A Appendix

Contents of main article and appendix

1	Introduction	1
2	Related Work	2
3	Contributions	3
4	Background	3
	4.1 RL as an LP	3
	4.2 Regularized Policy Search	4
5	Relative Entropy Policy Search	5
	5.1 Structural results for the REPS objective	6
	5.2 Convergence rates	7
6	Stochastic Gradients	8
7	Conclusion	9
A	Appendix	12
B	Geometry of regularized Linear Programs	14
	B.1 Proof of Lemma 2	14
	B.2 Proof of Lemma 3	15
С	Proof of Lemma 4	15
D	Proof of Lemma 5	17
Г	Convergence rates for DEDS	10
Ľ	E.1 Proof of Theorem 2	10 19
F	Accelerated Gradient Descent	20
		20
G	Stochastic Gradient Descent	20
H	Stochastic Gradients Analysis	22
	H.1 Estimating the Gradients	25
	H.2 Biased Stochastic Gradients	27
	H.3 Proof of Lemma 10	31
I	Extended Results for Tsallis Entropy Regularizers	32
	I.0.1 Strong Convexity of Tsallis Entropy	32

I.1	Tsallis entropy version of Lemma 4	33
I.2	Extension of Lemma 5 to Tsallis Entropy	35
I.3	Gradient descent results for the Tsallis Entropy	36

B Geometry of regularized Linear Programs

We start by fleshing out the connection between strong convexity and smoothness charted in Lemma **1**: Lemma 1. If F is β -strongly convex w.r.t. $\|\cdot\|$ over \mathcal{D} then F^* is $\frac{1}{\beta}$ -smooth w.r.t the dual $\|\cdot\|_{\star}$.

Proof. Let $\mathbf{u}, \mathbf{w} \in \mathbb{R}^n$ and $\mathbf{x}, \mathbf{y} \in \mathcal{D}$ be such that $\nabla F^*(\mathbf{u}) = \mathbf{x}$ and $\nabla F^*(\mathbf{w}) = \mathbf{y}$. By definition this also implies that:

$$\langle \nabla F(\mathbf{x}) - \mathbf{u}, \mathbf{z}_1 - \mathbf{x} \rangle \ge 0, \quad \forall \mathbf{z} \in \mathcal{D}$$

 $\langle \nabla F(\mathbf{y}) - \mathbf{w}, \mathbf{z}_2 - \mathbf{y} \rangle \ge 0, \quad \forall \mathbf{z} \in \mathcal{D}$

Setting $z_1 = y$ and $z_2 = x$ along with the definition of x, y and summing the two inequalities:

$$\langle \nabla F(\mathbf{x}) - \nabla F(\mathbf{y}), \mathbf{y} - \mathbf{x} \rangle \ge \langle \nabla F^*(\mathbf{w}) - \nabla F^*(\mathbf{u}), \mathbf{u} - \mathbf{w} \rangle.$$
 (8)

By strong convexity of F over domain \mathcal{D} we see that:

$$\begin{split} F(\mathbf{x}) &\geq F(\mathbf{y}) + \langle \nabla F(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|^2 \\ F(\mathbf{y}) &\geq F(\mathbf{x}) + \langle \nabla F(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|^2 \end{split}$$

Summing both inequalities yields:

$$\beta \|\mathbf{x} - \mathbf{y}\|^2 \le \langle \nabla F(\mathbf{x}) - \nabla F(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$$

Plugging in the definition of \mathbf{u} and \mathbf{w} along with inequality 8

 $\beta \|\nabla F^*(\mathbf{u}) - \nabla F^*(\mathbf{w})\|^2 \le \langle \mathbf{u} - \mathbf{w}, \nabla F^*(\mathbf{u}) - \nabla F^*(\mathbf{w}) \rangle \stackrel{(i)}{\le} \|\mathbf{u} - \mathbf{w}\|_* \|\nabla F^*(\mathbf{u}) - \nabla F^*(\mathbf{w})\|.$ Where inequality (i) holds by Cauchy-Schwartz and consequently:

$$\|\nabla F^*(\mathbf{u}) - \nabla F^*(\mathbf{w})\| \le \frac{1}{\beta} \|\mathbf{u} - \mathbf{w}\|_*$$

