
A Alternate definitions of optimality

The definition of cost used in this paper is given in Definition 1, which says that an arrangement
is optimal if it minimizes the weighted sum of errors over players. As discussed previously, this
definition is well-motivated by existing federated learning literature. Additionally, it matches the
societal good perspective when the unit society cares about is at the level of the data point. For
example, consider the example when the federating agents are hospitals and data points represent
individual patients. Then, society as a whole likely cares about minimizing the overall error patients
experience, which corresponds to the per-data-point notion of error.

However, other cost functions are worth discussing. For example, Definition 2 gives an unweighted
notion of error:

Definition 2 (Unweighted cost). The unweighted cost function is given by summing the error over
each of the players, without any weighting with respect to size:

fu(⇧) =
X

C2⇧

fu(C) =
X

C2⇧

X

i2C

erri(C)

This definition might be better in a model where the unit society cares about is at the level of the
agent. For example, consider a situation where the individual federating agent is a cell phone owned
by a single person and data points are word predictions. Then, society as a whole might care about
minimizing the sum of errors that individual cell phone users experience, which is given by the
unweighted error function.

Finally, we may wish to consider some completely different weight function, given by the definition
below:

Definition 3 (Arbitrary weights). The arbitrary cost metric is given by summing the weight over
each of the players according to some weight

P
i2[M ] pi = 1

fa(⇧) =
X

C2⇧

fa(C) =
X

C2⇧

X

i2C

pi · erri(C)

Definitions like this have been analyzed in Li et al. [2019], Mohri et al. [2019], Laguel et al. [2021],
Chen et al. [2021]. For example, the set of weights {pi} could have fairness goals, attempting to
up-weight players with higher error. Alternatively, it could represent some notion of the data quality
players are contributing, with players producing more or lower-error players being weighted more.

In this work, we selected Definition 1 (weighted error) based on its standard use in the federated
learning literature. Analysis of the same type (calculating an optimal arrangement and analyzing the
Price of Anarchy) could be completed for any other definition of cost, but would require new proofs
for calculation of optimal arrangements and for any Price of Anarchy bound.

B Optimality calculation

Lemma 2. Consider a partition ⇧ made up of coalitions {Ci}. Then, using the error form given in
Equation 2, the total cost of ⇧ is given by

fw(⇧) =
X

C2⇧

⇢
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Proof.
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where we have used NC =
P

i2C
ni. Focusing solely on the numerator of the second term, we

simplify:
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Combining this with the rest of the term gives:
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Lemma 3. 8⇢ > 1, there exists a setting where local learning results in average error more than ⇢

times higher than optimal: fw(⇡l)
fw(OPT ) > ⇢.

Proof. We will prove this result by the setting where M players each have n samples, for M > ⇢

and any µe,�
2
, n 2 N�1 such that n <

⇣
M

⇢
� 1
⌘

µe

(M�1)·�2 .

In this simplified setting where all of the players have the same number of samples, the cost of a
coalition C involving M players is given by:

µe + �
2 · n ·M � �

2 · M · n2

M · n = µe + �
2 · n · (M � 1)

For our given example, n <
µe

�2 , which implies that “merging” any two groups A and B will reduce
total cost:

fw(A) + fw(B) = µe + �
2 · n · (MA � 1) + µe + �

2 · n · (MB � 1)

> µe + �
2 · n · (MA +MB � 1)

= fw(A [B)

This implies that the optimal cost is achieved by ⇡g, given by µe + �
2 · (M � 1). Conversely, the

cost of having M players doing local learning is:
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Combining these facts gives:
fw(⇡l)

fw(OPT )
=

µe ·M
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as desired.
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Lemma 4. 8⇢ > 1, there exists a setting where federating in the grand coalition results in average
error more than ⇢ times higher than optimal: fw(⇡g)

fw(OPT ) > ⇢.

Proof. We will prove this result by the setting where M players each have n samples, with M >
1
⇢

and any µe,�
2
, n 2 N�1 such that n > max

h
µe

�2·(M�1) · (⇢ ·M � 1) , µe

�2

i
.

The initial construction follows similarly to Lemma 3. For our given example, n >
µe

�2 , which implies
that “merging” any two groups A and B will increase total cost:

fw(A) + fw(B) = µe + �
2 · n · (MA � 1) + µe + �

2 · n · (MB � 1)

< µe + �
2 · n · (MA +MB � 1)

= fw(A [B)

This implies that the optimal cost is achieved ⇡l. Using the value derived in the proof of Lemma 3,
we have:
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M
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as desired.

The proof of Theorem 1, below, relies on multiple sub-lemmas which are stated and proved immedi-
ately afterwards.
Theorem 1. Consider a set of players {ni}. An optimal partition ⇧ can be created as follows:
first, start with every player doing local learning. Then, begin by grouping the players together
in ascending order of size, stopping when the first player would increase its error by joining the
coalition from local learning. Then, the resulting partition ⇧ is optimal.

Proof. First, we note two special cases. If {ni}  µe

�2 , then by Lemma 10 (stated and proved later in
this appendix) the grand coalition ⇡g is core stable. For the grand coalition, core stability implies
individual stability, so we know that every player prefers ⇡g to local learning. This implies that,
following the steps given in this theorem, every player will prefer to join the growing coalition as
opposed to doing local learning, and so the optimal arrangement is ⇡g .

Next, if {ni} >
µe

�2 , then by Lemma 5.3 in Donahue and Kleinberg [2021] every player minimizes
their error in ⇡l (local learning). As a result, using the algorithm given in the statement of this
theorem, every player will increase their error by combining with another player, so ⇡l is optimal. If
{ni} � µe

�2 (some players have exactly µe

�2 samples), then all players with ni =
µe

�2 will be indifferent
towards being merged with any other player also of size µe

�2 , but no player of size strictly greater than
µe

�2 will be able to be merged. The resulting optimal arrangement will have all of the players of size
exactly µe

�2 together, with all other players doing local learning, and will have cost identical to ⇡l.

Finally, we will consider the case where some players have size strictly less than µe

�2 and some have
strictly more. Call the partition calculated by following the steps of this theorem ⇧, and consider any
other coalition partition ⇧0. We will convert ⇧0 into ⇧ using only cost reducing or maintaining steps,
which will show that ⇧ is optimal. We will refer to players with size  µe

�2 as small, and players of
size >

µe

�2 as large.

15



• If there are any coalitions where players would prefer to leave the coalition, remove them in
order of descending size. Note: a coalition made up of only players of size smaller than µe

�2

will never have players leave. A coalition made up of only players of size larger than µe

�2

will always wish to have players leave. This reduces total cost by Lemma 5.

• Every coalition of size 2 or larger will have at least one small player in it. Begin merging all
such coalitions (as well as any small players doing local learning), removing large players
as necessary (in descending size, if they would prefer local learning). Note that the merging
operation will never remove a small player, so it always strictly reduces the number of
coalitions involving small players. This reduces cost by Lemma 9.

• When all of the small players are in one coalition, if there are large players in the coalition
as well, check if they are the smallest possible large player. If not, swap them for smaller
large players iteratively (ones that are doing local learning) until the players in the coalition
are doing local learning. By Lemma 6, this reduces cost.

