m]$. If we can find any monotonic value in these matrices (possibly the minimal singular values of A_{i}), it would guide us to the global convergence.

[^0]: ${ }^{12}$ Here \tilde{O} means there might be some log terms about m, n, κ and e_{b} on the denominator.
 ${ }^{13}$ Please see $[23$ for the result of the expanding.