By the mean value theorem there exists $z \in [u, w]$:

$$\begin{split} F^*(\mathbf{u}) &= F^*(\mathbf{w}) + \langle \nabla F^*(\mathbf{z}), \mathbf{w} - \mathbf{u} \rangle \\ &= F^*(\mathbf{w}) + \langle \nabla F^*(\mathbf{w}), \mathbf{w} - \mathbf{u} \rangle + \langle \nabla F^*(\mathbf{z}) - \nabla F^*(\mathbf{w}), \mathbf{w} - \mathbf{u} \rangle \\ &\leq F^*(\mathbf{w}) + \langle \nabla F^*(\mathbf{w}), \mathbf{w} - \mathbf{u} \rangle + \| \nabla F^*(\mathbf{z}) - \nabla F^*(\mathbf{w}) \| \| \mathbf{w} - \mathbf{u} \|_* \\ &\leq F^*(\mathbf{w}) + \langle \nabla F^*(\mathbf{w}), \mathbf{w} - \mathbf{u} \rangle + \frac{1}{\beta} \| \mathbf{z} - \mathbf{w} \|_* \| \mathbf{w} - \mathbf{u} \|_* \\ &\leq F^*(\mathbf{w}) + \langle \nabla F^*(\mathbf{w}), \mathbf{w} - \mathbf{u} \rangle + \frac{1}{\beta} \| \mathbf{w} - \mathbf{u} \|_* \end{split}$$

Which concludes the proof.

The proof of Lemma [] yields the following useful result that characterizes the smoothness properties of the dual function in a regularized LP:

B.1 Proof of Lemma 2

Lemma 2. Consider the regularized LP RegLP with $\mathbf{r} \in \mathbb{R}^n$, $\mathbf{E} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and where F is β -strongly convex w.r.t. norm $\|\cdot\|$. The dual function $g_D : \mathbb{R}^m \to \mathbb{R}$ of this regularized LP is $\frac{\|\mathbf{E}\|_{\cdot,\star}^2}{\beta}$ -smooth w.r.t. to the dual norm $\|\cdot\|_{\star}$, where we use $\|\mathbf{E}\|_{\cdot,\star}$ to denote the $\|\cdot\|$ norm over the $\|\cdot\|_{\star}$ norm of \mathbf{E} 's rows.

Proof. Recall that:

$$g_D(v) = \langle v, b \rangle + F^*(r - v^\top E).$$

Notice that:

$$\nabla_v g_D(v) = b + E \nabla F^* (r - v^\top E).$$

And therefore for any two v_1, v_2 :

$$\|\nabla g_D(v_1) - \nabla g_D(v_2)\| = \|E\left(\nabla F^*(r - v_1^\top E) - \nabla F^*(r - v_2^\top E)\right)\|$$

$$\stackrel{(i)}{\leq} \|E\|_{\cdot,*} \|\nabla F^*(r - v_1^\top E) - \nabla F^*(r - v_2^\top E)\|$$

$$\stackrel{(ii)}{\leq} \|E\|_{\cdot,*} \frac{1}{\beta} \|v_1^\top E - v_2^\top E\|_*$$

$$\stackrel{(ii)}{\leq} \frac{\|E\|_{\cdot,*}^2}{\beta} \|v_1 - v_2\|_*$$

The result follows.

We can apply Lemma 2 to problem PrimalReg- λ and thus characterize the smoothness properties of the dual function J_D .

B.2 Proof of Lemma 3

Lemma 3. The dual function $J_D(\mathbf{v})$ is $(|\mathcal{S}| + 1)\eta$ -smooth in the $\|\cdot\|_{\infty}$ norm.

Proof. Recall that PrimalReg- λ can be written as RegLP:

$$\max_{\boldsymbol{\lambda}\in\mathcal{D}}\langle \mathbf{r},\boldsymbol{\lambda}\rangle - F(\boldsymbol{\lambda})$$

s.t. $\mathbf{E}\boldsymbol{\lambda} = b$.

Where the regularizer $(F(\boldsymbol{\lambda}) := \frac{1}{\eta} \sum_{s,a} \boldsymbol{\lambda}_{s,a} \left(\log \left(\frac{\boldsymbol{\lambda}_{s,a}}{\mathbf{q}_{s,a}} \right) - 1 \right) \right)$ is $\frac{1}{\eta} - \| \cdot \|_1$ strongly convex. In this problem \mathbf{r} corresponds to the reward vector, the vector $\mathbf{b} = (1 - \gamma)\boldsymbol{\mu} \in \mathbb{R}^{|\mathcal{S}|}$ and matrix $\mathbf{E} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{S}| \times |\mathcal{A}|}$ takes the form:

$$\mathbf{E}[s,s',a] = \begin{cases} \gamma \mathbf{P}_a(s|s') & \text{if } s \neq s' \\ 1 - \gamma \mathbf{P}_a(s|s) & \text{o.w.} \end{cases}$$

Therefore

$$\|\mathbf{E}\|_{1,\infty} \le S+1$$

The result follows as a corollary of Lemma I.