• Add large players in increasing order of size (if any wish to join). From Lemma 7 we know
that if player ni doesn’t wish to join a coalition, then neither will any player of size nj � ni.
From Lemma 5, adding any player that wishes to join reduces total cost.

• If no players wish to join, then remove large players in descending order of size if they
would prefer local learning, which again from Lemma 5 would reduce cost. From Lemma 8,
if a player of size ni doesn’t wish to leave, then all other players of size nj  ni also do not
wish to leave.

The final arrangement exactly matches ⇧.

Lemma 5 (Equivalence of player preference and reducing cost). Take any coalition Q and any player
j. Then, a player wishes to join that coalition (from local learning) if and only if doing so would
reduce total cost. That is,

fw({nj}) + fw(Q) � fw({nj} [Q) , errj({nj}) � errj({nj} [Q)

Proof. This proof will work by showing the forms of the inequalities are identical. We will start with
the cost inequality:

fw({nj}) + fw(Q) � fw({nj} [Q)
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Bringing all terms over common denominator on the righthand side:
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Next, we will reduce the error inequality to the same form:

errj({nj}) � errj({nj} [Q)
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as desired.

Lemma 6 (Swapping). Take any set Q including a player nj > nk, where the player nk is doing
local learning. Then, swapping the roles of players k and j always decreases total cost.

fw(Q [ {nj}) + fw({nk}) > fw(Q [ {nk}) + fw({nj})

Proof. We write out each side:
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In order to prove the above inequality, we will consider the following fraction:
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which is positive, as desired. This implies that the original inequality is satisfied, meaning that the
swapping of the roles of players j, k decreases total cost.
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Lemma 7 (Monotonicity of joining). If a player of size nj would prefer local learning to joining a
coalition Q, then any player of size nk � nj also prefers local learning to joining the same coalition.
That is, for nk � nj ,

errj(Q [ {nj}) � errj({nj}) ) errk(Q [ {nk}) � errk({nk})

Conversely, if a player j wishes to join Q, then any other player of size nk  nj would have also
wanted to join. That is, for nj � nk,

errj(Q [ {nj})  errj({nj}) ) errk(Q [ {nk})  errk({nk})

Proof. The initial premise depends on whether or not the below inequality is satisfied:

errj(Q [ {nj}) � errj({nj})

µe

NQ + nj

+ �
2

P
i2Q

n
2
i
+
⇣P

i2Q
ni

⌘2

(NQ + nj)
2 � µe

nj

Rearranging:

�
2

P
i2Q

n
2
i
+
⇣P

i2Q
ni

⌘2

(NQ + nj)
2 � µe

nj

� µe

NQ + nj

�
2

0

B@
X

i2Q

n
2
i
+

0

@
X

i2Q

ni

1

A
2
1

CA � (NQ + nj)
2 ·
✓
µe

nj

� µe

NQ + nj

◆

�
2

0

B@
X

i2Q

n
2
i
+

0

@
X

i2Q

ni

1

A
2
1

CA � (NQ + nj)
2 · µe ·NQ

nj · (NQ + nj)

�
2

0

B@
X

i2Q

n
2
i
+

0

@
X

i2Q

ni

1

A
2
1

CA � (NQ + nj) ·
µe ·NQ

nj

�
2

0

B@
X

i2Q

n
2
i
+

0

@
X

i2Q

ni

1

A
2
1

CA � µe ·
N

2
Q

nj

+ µe ·NQ

The lefthand side is a constant independent of nk and the righthand side is a constant plus a term
that is decreasing in nj . If the original inequality (errj(Q [ {nj}) � errj({nj})) is satisfied, then
it will also be satisfied for any nk � nj (implying errk(Q [ {nk}) � errk({nk})). Conversely, if
the original inequality is not satisfied (so errj(Q [ {nj})  errj({nj})), then it will also not be
satisfied for any nk  nj (implying errk(Q [ {nk})  errk({nk})).

Lemma 8 (Monotonicity of leaving). Take any coalition Q. Then, if any player j 2 Q of size nj

wishes to leave Q for local learning, then any player of size nk � nj also wishes to leave for local
learning. That is, for nk � nj

errj(Q) � errj({nj}) ) errk(Q) � errk({nk})

Conversely, if a player j 2 Q of size nj does not wish to leave Q for local learning, then any player
k 2 Q of size nk  nj also does not wish to leave. That is, for nk  nj

errj(Q)  errj({nj}) ) errk(Q)  errk({nk})

Proof. First, we will prove the first statement. Suppose by contradiction that some nj wishes to leave,
but another player of size nk � nj does not wish to. First, we remove nj for local learning, which by
Lemma 5 reduces total cost. Next, we swap the role of players j and k, which by Lemma 6 again
reduces or keeps constant total cost. We have constructed a series of operations that either reduce or
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keep constant total cost, and results in an arrangement equivalent to simply removing player j. By
Lemma 5, this means that player j originally would have wished to leave.

Next, we will prove the second statement. Suppose by contradiction that some player k wishes to
leave, even though another player nj > nk does not wish to leave. First, we remove player k to
local learning: if it wishes to leave, then by Lemma 5 removing it reduces or keeps constant total
cost. Then, by Lemma 6, we can reduce total cost by swapping it with the nj > nk player. We have
constructed a series of operations that either reduce or keep constant total cost, and results in an
arrangement equivalent to simply removing player j. But this is exactly equivalent to just removing
the nj player, which we know from Lemma 5 must not reduce total cost (or else player j would wish
to leave).

Lemma 9 (Merging). Consider two groups of players, P,Q. First, merge together the two groups to
form P [Q. Then, remove players from P [Q to local learning, removing them in descending order
of size. Stop removing players when the first player would prefer to stay (removing it would increase
its error). Then, this overall process maintains or decreases total error. In other words,

fw(Q) + fw(P ) � fw({Q [ P} \ L) +
X

i2L

fw({ni}) (3)

where L is the set of large players removed in descending order of size. The inequality is strict so
long as the final structure is not identical to the first, up to renaming of players, and it is not the case
that all the players have the exact same size.

Proof. First, we have to reason about what L could be. We will say that player j with nj samples is
a largest element in P [Q, and WLOG j 2 P . (If multiple players have nj samples, it suffices to
select one at random.). We will show that, in order to show Equation 3, it suffices to show that:

fw(Q) + fw(P ) � fw(Q [ P \ nj) + fw({nj}) (4)

First, assume L is empty. Then, every player wishes to stay in the final group. Then, Equation 3
becomes:

fw(Q) + fw(P ) > fw(Q [ P )

From Lemma 5, we know that because player nj doesn’t wish to leave Q [ P , removing it must
increase total cost:

fw(Q [ P \ {nj}) + fw({nj}) > fw(Q [ P )

So, if we show that Equation 4 is satisfied, then this implies that Equation 3 is satisfied.
Next, we will assume L = {nj}. Then, the statement we are trying to show is exactly Equation 4.
Finally, let’s assume that |L| � 2: nj is removed, but so are some others. Again, by Lemma 5,
because these players prefer local learning to federation, adding them back in to the coalition increases
cost, so

fw(Q) + fw(P [ {nj}) > fw(Q [ P \ nj) + fw({nj})
So, it suffices to consider Equation 4: if we prove that this is satisfied, it always implies that Equation
3 is satisfied.