C Proof of Lemma 4

The objective of this section is to show that a candidate dual variable $\tilde{\mathbf{v}}$ having small gradient gives rise to a policy whose true visitation distribution has large primal value J_P .

Lemma 4. Let $\widetilde{\mathbf{v}} \in \mathbb{R}^{|\mathcal{S}|}$ be arbitrary and let $\widetilde{\boldsymbol{\lambda}}$ be its corresponding candidate primal variable. If $\|\nabla_{\mathbf{v}} J_D(\widetilde{\mathbf{v}})\|_1 \le \epsilon$ and Assumptions 2 and 3 hold then whenever $|\mathcal{S}| \ge 2$:

$$J_P(\boldsymbol{\lambda}^{\widetilde{\pi}}) \ge J_P(\boldsymbol{\lambda}^{\star}_{\eta}) - \epsilon \left(\frac{1+c}{1-\gamma} + \|\widetilde{\mathbf{v}}\|_{\infty}\right),$$

where $c = rac{1 + \log(rac{1}{
ho^{3}eta})}{\eta}$ and λ^{\star}_{η} is the J_P optimum.

Proof. For any λ and v let the lagrangian $J_L(\lambda, v)$ be defined as,

$$J_L(\boldsymbol{\lambda}, \mathbf{v}) = (1 - \gamma) \langle \boldsymbol{\mu}, \mathbf{v} \rangle + \left\langle \boldsymbol{\lambda}, \mathbf{A}^{\mathbf{v}} - \frac{1}{\eta} \left(\log \left(\frac{\boldsymbol{\lambda}}{\mathbf{q}} \right) - 1 \right) \right\rangle$$

Note that $J_D(\tilde{\mathbf{v}}) = J_L(\tilde{\boldsymbol{\lambda}}, \tilde{\mathbf{v}})$ and that in fact J_L is linear in $\bar{\mathbf{v}}$; *i.e.*,

$$J_L(\widetilde{\boldsymbol{\lambda}}, \overline{\mathbf{v}}) = J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}}) + \langle \nabla_{\mathbf{v}} J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}}), \overline{\mathbf{v}} - \widetilde{\mathbf{v}} \rangle.$$

Using Holder's inequality we have:

$$J_L(\widetilde{\lambda}, \overline{\mathbf{v}}) \ge J_L(\widetilde{\lambda}, \widetilde{\mathbf{v}}) - \|\nabla_{\mathbf{v}} J_L(\widetilde{\lambda}, \widetilde{\mathbf{v}})\|_1 \cdot \|\overline{\mathbf{v}} - \widetilde{\mathbf{v}}\|_{\infty} = J_D(\widetilde{\mathbf{v}}) - \|\nabla_{\mathbf{v}} J_L(\widetilde{\lambda}, \widetilde{\mathbf{v}})\|_1 \cdot \|\overline{\mathbf{v}} - \widetilde{\mathbf{v}}\|_{\infty}.$$

Let λ_{\star} be the candidate primal solution to the optimal dual solution $\mathbf{v}_{\star} = \arg \min_{\mathbf{v}} J_D(\mathbf{v})$. By weak duality we have that $J_D(\widetilde{\mathbf{v}}) \ge J_P(\lambda^{\star}) = J_D(\mathbf{v}_{\star})$, and since by assumption $\|\nabla_{\mathbf{v}} J_L(\widetilde{\lambda}, \widetilde{\mathbf{v}})\|_1 \le \epsilon$:

$$J_L(\widetilde{\boldsymbol{\lambda}}, \overline{\mathbf{v}}) \ge J_P(\boldsymbol{\lambda}^*) - \epsilon \|\overline{\mathbf{v}} - \widetilde{\mathbf{v}}\|_{\infty}.$$
(9)

In order to use this inequality to lower bound the value of $J_P(\lambda^{\tilde{\pi}})$, we will need to choose an appropriate $\bar{\mathbf{v}}$ such that the LHS reduces to $J_P(\lambda^{\tilde{\pi}})$ while keeping the ℓ_{∞} norm on the RHS small. Thus we consider setting $\bar{\mathbf{v}}$ as:

$$\bar{\mathbf{v}}_{s} = \mathbb{E}_{a,s' \sim \tilde{\pi} \times \mathcal{T}} \left[\mathbf{z}_{s} + \mathbf{r}_{s,a} - \frac{1}{\eta} \left(\log \left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right) - 1 \right) + \gamma \bar{\mathbf{v}}_{s'} \right]$$

Where $\mathbf{z} \in \mathbb{R}^{|S|}$ is some function to be determined later. It is clear that an appropriate \mathbf{z} exists as long as $\mathbf{z}, \mathbf{r}, \frac{1}{\eta} \left(\log \left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right) - 1 \right)$ are uniformly bounded. Furthermore:

$$\|\bar{\mathbf{v}}\|_{\infty} \leq \frac{\max_{s,a} \left| \mathbf{z}_{s} + \mathbf{r}_{s,a} - \frac{1}{\eta} \left(\log \left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right) - 1 \right) \right|}{1 - \gamma} \leq \frac{\|\mathbf{z}\|_{\infty} + \|\mathbf{r}\|_{\infty} + \frac{1}{\eta} \left\| \log \left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right) - 1 \right\|_{\infty}}{1 - \gamma}$$
(10)

Notice that by Assumptions 2 and 3, we have that $\rho, \beta \leq \frac{1}{2}$. This is because for all π , Assumption 3 implies that:

$$0 \leq 2\rho \leq |\mathcal{S}|\rho \leq \sum_{s} \boldsymbol{\lambda}_{s}^{\pi} = 1$$

The proof for $\beta \leq \frac{1}{2}$ is symmetric. Due to Assumption 2 the $\|\cdot\|_{\infty}$ norm of $\log(\frac{\lambda^{\tilde{\pi}}}{q}) - \mathbf{1}_{|\mathcal{S}||\mathcal{A}|}$ satisfies:

$$\left\|\log\left(\frac{\boldsymbol{\lambda}^{\tilde{\pi}}}{\mathbf{q}}\right) - \mathbf{1}_{|\mathcal{S}||\mathcal{A}|}\right\|_{\infty} \leq 1 + \left\|\log\left(\frac{\boldsymbol{\lambda}^{\tilde{\pi}}}{\mathbf{q}}\right)\right\|_{\infty} \leq 1 + \max(|\log(\rho/\beta)|, \log(1/\beta)) \leq 1 + \log(1/\rho) + \log(1/\beta))$$

Notice the following relationships hold:

$$\left\langle \widetilde{\boldsymbol{\lambda}}, \mathbf{A}^{\widetilde{\mathbf{v}}} - \frac{1}{\eta} \left(\log \left(\frac{\widetilde{\boldsymbol{\lambda}}}{\mathbf{q}} \right) - 1 \right) \right\rangle = \sum_{s} \widetilde{\boldsymbol{\lambda}}_{s} \left(\mathbb{E}_{a,s' \sim \widetilde{\pi} \times \mathbf{P}} \left[\mathbf{r}_{s,a} + \gamma \overline{\mathbf{v}}_{s'} - \overline{\mathbf{v}}_{s} - \frac{1}{\eta} \left(\log \left(\frac{\widetilde{\boldsymbol{\lambda}}_{s,a}}{\mathbf{q}_{s,a}} \right) - 1 \right) \right] \right) \right)$$

$$= \sum_{s} \widetilde{\boldsymbol{\lambda}}_{s} \left(\mathbb{E}_{a,s' \sim \widetilde{\pi} \times \mathbf{P}} \left[\frac{1}{\eta} \left(\log \left(\frac{\boldsymbol{\lambda}_{s,a}^{\widetilde{\pi}}}{\mathbf{q}_{s,a}} \right) - 1 \right) - \frac{1}{\eta} \left(\log \left(\frac{\widetilde{\boldsymbol{\lambda}}_{s,a}}{\mathbf{q}_{s,a}} \right) - 1 \right) - \mathbf{z}_{s} \right] \right)$$

$$= \sum_{s} \widetilde{\boldsymbol{\lambda}}_{s} \left(\mathbb{E}_{a,s' \sim \widetilde{\pi} \times \mathbf{P}} \left[\frac{1}{\eta} \log \left(\boldsymbol{\lambda}_{s,a}^{\widetilde{\pi}} \right) - \frac{1}{\eta} \log \left(\widetilde{\boldsymbol{\lambda}}_{s,a} \right) - \mathbf{z}_{s} \right] \right)$$

$$= \sum_{s} \widetilde{\boldsymbol{\lambda}}_{s} \left(\frac{1}{\eta} \log \left(\boldsymbol{\lambda}_{s}^{\widetilde{\pi}} \right) - \frac{1}{\eta} \log \left(\widetilde{\boldsymbol{\lambda}}_{s} \right) - \mathbf{z}_{s} \right)$$

$$(11)$$

Where $\widetilde{\lambda}_s = \sum_a \widetilde{\lambda}_{s,a}$ and $\lambda_s^{\widetilde{\pi}} = \sum_a \lambda_{s,a}^{\widetilde{\pi}}$. Note that by definition:

$$(1-\gamma)\langle\boldsymbol{\mu},\bar{\mathbf{v}}\rangle = \left\langle\boldsymbol{\lambda}^{\widetilde{\pi}},\mathbf{z}+\mathbf{r}-\frac{1}{\eta}\left(\log\left(\frac{\boldsymbol{\lambda}^{\widetilde{\pi}}}{\mathbf{q}}\right)-1\right)\right\rangle = J_P(\boldsymbol{\lambda}^{\widetilde{\pi}})+\langle\boldsymbol{\lambda}^{\widetilde{\pi}},\mathbf{z}\rangle.$$
 (12)