Next, we will prove this statement:

fw(Q) + fw(P ) � fw(Q [ P \ nj) + fw({nj})

Plugging in for the form of fw(·) gives:
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For convenience, we’ll drop the common �
2 coefficient as we continue simplifying:
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NQ +NP � 2nj �

0

@
X

i2Q

n
2
i

nj

1

A · NP � nj

NQ

+

 
X

i2P

n
2
i

nj

!
· NQ � nj

NP

Because nj is the largest element, we can upper bound each term n
2
i

nj
with ni:

NQ +NP � 2nj � (NQ) ·
NP � nj

NQ

+ (NP ) ·
NQ � nj

NP

NQ +NP � 2nj � NP �Nj +NQ � nj

This gives an equality, and a strict inequality if ni < nj for at least one player. Finally, we note that
if the final structure is identical to the original structure, the cost is identical, so the inequality is
similarly an equality.

Lemma 10. For a set of players with ni  µe

�2 8i, the grand coalition ⇡g is always core stable.

Proof. For reference, Donahue and Kleinberg [2021] analyzes a restricted example of ni  µe

�2 case,
where players come in two types, ns, n`, both  µe

�2 . Theorem 6.7 in that work shows that the grand
coalition ⇡g is core stable for the two-type case. This lemma extends that result to show that ⇡g is
core stable for the broader case of ni  µe

�2 , where players may come in more than two sizes.

First, we will assume by contradiction that there exists a set A ⇢ C, where C is the grand coalition,
and where we assume that errj(A) < errj(C) for every j 2 A. We will then show that this violates
the requirement that ni  µe

�2 for all i 2 C, indicating that it is impossible for such a coalition A to
exist.

By assumption,
errj(C) > errj(A)

Using NA =
P

i2A
ni and N =

P
i2C

ni we have:

µe

N
+ �

2 ·
P

i 6=j
n
2
i
+ (N � nj)2

N2
>

µe

NA

+ �
2 ·
P

i2A,i 6=j
n
2
i
+ (NA � nj)2

N2
A

Multiplying each side by nj preserves the inequality:

µe

N
· nj + �

2 ·
P

i 6=j
n
2
i
+ (N � nj)2

N2
· nj >

µe

NA

· nj + �
2 ·
P

i2A,i 6=j
n
2
i
+ (NA � nj)2

N2
A

· nj

Next, we sum each side over all j 2 A:
X

j2A

(
µe

N
· nj + �

2 ·
P

i 6=j
n
2
i
+ (N � nj)2

N2
· nj

)
>

X

j2A

(
µe

NA

· nj + �
2 ·
P

i2A,i 6=j
n
2
i
+ (NA � nj)2

N2
A

· nj

)
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We will evaluate this sum term by term. The µe terms are simplest:
X

j2A

µe

N
· nj =

µe

N
·NA

X

j2A

µe

NA

· nj = µe

For evaluating the sum of the �
2 coefficient, we will first note that we can rewrite the numerator:

X

i 6=j

n
2
i
+ (N � nj)

2 =
X

i 6=j

n
2
i
+N

2 + n
2
j
� 2N · nj =

X

i2C

n
2
i
+N

2 � 2N · nj

This means that the entire coefficient on the lefthand side can be rewritten as:
X

j2A

(
�
2 ·
P

i 6=j
n
2
i
+ (N � nj)2

N2
· nj

)
=
X

j2A

⇢
�
2 ·

N
2 +

P
i2C

n
2
i
� 2N · nj

N2
· nj

�

=
X

j2A

⇢
�
2 ·
✓
1 +

P
i2C

n
2
i

N2
� 2

nj

N

◆
· nj

�

= �
2 ·NA + �

2 ·NA

P
i2C

n
2
i

N2
� 2

P
i2A

n
2
i

N

Similarly, we can rewrite the numerator of the �
2 coefficient on the righthand side:

X

i 6=j,i2A

n
2
i
+ (NA � nj)

2 =
X

i 6=j,i2A

n
2
i
+N

2
A
+ n

2
j
� 2NA · nj =

X

i2A

n
2
i
+N

2
A
� 2NA · nj

Remember that A ⇢ C. Similarly, we can rewrite the entire coefficient as:

X

j2A

(
�
2 ·
P

i 6=j,i2A
n
2
i
+ (NA � nj)2

N2
A

· nj

)
=
X

j2A

⇢
�
2 ·

N
2
A
+
P

i2A
n
2
i
� 2NA · nj

N2
A

· nj

�

=
X

j2A

⇢
�
2 ·
✓
1 +

P
i2A

n
2
i

N2
A

� 2
nj

NA

◆
· nj

�

= �
2 ·NA + �

2 ·NA

P
i2A

n
2
i

N2
A

� 2 · �2 ·
P

i2A
n
2
i

NA

= �
2 ·NA + �

2 ·
P

i2A
n
2
i

NA

� 2 · �2 ·
P

i2A
n
2
i

NA

= �
2 ·NA � �

2 ·
P

i2A
n
2
i

NA

Combining these terms back into the inequality gives:

µe ·
NA

N
+ �

2 ·NA + �
2 · NA

N
·
P

i2C
n
2
i

N
� 2

P
i2A

n
2
i

N
> µe + �

2 ·NA � �
2

P
i2A

n
2
i

NA

Simplification:

µe ·
NA

N
+ �

2 · NA

N
·
P

i2C
n
2
i

N
� 2

P
i2A

n
2
i

N
> µe � �

2

P
i2A

n
2
i

NA

µe ·
NA

N
+ �

2 · NA

N
·
P

i2C
n
2
i

N
� �

2

P
i2A

n
2
i

N
> µe � �

2

P
i2A

n
2
i

NA

+ �
2

P
i2A

n
2
i

N

NA

N
·
✓
µe + �

2 ·
P

i2C
n
2
i

N
� �

2

P
i2A

n
2
i

NA

◆
> µe + �

2

P
i2A

n
2
i

N
� �

2

P
i2A

n
2
i

NA

Note that the terms on the left and the right look very similar. We will strategically add and subtract a
term on the left:
NA

N
·
✓
µe + �

2 ·
P

i2C
n
2
i
�
P

i2A
n
2
i
+
P

i2A
n
2
i

N
� �

2

P
i2A

n
2
i

NA

◆
> µe+�

2

P
i2A

n
2
i

N
��

2

P
i2A

n
2
i

NA
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Multiplying on the left side:

NA

N
·�2·

P
i2C\A n

2
i

N
+
NA

N
·
✓
µe + �

2 ·
P

i2A
n
2
i

N
� �

2

P
i2A

n
2
i

NA

◆
> µe+�

2

P
i2A

n
2
i

N
��

2

P
i2A

n
2
i

NA

Collecting terms:

NA

N
·�2·

P
i2C\A n

2
i

N
+
NA

N
·
 
µe + �

2 ·
 
X

i2A

n
2
i

!
·
✓

1

N
� 1

NA

◆!
> µe+�

2·
 
X

i2A

n
2
i

!
·
✓

1

N
� 1

NA

◆

Changing the sign:

NA

N
·�2·

P
i2C\A n

2
i

N
+
NA

N
·
 
µe � �

2 ·
 
X

i2A

n
2
i

!
·
✓

1

NA

� 1

N

◆!
> µe��

2·
 
X

i2A

n
2
i

!
·
✓

1

NA

� 1

N

◆

Bringing across terms to the righthand side:

NA

N
· �2 ·

P
i2C\A n

2
i

N
>

✓
1� NA

N

◆
·
 
µe � �

2 ·
 
X

i2A

n
2
i

!
·
✓

1

NA

� 1

N

◆!