Let's expand the definition of $J_L(\tilde{\lambda}, \bar{\mathbf{v}})$ using Equations 11 and 12:

$$J_{L}(\widetilde{\boldsymbol{\lambda}}, \overline{\mathbf{v}}) = (1 - \gamma) \langle \boldsymbol{\mu}, \overline{\mathbf{v}} \rangle + \left\langle \widetilde{\boldsymbol{\lambda}}, \mathbf{A}^{\overline{\mathbf{v}}} - \frac{1}{\eta} \left(\log \left(\frac{\widetilde{\boldsymbol{\lambda}}}{\mathbf{q}} \right) - 1 \right) \right\rangle$$

$$= J_{P}(\boldsymbol{\lambda}^{\widetilde{\pi}}) + \langle \boldsymbol{\lambda}^{\widetilde{\pi}}, \mathbf{z} \rangle + \sum_{s} \widetilde{\boldsymbol{\lambda}}_{s} \left(\frac{1}{\eta} \log \left(\boldsymbol{\lambda}_{s}^{\widetilde{\pi}} \right) - \frac{1}{\eta} \log \left(\widetilde{\boldsymbol{\lambda}}_{s} \right) - \mathbf{z}_{s} \right)$$

$$= J_{P}(\boldsymbol{\lambda}^{\widetilde{\pi}}) + \sum_{s} \left(\mathbf{z}_{s}(\boldsymbol{\lambda}_{s}^{\widetilde{\pi}} - \widetilde{\boldsymbol{\lambda}}_{s}) + \frac{1}{\eta} \widetilde{\boldsymbol{\lambda}}_{s} \log \left(\frac{\boldsymbol{\lambda}_{s}^{\widetilde{\pi}}}{\widetilde{\boldsymbol{\lambda}}_{s}} \right) \right)$$

Since we want this expression to equal $J_P(\lambda^{\tilde{\pi}})$, we need to choose z such that:

$$\mathbf{z}_{s} = \frac{\frac{1}{\eta} \log \left(\frac{\boldsymbol{\lambda}_{s}^{\tilde{\pi}}}{\tilde{\boldsymbol{\lambda}}_{s}}\right)}{1 - \frac{\boldsymbol{\lambda}_{s}^{\tilde{\pi}}}{\tilde{\boldsymbol{\lambda}}_{s}}},$$

By Assumption 3 we have that for all *s*:

$$\frac{\boldsymbol{\lambda}_s^{\widetilde{\pi}}}{\widetilde{\boldsymbol{\lambda}}_s} \geq \rho$$

Now we bound $\|\mathbf{z}_s\|_{\infty}$. Note that the function $h(\phi) = \frac{\log \phi}{1-\phi}$ is non decreasing and negative, and therefore the maximum of its absolute value is achieved at the lower end of its domain. This implies:

$$|\mathbf{z}_s| \le \frac{|h(\rho)|}{\eta} = \frac{|\log(\rho)|}{\eta(1-\rho)} \le \frac{2\log(1/\rho)}{\eta}, \quad \forall s \in \mathcal{S}.$$

And therefore Equation 10 implies:

$$\|\bar{\mathbf{v}}\|_{\infty} \le \frac{\frac{2\log(1/\rho)}{\eta} + 1 + \frac{1 + \log(1/\rho) + \log(1/\beta)}{\eta}}{1 - \gamma} = \frac{1 + \frac{1 + \log(\frac{1}{\rho^{3}\beta})}{\eta}}{1 - \gamma}$$

Putting these together we obtain the following version of equation 9

$$J_L(\widetilde{\boldsymbol{\lambda}}, \overline{\mathbf{v}}) \ge J_P(\boldsymbol{\lambda}^*) - \epsilon \left(\frac{1 + \frac{1 + \log(\frac{1}{\rho^3 \beta})}{\eta}}{1 - \gamma} + \|\widetilde{\mathbf{v}}\|_{\infty} \right)$$

As desired.

D Proof of Lemma 5

In this section we derive an upper bound for the l_{∞} norm of the optimal solution \mathbf{v}^* . Lemma 5. Under Assumptions [] [2 and [3] the optimal dual variables are bounded as

$$\|\mathbf{v}^*\|_{\infty} \le \frac{1}{1-\gamma} \left(1 + \frac{\log \frac{|S||A|}{\beta\rho}}{\eta} \right) =: D.$$
(7)

Proof. Recall the Lagrangian form,

$$\min_{\mathbf{v}}, \max_{\boldsymbol{\lambda}_{s,a} \in \Delta_{S \times A}} J_L(\boldsymbol{\lambda}, \mathbf{v}) := (1 - \gamma) \langle \mathbf{v}, \boldsymbol{\mu} \rangle + \left\langle \boldsymbol{\lambda}, \mathbf{A}^{\mathbf{v}} - \frac{1}{\eta} \left(\log \left(\frac{\boldsymbol{\lambda}_{s,a}}{\mathbf{q}_{s,a}} \right) - 1 \right) \right\rangle.$$

The KKT conditions of λ^* , \mathbf{v}^* imply that for any s, a, either (1) $\lambda^*_{s,a} = 0$ and $\frac{\partial}{\partial \lambda_{s,a}} J_L(\lambda^*, v^*) \leq 0$ or (2) $\frac{\partial}{\partial \lambda_{s,a}} J_L(\lambda^*, \mathbf{v}^*) = 0$. The partial derivative of J_L is given by,

$$\frac{\partial}{\partial \boldsymbol{\lambda}_{s,a}} J_L(\boldsymbol{\lambda}^*, \mathbf{v}^*) = \mathbf{r}_{s,a} - \frac{1}{\eta} \log\left(\frac{\boldsymbol{\lambda}_{s,a}^*}{\mathbf{q}_{s,a}}\right) + \gamma \sum_{s'} P_a(s'|s) \mathbf{v}_{s'}^* - \mathbf{v}_s^*.$$
(13)

Thus, for any s, a, either

$$\boldsymbol{\lambda}_{s,a}^* = 0 \text{ and } \mathbf{v}_s^* \ge \mathbf{r}_{s,a} - \frac{1}{\eta} \log\left(\frac{\boldsymbol{\lambda}_{s,a}^*}{\mathbf{q}_{s,a}}\right) + \gamma \sum_{s'} P_a(s'|s) \mathbf{v}_{s'}^*, \tag{14}$$

or,

$$\boldsymbol{\lambda}_{s,a}^* > 0 \text{ and } \mathbf{v}_s^* = \mathbf{r}_{s,a} - \frac{1}{\eta} \log\left(\frac{\boldsymbol{\lambda}_{s,a}^*}{\mathbf{q}_{s,a}}\right) + \gamma \sum_{s'} P_a(s'|s) \mathbf{v}_{s'}^*.$$
(15)

Recall that λ^* is the discounted state-action visitations of some policy π_* ; *i.e.*, $\lambda_{s,a}^* = \lambda_s^{\pi_*} \cdot \pi_*(a|s)$ for some π_* . Note that by Assumption 3, any policy π has $\lambda_s^{\pi_*} > 0$ for all s. Accordingly, the KKT conditions imply,

$$\pi_{\star}(a|s) = 0 \text{ and } \mathbf{v}_{s}^{*} \ge \mathbf{r}_{s,a} - \frac{1}{\eta} \log\left(\frac{\boldsymbol{\lambda}_{s,a}^{*}}{\mathbf{q}_{s,a}}\right) + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*}, \tag{16}$$

or,

$$\pi_{\star}(a|s) > 0 \text{ and } \mathbf{v}_{s}^{*} = \mathbf{r}_{s,a} - \frac{1}{\eta} \log\left(\frac{\boldsymbol{\lambda}_{s,a}^{*}}{\mathbf{q}_{s,a}}\right) + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*}.$$
(17)

Equivalently,

$$\mathbf{v}_{s}^{*} = \mathbb{E}_{a \sim \pi_{\star}(s)} \left[\mathbf{r}_{s,a} - \frac{1}{\eta} \log \left(\frac{\boldsymbol{\lambda}_{s,a}^{*}}{\mathbf{q}_{s,a}} \right) + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*} \right]$$
(18)

$$= \frac{1}{\eta} \mathbb{E}_{a \sim \pi_{\star}(s)} \left[-\log\left(\frac{\pi(a|s)}{\mathbf{q}_{a|s}}\right) \right] + \mathbb{E}_{a \sim \pi(s)} \left[r_{s,a} - \frac{1}{\eta} \log\left(\frac{\boldsymbol{\lambda}_{s}^{\pi_{\star}}}{\mathbf{q}_{s}}\right) + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*} \right].$$
(19)