Bringing all coefficients of �2 to the lefthand side:

NA

N
· �2 ·

P
i2C\A n

2
i

N
+

✓
1� NA

N

◆
· �2 ·

 
X

i2A

n
2
i

!
·
✓

1

NA

� 1

N

◆
>

✓
1� NA

N

◆
· µe

Rewriting:

NA

N
· �2 ·

0

@
X

i2C\A

n
2
i

1

A+ (N �NA) · �2 ·
 
X

i2A

n
2
i

!
·
✓

1

NA

� 1

N

◆
> (N �NA) · µe

We strategically rewrite the righthand side:

NA

N
·�2·

0

@
X

i2C\A

n
2
i

1

A+(N �NA)·�2·
 
X

i2A

n
2
i

!
·
✓

1

NA

� 1

N

◆
> (N�NA)·µe·

NA

N
+(N�NA)·

✓
1� NA

N

◆
·µe

NA

N
·�2·

0

@
X

i2C\A

n
2
i

1

A+(N �NA)·�2·
 
X

i2A

n
2
i

!
·
✓

1

NA

� 1

N

◆
> (N�NA)·µe·

NA

N
+(N �NA)·NA·

✓
1

NA

� 1

N

◆
·µe

We pull all of the terms over to the lefthand side:

NA

N
·

0

@
X

i2C\A

ni ·
�
�
2 · ni � µe

�
1

A+ (N �NA) ·
✓

1

NA

� 1

N

◆
·
 
X

i2A

ni ·
�
ni · �2 � µe

�
!

> 0

Finally, we will show that the above inequality cannot hold. By assumption, ni  µe

�2 for all i 2 C.
This means that �2 · ni � µe is negative for all i 2 C. Because every other term on the lefthand side
is positive (note that 1

NA
>

1
N

), we know that the lefthand term is negative. However, the inequality
is requiring that the term is positive. By this contradiction, we know that the initial assumption must
have been wrong: so long as ni  µe

�2 , there cannot be any set A such that each player strictly prefers
A to C, so the grand coalition C is core stable.

C Price of Anarchy

Lemma 11. For a set of players with ni � µe

�2 8i, any arrangement that is core stable or individually
stable is also optimal.
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Type Condition
Upper bound on

erri(⇧M )
Lower bound on

erri(⇧opt)
T0 ni � µe+�

2

2·�2 µe

ni
, by Lemma 12.

1
2
µe

ni
, by Lemma 13

T1
µe

9·�2  ni  µe+�
2

2�2

�
2, by Lemma 13

T2

ni <
µe

9·�2 and is federating with
other players of total mass at least

µe

3�2 in ⇧M .
7.25 · �2, by Lemma 14

T3

ni <
µe

9·�2 and is NOT federating
with other players of total mass at

least µe

3�2 in ⇧M .

Unbounded, but Lemma
15 gives a stability result.

Table 2: Summary of relevant bounds for proof of Theorem 2.

Proof. By Lemma 5.3 in Donahue and Kleinberg [2021], when all players have � µe

�2 samples, each
player with size >

µe

�2 minimizes its error by doing local learning. By the same lemma, each player
of size exactly equal to µe

�2 minimize their error in any arrangement with other players also of size µe

�2 .
Taken together, this implies that the only stable arrangements are ones where all players of size >

µe

�2

are doing local learning and all players of size equal µe

�2 are arranged in any grouping. Because all of
these have equal error to the minimal error, the Price of Anarchy is equal to 1.

Theorem 2 (Price of Anarchy). Denote ⇧M to be a maximum-cost individually stable (IS) partition
and ⇧opt to be an optimal (lowest-cost) partition. Then,

PoA =
fw(⇧M )

fw(⇧opt)
 9

Proof. This theorem is the result of multiple lemmas, each of which handle players of different sizes
in different situations. Theorem 2 summarizes these contributions. Specifically, it divides players
into four different types (T0, T1, T2, T3) based on their size and the group they are federating with in
⇧M . These results are summarized in Table 2 and described below.

First, we note that by Lemma 12 the highest error any player can experience in ⇧M is µe

ni
, so the cost

due to a particular player in ⇧M is upper bounded by µe.

• Say that player i 2 T0 if ni � µe+�
2

2�2 . Lemma 13 shows that if ni � µe+�
2

2�2 , then
erri(⇧opt) � 1

2
µe

ni
, so player i’s contribution to the weighted cost is � 1

2 · µe.

• Say that player i 2 T1 if µe

9·�2  ni  µe+�
2

2�2 . Lemma 13 shows that erri(⇧opt) � �
2 for

ni  µe+�
2

2�2 , so player i’s contribution to the weighted cost is � �
2 · ni.

• Say that player i 2 T2 if ni <
µe

9·�2 and if, in ⇧M , it is federating with other players of total
mass at least µe

3�2 . Then, by Lemma 14 erri(⇧M )  7.25�2  7.5 · �2. Lemma 13 applies
again and shows that erri(⇧opt) � �

2 for ni  µe+�
2

2�2 , so player i’s contribution to the
weighted cost is � �

2 · ni.

• Say i 2 T3 if ni  µe

9·�2 and if in ⇧M it is not federating with other players of total mass at
least µe

3·�2 . Then, by Lemma 15 there is at most one group of such description in ⇧M (or
any IS arrangement) - call it A. What is this group’s total contribution to the cost?

µe+�
2 ·NA��

2

P
i2A

n
2
i

NA

 µe+�
2 ·NA��

2NA

NA

⇤
✓
1 +

1

3
+

1

9

◆
µe��

2
< 1.5µe

where in the step marked with ⇤ we have upper bounded NT by the knowledge that it
contains a player of size  µe

9�2 is federating with partners of total size no more than µe

3�2 .
Note that NT is the mass of the entire group containing T3 players, and so may double-count
the contributions of some players not in T3.
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Next, we bring these terms together to bound the overall result. Note that fw(⇧) is a weighted cost
that is obtained by multiplying player j’s error by its number of samples nj .

PoA =
fw(⇧M )

fw(⇧opt)


|T0| · µe + |T1| · µe +
P

i2T2
7.5 · �2 · ni + 1.5µe

|T0| · µe

2 +
P

i2T1
�2 · ni +

P
i2T2

�2 · ni +
P

i2T3
�2 · ni

First, we note that if there do not exist any players in T3, then we can write the bound as:

|T0| · µe + |T1| · µe +
P

i2T2
7.5 · �2 · ni

|T0| · µe

2 + |T1| · µe

9 +
P

i2T2
�2 · ni

 9

Suppose that |T3| � 1. Then, the main goal is to absorb the additive 1.5 · µe term.

First, we consider the case where we have some player nj � µe

3�2 , which we will show implies a PoA
bound of 9. Any player of size � µe

3·�2 must be in T0 or T1. First, we will assume that j 2 T0, so
|T0| � 1, meaning:

4.5 · |T0| · µe � |T0| · µe + 1.5 · µe

This means the bound can be upper bounded by:

PoA 
4.5|T0| · µe + |T1| · µe +

P
i2T2

7.5 · �2 · ni

|T0| · µe

2 + |T1| · µe

9�2 +
P

i2T2
�2 · ni

 9

Next, we consider the case where j 2 T1 and |T0| = 0. Then, the upper bound becomes:

PoA <
(|T1|� 1) · µe + µe + 7.5�2 ·

P
i2T2

ni + 1.5µeP
i 6=j,i2T1

�2 · ni + �2 · nj + �2 ·
P

i2T2
ni

<
(|T1|� 1) · µe + µe + 7.5�2 ·

P
i2T2

ni + 1.5µe

(|T1|� 1) · µe

9 + µe

3 + �2 ·
P

i2T2
ni

<
(|T1|� 1) · µe + 2.5µe + 9�2 ·

P
i2T2

ni

(|T1|� 1) · µe

9 + µe

3 + �2 ·
P

i2T2
ni

<
(|T1|� 1) · µe + 3µe + 9�2 ·

P
i2T2

ni

(|T1|� 1) · µe

9 + µe

3 + �2 ·
P

i2T2
ni

= 9

Finally, we consider the case where all players have size  µe

3�2 . By Lemma 15, if there exist any
players in T3, then the entire arrangement is only stable if ⇧M = ⇡g = ⇧opt, giving a PoA of 1.

These proofs taken together show that the overall PoA is upper bounded by 9.

Lemma 13. Consider a player nj and any set of players C. Then, we can lower bound the error
player j recieves by federating with C:

errj(C [ {nj}) �
(

1
2 · µe

nj
nj � µe+�

2

2�2

�
2 otherwise

Proof. Player j’s error when federating with the coalition C is:

errj(C [ {nj}) =
µe

NC + nj

+ �
2

P
i2C

n
2
i
+N

2
C

(NC + nj)2

Given a fixed NC ,
P

i2C
n
2
i

is minimized when all of the players besides j have size ni = NC
|C| ,

which means that n2
i
= N

2
C

|C|2 . The error is thus lower bounded by:

errj(C [ {nj}) �
µe

NC + nj

+ �
2

N
2
C

|C| +N
2
C

(NC + nj)2

This decreases with |C|, so we set |C| = NC to further lower bound the error:

� µe

NC + nj

+ �
2 NC +N

2
C

(NC + nj)2
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Note that the “units” of this term might seem strange: the numerator of the �
2 component involves a

NC and N
2
C

. This is because we assumed that
P

i2C
n
2
i
� NC , which is correct in magnitude but

which involves different units.

Next, we will lower bound this term by analyzing how it changes with NC . First, we take the
derivative with respect to NC :

nj · (�2 � µe + 2�2 ·NC)�NC · (µe + �
2)

(NC + nj)3

Case 1: Derivative always negative

In some situations, this derivative is always negative (the player j always prefers NC as large as
possible). When does this occur?

nj · (�2 � µe + 2NC · �2) < (µe + �
2) ·NC 8NC

As NC ! 1, the �
2 � µe additive term on the lefthand side becomes irrelevant, so what we require

is

2�2 · nj ·NC  (µe + �
2) ·NC

nj 
µe + �

2

2�2

For players satisfying this premise, we can lower bound their error by sending NC ! 1 in the
original error equation.

lim
NC!1


µe

NC + nj

+ �
2 NC +N

2
C

(NC + nj)2

�
= �

2

This implies that the player’s error goes to �
2 (from above), so is lower bounded by �

2.
Case 2: Derivative sometimes negative, sometimes positive

Next, we’ll consider the case where nj >
µe+�

2

2�2 . The second derivative of the player’s error with
respect to NC is:

2 · �2 · nj � µe � �
2

which is greater than or equal to 0 in this case. In order to lower bound the overall error, we must
bound the error when NC = 0 (at its minimum value) and when the derivative with respect to NC is
0 (local minimum). Note that when NC = 0, player j’s error is µe

nj
, which is > 1

2 · µe

nj
, satisfying the

premise. Next, we will consider the case where the derivative is equal to 0: In this case, the slope
isn’t always negative, so there must be some NC such that the slope is equal to 0. This occurs when:

nj · (�2 � µe) +NC · (2nj · �2 � µe � �
2) = 0

NC =
nj · (µe � �

2)

2nj · �2 � µe � �2

Substituting in for this value of NC into player j’s error gives:

�µ
2
e
� 2µe · �2 + 4nj · µe · �2 � (�2)2

�4nj · �2 + 4n2
j
· �2

=
µe

nj

·
�µe � 2�2 + 4nj · �2 � �

2 · �
2

µe

�4 · �2 + 4nj · �2

In order to prove that this whole term is lower bounded by 1
2
µe

nj
, we will show that the coefficient on

µe

nj
is lower bounded by 1

2 . Because nj � 1, we know that the denominator is positive:

�µe � 2�2 + 4nj · �2 � �
2 · �

2

µe

�4 · �2 + 4nj · �2
� 1

2

�2µe � 4�2 + 8nj · �2 � �
4

µe

� �4�2 + 4nj · �2

�2µe + 4nj · �2 � �
4

µe

� 0

nj �
µe

2�2
+

�
2

4µe
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This is satisfied if the lower bound is smaller than or equal to µe+�
2

2�2 . We can show this by noting that
µe � �

2 for any avenue of interest (otherwise, µe

�2 < 1 and by Lemma 11 the only stable arrangement
is to have all players doing local learning). This means that:

µe

2�2
+

�
2

4µe

 µe

2�2
+

1

4
=

µe +
1
2�

2

2�2
<

µe + �
2

2�2

as desired. This shows that:
errj(C [ {nj}) �

1

2

µe

nj

Lemma 14. Consider a player j federating with a coalition C. If the total number of samples NC is
at least µe

3�2 , then errj(C [ {nj})  7.25 · �2.

Proof. The error a player nj experiences is given by:

errj(C [ {nj}) =
µe

nj +NC

+ �
2

P
i2l

n
2
i
+N

2
C

(NC + nj)2

Given a fixed total sum NC , the
P

i2l
n
2
i

term is maximized when all of the mass is on a single
partner. So the overall cost can be upper bounded by:

<
µe

NC + nj

+ �
2 2N2

C

(NC + nj)2

Taking the derivative with respect to NC gives:

� µe

(NC + nj)2
+ �

2 4NC · (NC + nj)2 � 4N2
C
· (NC + nj)

(NC + nj)4
= � µe

(NC + nj)2
+ �

2 4NC · nj

(NC + nj)3

=
�µe · (NC + nj) + 4�2

NC · nj

(NC + nj)3

Next, we will upper bound player j’s error based on the sign of the derivative with respect to NC .