We may express these conditions as a Bellman recurrence for \mathbf{v}_s^* :

$$\mathbf{v}_{s}^{*} = \frac{1}{\eta} \mathbb{E}_{a \sim \pi_{\star}(s)} \left[-\log\left(\frac{\pi(a|s)}{\mathbf{q}_{a|s}}\right) \right] + \mathbb{E}_{a \sim \pi_{\star}(s)} \left[\mathbf{r}_{s,a} - \frac{1}{\eta} \log\left(\frac{\boldsymbol{\lambda}_{s}^{\pi_{\star}}}{\mathbf{q}_{s}}\right) + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*} \right].$$
(20)

The solution to these Bellman equations is bounded when $\mathbb{E}_{a \sim \pi_{\star}(s)} \left[-\log\left(\frac{\pi_{\star}(a|s)}{\mathbf{q}_{a|s}}\right) \right]$, $\mathbf{r}_{s,a}$, and $\log\left(\frac{\lambda_s^{\pi}}{\mathbf{q}_s}\right)$ are bounded [24]. And indeed, by Assumptions 3 and 1 each of these is bounded by within $\left[\log\beta, \log|A|\right], [0, 1]$, and $\left[\log\rho, -\log\beta\right]$, respectively. We may thus bound the solution as,

$$\|\mathbf{v}^*\|_{\infty} \le \frac{1}{1-\gamma} \left(1 + \frac{\log \frac{|S||A|}{\beta\rho}}{\eta} \right).$$
(21)

E Convergence rates for REPS

We start with the proof of Lemma 6 which we restate for convenience:

Lemma 11. If **x** is an ϵ -optimal solution for the α -smooth function $h : \mathbb{R}^d \to \mathbb{R}$ w.r.t. norm $\|\cdot\|_*$ then the gradient of h at **x** satisfies:

$$\|\nabla h(\mathbf{x})\| \le \sqrt{2\alpha\epsilon}.$$

Proof. Let $\mathbf{x} \in \mathbb{R}^d$ be an arbitrary point and let \mathbf{x}' equal the point resulting of the update

$$\mathbf{x}' = \underset{\mathbf{y}\in\mathcal{D}}{\arg\min} \frac{1}{\alpha} \langle \nabla h(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\|\mathbf{y} - \mathbf{x}\|_{\star}^2}{2}$$
(22)

Notice that by smoothness of *h*:

$$h(\mathbf{x}') \le h(\mathbf{x}) + \langle \nabla h(\mathbf{x}), \mathbf{x}' - \mathbf{x} \rangle + \frac{\alpha}{2} \|\mathbf{x}' - \mathbf{x}\|_{\star}^{2} = h(\mathbf{x}) - \frac{1}{2\alpha} \|\nabla h(\mathbf{x})\|^{2}$$
(23)

Since $h(\mathbf{x}^{\star}) \leq h(\mathbf{x}')$ and \mathbf{x} is ϵ -optimal:

$$\frac{1}{2\alpha} \|\nabla h(\mathbf{x})\|^2 + h(\mathbf{x}^{\star}) \stackrel{(i)}{\leq} \frac{1}{2\alpha} \|\nabla h(\mathbf{x})\|^2 + h(\mathbf{x}') \stackrel{(ii)}{\leq} h(\mathbf{x}) \stackrel{(iii)}{\leq} h(\mathbf{x}^{\star}) + \epsilon$$

Inequality (i) holds because $h(\mathbf{x}^*) \le h(\mathbf{x}')$, inequality (ii) by Equation 23 and (iii) by ϵ -optimality of \mathbf{x} . Therefore:

$$\frac{1}{2\alpha} \|\nabla h(\mathbf{x})\|^2 \le \epsilon.$$

The result follows.

We also show that the gradient norm of a smooth function over a bounded domain containing the optimum can be bounded:

Lemma 12. If h is an α -smooth function w.r.t. norm $\|\cdot\|_*$, and \mathbf{x}^* is such that $\nabla h(\mathbf{x}^*) = \mathbf{0}$ then:

$$\|\nabla h(\mathbf{x})\| \le \alpha \|\mathbf{x} - \mathbf{x}^{\star}\|_{\star}$$

And therefore whenever $\|\mathbf{x} - \mathbf{x}^{\star}\|_{\star} \leq D$ we have that:

$$\|\nabla h(\mathbf{x})\| \le \alpha D.$$

Proof. Since h is α -smooth:

$$h(\mathbf{x}) \le h(\mathbf{x}^{\star}) + \langle \nabla h(\mathbf{x}^{\star}), \mathbf{x} - \mathbf{x}^{\star} \rangle + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{x}^{\star}\|_{\star}^{2} = h(\mathbf{x}^{\star}) + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{x}^{\star}\|_{\star}^{2}$$

Therefore:

$$h(\mathbf{x}) - h(\mathbf{x}^{\star}) \le \frac{\alpha}{2} \|\mathbf{x} - \mathbf{x}^{\star}\|_{\star}^2.$$

Therefore, as a consequence of Lemma 6

$$\|\nabla h(\mathbf{x})\| \le \alpha D.$$

The result follows.