Case 1: Derivative with respect to NC always positive:
This occurs when the numerator is positive for all NC � 0, or

�µe · (NC + nj) + 4�2
NC · nj > 0

NC · (4�2 · nj � µe) > µe · nj

To begin with, we must have that 4�2 · nj > µe or else the lefthand side is negative, so nj >
µe

4�2 .
Given that, the error is largest when NC is set to its largest value of µe

3�2 .
µe

3 · �2
· (4�2

nj � µe) > µe · nj

4�2
nj � µe > 3�2 · nj

nj >
µe

�2

If this is the case, what is the maximum amount of error that nj receives? The error is in the form:

µe

NC + nj

+ �
2 2N2

C

(NC + nj)2

We know that this is maximized when NC ! 1. In this case, µe term goes to 0. The �
2 term (by

L’Hôpital’s rule) goes to:

�
2 4NC

2(NC + nj)
! 2�2

Case 2: Derivative with respect to NC is always negative

Next, we’ll consider the inverse case where the derivative is always negative. This occurs when:

NC · (4�2 · nj � µe) < µe · nj 8NC
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This has to be true for all NC , which implies that the 4�2 · nj � µe term is negative, or nj  µe

4�2 . If
this is the case, the maximal error is achieved when the NC term is smallest ( µe

3·�2 ). Plugging into the
error form gives us:

µe

µe

3·�2 + nj

+ �
2 2 · µ

2
e

9·�4

�
µe

3·�2 + nj

�2 =
µe ·

�
µe

3·�2 + nj

�
+ 2µ2

e
9·�2

�
µe

3·�2 + nj

�2

=
µe ·

�
µe

3·�2 + nj

�
+ 2µ2

e
9·�2

1
9�4 · (µe + 3�2 · nj)

2

<
9�4

µe ·
�

µe

3·�2 + nj

�
+ 2 · µ2

e
· �2

µ2
e

= 3�2 + 9�2 · �
2

µe

· nj + 2�2

< 5�2 + 9�2 · �
2

µe

· µe

4�2

= 7.25

where in the last step we have used that nj  µe

4�2 .
Case 3: when the derivative with respect to NC is sometimes positive and sometimes negative

Using the values above, we know this occurs when µe

4�2  nj  µe

�2 . First, we’ll confirm that the
error first decreases and then increases with NC . The derivative is:

NC · (4�2 · nj � µe)� µe · nj

Here, we are assuming that the coefficient on NC is either 0 or positive, so the second derivative with
respect to NC is positive. Given that the derivative is negative at some point, it must be negative for
small NC . We know from Case 1 that as NC ! 1, the error goes to 2�2, so in order to bound the
entire space, we only need to bound the error at the smallest value of NC , which is µe

3·�2 . The first
few steps are identical to Case 2:

µe

µe

3·�2 + nj

+ �
2 2 · µ

2
e

9·�4

�
µe

3·�2 + nj

�2 =
µe ·

�
µe

3·�2 + nj

�
+ 2µ2

e
9·�2

�
µe

3·�2 + nj

�2 =
µe ·

�
µe

3·�2 + nj

�
+ 2µ2

e
9·�2

1
9�4 · (µe + 3�2 · nj)

2

In the next step, though, we use that µe

4�2  nj  µe

�2 .

<
9�4

µe ·
�

µe

3·�2 + nj

�
+ 2 · µ2

e
· �2

(µe +
3
4µe)2

=
3�2 + 9�2 · �

2

µe
· nj + 2�2

49
16

<
16

49
·
✓
5�2 + 9�2 · �

2

µe

· µe

�2

◆

=
16

49
· 14 · �2

< 5�2

Of the three cases, the highest bound is 7.25 · �2.

Lemma 15, below, relies on Lemmas 16, 17, and 18, which are stated and proved immediately after
the proof of Lemma 15.
Lemma 15. Consider an arrangement of players, all of size  µe

3�2 , where at least one player is in
a federating cluster where the total mass of its partners is no more than µe

3�2 . Then, the only stable
arrangement of these players is to have all of them federating together.

Proof. By Lemma 16, we know that every player in every group welcomes the addition of any other
player. Therefore, in order to prove that this arrangement isn’t individually stable, we simply have to
prove that a player would wish to move.
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We will consider a cluster A with elements i 2 T3 present. We know that there exists at least
one element in A s.t. the mass of its partners (NA � ni) is less than µe

3�2 . This implies also that
N � na <

µe

3�2 for na the largest element in A. We also know that na <
µe

3�2 because we know that
there exists some other element in the cluster with NA � ni <

µe

3�2 .

Next, let’s suppose there exists some other cluster B, such that all elements are  µe

3�2 in size. We
will consider some nb largest player in B. There are four possible cases:

1. na � nb, NA � na � NB � nb: Unstable by Lemma 17 (player b wishes to move to A).

2. (Symmetric to above) na  nb, NA � na  NB � nb: Unstable by Lemma 17 (player a
wishes to move to B).

3. na > nb, NA � na < NB � nb. Note that in this case, we know that NA � na  µe

3�2 , so
we satisfy the conditions of Lemma 18, and thus player a would prefer to join B.

4. na < nb, NA � na > NB � nb. In this case, we know that µe

3�2 > NA � na > NB � nb,
so we again satisfy the conditions of Lemma 18, and thus player b would prefer to join A.

Lemma 16. A group of players where each has size ni  µe

3�2 always welcomes the addition of
another player of size nk  µe

3�2 .

Proof. For this section, we will rewrite the form of the error that a player experiences while federating
with a coalition C. Specifically, we will write the error in the form below, where ai refers to the
number of players with number of samples ni.

µeP
M

i=1 ai · ni

+ �
2

P
i 6=j

ai · n2
i
+ (aj � 1) · n2

j
+ (
P

i 6=j
ai · ni + (aj � 1) · nj)2

(
P

M

i=1 ai · ni)2

Setting N =
P

M

i=1 ai · ni gives:

µe

N
+ �

2 ·
P

i 6=j
ai · n2

i
+ (aj � 1) · n2

j
+ (N � nj)2

N2

In order to prove that any player j welcomes the addition of any other player k, we will show that
the derivative with respect to ak is always negative. This means that player j always sees its error
decrease with the addition of another player of size nk. As we take the derivative, the coefficient on
the µe term in the error value becomes:

�µe · nk

N2
= �µe · nk ·N2

N4

The derivative of the coefficient on the �
2 term becomes:

�
2

N4
·

0

@�n2
k
+ 2(N � nj) · nk

�
·N2 �

0

@
X

i 6=j

ai · n2
i
+ (aj � 1) · n2

j
+ (N � nj)

2

1

A · 2 ·N · nk

1

A

So, the overall derivative is negative if:

µe·nk·N2
> �

2·

0

@�n2
k
+ 2(N � nj) · nk

�
·N2 �

0

@
X

i 6=j

ai · n2
i
+ (aj � 1) · n2

j
+ (N � nj)

2

1

A · 2 ·N · nk

1

A

We pull out and cancel common terms:

µe · nk ·N2
> �

2 · nk ·N ·

0

@(nk + 2N � 2nj) ·N � 2

0

@
X

i 6=j

ai · n2
i
+ (aj � 1) · n2

j
+ (N � nj)

2

1

A

1

A

µe ·N > �
2 ·

0

@(nk + 2(N � nj)) · (N � nj + nj)� 2

0

@
X

i 6=j

ai · n2
i
+ (aj � 1) · n2

j
+ (N � nj)

2

1

A

1

A
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Strategically expanding:

µe·N > �
2·

0

@nk ·N + 2(N � nj)
2 + 2nj ·N � 2n2

j
� 2

0

@
X

i 6=j

ai · n2
i
+ (aj � 1) · n2

j

1

A� 2(N � nj)
2

1

A

Collecting:

µe ·N > �
2 ·
 
N · (nk + 2nj)� 2

MX

i=1

ai · n2
i

!

Substituting in for N :

µe ·
MX

i=1

ai · ni > �
2 ·
 

MX

i=1

ai · ni · (nk + 2nj)� 2
MX

i=1

ai · n2
i

!

0 >

MX

i=1

ai · ni · (�2 · nk + 2�2 · nj � 2�2 · ni � µe)

Our goal is to show that this is negative if ni  µe

3�2 for all i.

First, we look over the portion of the sum equal to the k index. This term is equal to:

ak · nk · (2�2 · nj � �
2 · nk � µe)

which is negative, given our conditions. Next, we look at the j term in the sum:

aj · nj · (�2 · nk � µe)

which is also negative. The remaining portions of the sum can be written as:

(N � aj · nj � ak · nk) · (�2 · nk + 2�2 · nj � µe)� 2�2
X

i 6=j,k

ai · n2
i

which we would like to show is negative. We can maximize this term by holding N constant and
minimizing the negative portion by setting ni = 1 for all other players besides j, k. This gives us an
upper bound of:

 (N � aj · nj � ak · nk) · (�2 · nk + 2�2 · nj � µe)� 2�2(N � aj · nj � ak · nk)

= (N � aj · nj � ak · nk) · (�2 · nk + 2�2 · nj � µe � 2�2)

Given the condition that nk, nj  µe

3�2 , we know that the coefficient is no more than

3�2 µe

3�2
� µe � 2�2

< 0

Taken together, this shows that the derivative of player j’s error with respect to ak is negative, which
means that player j always sees its error decrease with the addition of another player k.

Lemma 17. Assume we have two groups of players, A and B with all players of size  µe

3�2 . Then, if
either of the two conditions below are satisfied, the arrangement is not individually stable.

1. There exists a 2 A, b 2 B such that na = nb.

2. There exists a 2 A, b 2 B such that na > nb and NA � na � NB � nb. (Note that this
could be defined symmetrically with respect to B).

Proof. First, we will assume that player a does not wish to move to B (if this is not true, then we
already know that the arrangement is not IS). This tells us that:

erra(A)  erra(B [ {na})

Next, we will derive sufficient conditions for player b to wish to move to A, or

errb(A [ {nb}) < errb(B)
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We will use the shorthand of N 0
A
= NA � na and N

0
B
= NB � nb. From the form of each player’s

error as in Lemma 1, we can derive conditions for the difference in errors experienced by two players
in the same coalition. Consider a coalition C and two players j, k 2 C, with nk � nj Then,

errj(C)� errk(C) = �
2 ·
P

i 6=j
n
2
i
+ (NC � nj)2

N2
C

� �
2 ·
P

i 6=k
n
2
i
+ (NC � nk)2

N2
C

= �
2 ·

n
2
k
� n

2
j
+ (NC � nj)2 � (NC � nk)2

N2
C

= �
2 ·

n
2
k
� n

2
j
+ (N2

C
+ n

2
j
� 2nj ·NC)� (N2

C
+ n

2
k
� 2nk ·NC)

N2
C

= �
2 · �2nj ·NC + 2nk ·NC

N2
C

= 2�2 · NC · (nk � nj)

N2
C

= 2�2 · nk � nj

NC

We can apply this derivation to obtain two equalities:

errb(A [ b) = erra(A [ b) + 2�2 na � nb

N 0
A
+ na + nb

erra(B [ a) = errb(B [ a)� 2�2 na � nb

N 0
B
+ na + nb

So, rewriting the first inequality tells us that:

erra(A)  errb(B [ a)� 2�2 na � nb

N 0
B
+ na + nb

Pulling over:
erra(A) + 2�2 na � nb

N 0
B
+ na + nb

 errb(B [ a)

Note that because all of the players are of size  µe

3·�2 , we know by Lemma 16 that every player
welcomes the addition of every other player, so

errb(B [ a) < errb(B)

In order to complete the proof, we need to show that errb(A [ {nb}) is less than erra(A) +
2�2 na�nb

N 0
B+na+nb

. Again, because all of the players are of size  µe

3·�2 , we know from Lemma 16 that
every player welcomes the addition of every other player, so

erra(A [ {nb}) + 2�2 na � nb

N 0
B
+ na + nb

< erra(A) + 2�2 na � nb

N 0
B
+ na + nb

From our prior relation, we know that

errb(A [ b)� 2�2 na � nb

N 0
A
+ na + nb

+ 2�2 na � nb

N 0
B
+ na + nb

= erra(A [ {nb}) + 2�2 na � nb

N 0
B
+ na + nb

Rewriting the term on the left tells us that what we want to show is:

errb(A [ b)  errb(A [ b) + 2�2 · (na � nb) ·
✓

1

N 0
B
+ na + nb

� 1

N 0
A
+ na + nb

◆

Now, we can apply our case analysis. If na = nb, then the added coefficient is 0, so the final
inequality holds. The inequality also holds if the fractional coefficient is positive or 0, or

1

N 0
B
+ na + nb

� 1

N 0
A
+ na + nb

N
0
A
+ na + nb � N

0
B
+ na + nb

N
0
A
� N

0
B

which is exactly the second criteria.
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Lemma 18. Assume we have two groups of players, A and B, with all players of size  µe

3�2 . Define
na, nb to be the largest players in A,B respectively. Assume that na > nb and NA �na < NB �nb,
with NA � na  µe

3�2 . Then, player a would prefer to join B.

Proof. We will show that the preconditions imply that player a would wish to move to group B, or
else

erra(B [ {na}) < erra(A)

Or, rewritten out,

µe

NB + na

+ �
2

P
i2B

n
2
i
+N

2
B

(NB + na)2
<

µe

NA

+ �
2

P
i2A,i 6=a

n
2
i
+ (NA � na)2

N2
A

We will upper and lower bound the costs on both sides by taking the worst and best case scenario
for how the B and A players can be arranged, respectively. We have already showed that we can
minimize the total arrangement of fixed total mass by dividing it into players of size exactly 1, so the
player sizes equal to 1, or X

i2A,i 6=a

n
2
i
� NA � na

Conversely, let’s try to upper bound the B sum. Previously, we did this by grouping all of the mass
into a single player. In this case, we can’t do this - we’ve assumed that the nb term is the largest of
them, so the most we can set them to be equal to is nb exactly. However, the same reasoning still
holds: if we keep the total NB � nb constant but rearrange them into groups of maximum size b, we
only increase total cost. To see why, consider that we have x, y with x � y, and some x  b  x+ y.
Then, we wish to show that:

x
2 + y

2
< b

2 + (x+ y � b)2

Expanding:

x
2 + y

2
< b

2 + (x+ y � b)2 = b
2 + b

2 + x
2 + y

2 � 2b · x� 2b · y + 2x · y
Cancelling common terms means we want to show:

2b · x+ 2b · y < 2b2 + 2x · y

x+ y < b+
x · y
b

< b+
b · y
b

= b+ y

which is satisfied.

This result tells us that this process (grouping them into players of exactly size nb, plus at most one
player of size < nb) does maximize the total sum, subject to this constraint. We will again use the
shorthand of N 0

A
= NA � na and N

0
B

= NB � nb. Excluding player nb, the mass is N 0
B

, so the
number of copies of nb that we can make is N

0
B

nb
:= c+ ✏, for integer c and ✏ 2 [0, 1). If we know

that ✏ = 0 (which is always achievable), then we know that:
X

i2B,i6=b

n
2
i
 c · n2

b
=

N
0
B

nb

· n2
b
= N

0
B
· nb

What if ✏ > 0? Then,
X

i2B,i6=b

n
2
i
 c · n2

b
+ (✏ · nb)

2
< c · n2

b
+ ✏ · n2

b
=

N
0
B

nb

· n2
b
= N

0
B
· nb

So, in either way, the N 0
B
· nb term is an upper bound. This means that the worst-case scenario for us

to show that:
µe

N 0
B
+ na + nb

+ �
2N

0
B
· nb + n

2
b
+ (N 0

B
+ nb)2

(N 0
B
+ na + nb)2

<
µe

N 0
A
+ na

+ �
2N

0
A
+ (N 0

A
)2

(N 0
A
+ na)2

We’ll work by upper bounding the lefthand side. First, we’ll replace the N
0
B

. First, we’ll also look at
the derivative with respect to N

0
B

, which gives:

na(�µe + 3nb · �2 + 2Nb · �2)� (nb +N
0
B
)(µe + nb�

2)

(na + nb +N 0
B
)3

31



The numerator can be rewritten as:

�µe · (na + nb +N
0
B
)� �

2 · nb · (N 0
B
+ nb) + 3�2 · na · nb + 2�2 · na ·N 0

B

We can show that this is negative because:

N
0
B
· (�µe + 2�2 · na) < 0

since na  µe

3�2 . Similarly,
nb · (�µe + 3�2 · na)  0

Because the derivative with respect to N
0
B

is negative, we can over-bound it by setting it to its smallest
value: N 0

A
+ 1 (or N 0

A
, for simplicity). This means that we can upper bound the lefthand side by

writing:

µe

N 0
A
+ na + nb

+ �
2N

0
A
· nb + n

2
b
+ (N 0

A
+ nb)2

(N 0
A
+ na + nb)2

<
µe

N 0
A
+ na

+ �
2N

0
A
+ (N 0

A
)2

(N 0
A
+ na)2

Next, we’ll work on replacing the nb term on the lefthand side. We start out by taking the derivative
of the lefthand side with respect to nb. This gives us:

�µe · (na +N
0
A
) + �

2 ·N 0
A
· (N 0

A
+ 3na) + nb · (�µe + �

2 · (N 0
A
+ 4na))

(N 0
A
+ na + nb)3

We will inspect the sign of the derivative, which is given by the numerator. Specifically, we will
show that the derivative is always negative or 0 at nb = 0, and is either negative forever, or else is
negative and then positive. This implies that the lefthand side of the overall equation is either always
decreasing in nb (implying that we can upper bound it by setting nb = 0) or else is decreasing and
then increasing (in which case the upper bound is either at nb = 0 or nb = na).

First, we will prove our claim about the derivative. At nb = 0, the derivative is:

�µe · (na +N
0
A
) + �

2 ·N 0
A
· (N 0

A
+ 3na)

We want to show this is negative, or:

�
2 ·N 0

A
· (3na +N

0
A
)  µe · (na +N

0
A
)

Upper bounding the lefthand side:

3�2 ·N 0
A
· (na +N

0
A
)  µe · (na +N

0
A
)

3�2 ·N 0
A
 µe

which is satisfied by assumption. So, we know that the derivative starts out as 0 or negative. If the
coefficient on nb (equal to �

2 · (4na +N
0
A
)� µe) is negative, then the lefthand side of the overall

equation is always decreasing as nb increases - so the upper bound at nb = 0 suffices. Otherwise, the
curve is decreasing, then increasing.

Upper bound at nb = 0
This bound is fairly straightforward. What we want to show is:

µe

N 0
A
+ na

+ �
2 N

02
A

(N 0
A
+ na)2

<
µe

N 0
A
+ na

+ �
2N

0
A
+ (N 0

A
)2

(N 0
A
+ na)2

which is obviously true.

Upper bound at nb = na

This bound is trickier. (Note that technically, the upper bound is at na � 1, but it is simpler to
over-bound with na). What we’d like to show is:

µe

N 0
A
+ 2na

+ �
2N

0
A
· na + n

2
a
+ (N 0

A
+ na)2

(N 0
A
+ 2na)2

 µe

N 0
A
+ na

+ �
2 N

0
A
+N

02
A

(N 0
A
+ na)2

We can write:

µe ·
✓

1

N 0
A
+ na

� 1

N 0
A
+ 2na

◆
= µe ·

na

(N 0
A
+ na) · (N 0

A
+ 2na)
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Next, we move on to the �
2 portion. Note that we can simplify the lefthand side, since:

N
02
A

+ n
2
a
+ 2N 0

A
· na + n

2
a
+N

0
A
· na = N

02
A

+ 2n2
a
+ 3N 0

A
· na = (N 0

A
+ na) · (N 0

A
+ 2na)

So, the inequality we’d like to show becomes:

�
2 N

0
A
+ na

N 0
A
+ 2na

� �
2 N

0
A
+N

02
A

(N 0
A
+ na)2

 µe ·
na

(N 0
A
+ na) · (N 0

A
+ 2na)

Simplifying the lefthand side gives:

�
2 · (N

0
A
+ na)3 � (N 0

A
+N

02
A
) · (N 0

A
+ 2na)

(N 0
A
+ 2na) · (N 0

A
+ na)2

 µe ·
na

(N 0
A
+ na) · (N 0

A
+ 2na)

�
2 · (N

0
A
+ na)3 � (N 0

A
+N

02
A
) · (N 0

A
+ 2na)

N 0
A
+ na

 µe · na

We can make the lefthand side larger by making the negative part smaller - specifically, replacing the
(N 0

A
+ 2na) with a (N 0

A
+ na). This gives us:

�
2 · (N

0
A
+ na)3 � (N 0

A
+N

02
A
) · (N 0

A
+ na)

N 0
A
+ na

 µe · na

�
2 ·
�
(N 0

A
+ na)

2 � (N 0
A
+N

02
A
)
�
 µe · na

Expanding out the lefthand side gives us:

�
2 · (N 02

A
+ n

2
a
+ 2na ·N 0

A
�N

0
A
�N

02
A
)  µe · na

�
2 · (n2

a
+ 2na ·N 0

A
�N

0
A
)  µe · na

Again, we can make the lefthand side larger by dropping the negative portion:

�
2 · (n2

a
+ 2na ·N 0

A
)  µe · na

�
2 · (na + 2N 0

A
)  µe

Which is satisfied because we require N
0
A
, na both  µe

3�2 . Note that, while this is a , because we
know that nb < na, the overall inequality is strict.
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