E.1 Proof of Theorem 2

We can now prove the estimation guarantees whenever exact gradients are available.

Theorem 4. For any $\epsilon > 0$, let $\eta = \frac{1}{2\epsilon \log(\frac{|\mathcal{S}||\mathcal{A}|}{\beta})}$. If $T \ge (|\mathcal{S}| + 1)^{3/2} \frac{(2+c'')^2}{(1-\gamma)^2 \epsilon^2}$, then π_T is an ϵ -optimal policy.

Proof. As a consequence of Corollary 2, we can conclude that:

$$J_P(\boldsymbol{\lambda}^{\pi_T}) \geq J_P(\boldsymbol{\lambda}^{\star,\eta}) - \frac{\epsilon}{2}.$$

Where λ_{η}^{\star} is the regularized optimum. Recall that:

$$J_P(\boldsymbol{\lambda}) = \sum_{s,a} \boldsymbol{\lambda}_{s,a} \mathbf{r}_{s,a} - \frac{1}{\eta} \sum_{s,a} \boldsymbol{\lambda}_{s,a} \left(\log \left(\frac{\boldsymbol{\lambda}_{s,a}}{\mathbf{q}_{s,a}} \right) - 1 \right).$$

Since $\lambda^{\star,\eta}$ is the maximizer of the regularized objective, it satisfies $J_P(\lambda^{\star,\eta}) \ge J_P(\lambda^{\star})$ where λ^{\star} is the visitation frequency of the optimal policy corresponding to the unregularized objective. We can conclude that:

$$\begin{split} \sum_{s,a} \lambda_{s,a}^{\pi_T} \mathbf{r}_{s,a} &\geq \sum_{s,a} \lambda_{s,a}^{\star} \mathbf{r}_{s,a} + \frac{1}{\eta} \left(\sum_{s,a} \lambda_{s,a}^{\pi_T} \left(\log\left(\frac{\lambda_{s,a}^{\pi_T}}{\mathbf{q}_{s,a}}\right) - 1 \right) - \sum_{s,a} \lambda_{s,a}^{\star} \left(\log\left(\frac{\lambda_{s,a}^{\star}}{\mathbf{q}_{s,a}}\right) - 1 \right) \right) \right) - \frac{\epsilon}{2} \\ &= \sum_{s,a} \lambda_{s,a}^{\star} \mathbf{r}_{s,a} + \frac{1}{\eta} \left(\sum_{s,a} \lambda_{s,a}^{\pi_T} \left(\log\left(\frac{\lambda_{s,a}^{\pi_T}}{\mathbf{q}_{s,a}}\right) \right) - \sum_{s,a} \lambda_{s,a}^{\star} \left(\log\left(\frac{\lambda_{s,a}^{\star}}{\mathbf{q}_{s,a}}\right) \right) \right) - \frac{\epsilon}{2} \\ &\geq \sum_{s,a} \lambda_{s,a}^{\star} \mathbf{r}_{s,a} - \frac{2}{\eta} \log(\frac{|\mathcal{S}||\mathcal{A}|}{\beta}) - \frac{\epsilon}{2} \end{split}$$

And therefore if $\eta = \frac{1}{4\epsilon \log(\frac{|S||A|}{\beta})}$, we can conclude that:

$$\sum_{s,a} \boldsymbol{\lambda}_{s,a}^{\pi_T} \mathbf{r}_{s,a} \geq \sum_{s,a} \boldsymbol{\lambda}_{s,a}^{\star} \mathbf{r}_{s,a} - \epsilon.$$

L			

F Accelerated Gradient Descent

Algorithm 4 Accelerated Gradient Descent

Input Initial point \mathbf{x}_0 , domain \mathcal{D} , distance generating function w. $\mathbf{y}_0 \leftarrow \mathbf{x}_0, \quad \mathbf{z}_0 \leftarrow \mathbf{x}_0.$ for $t = 0, \dots, T$ do $\eta_{t+1} = \frac{t+2}{2\alpha}$ and $\tau_t = \frac{2}{t+2}.$ $\mathbf{x}_{t+1} \leftarrow (1 - \tau_t)\mathbf{y}_t + \tau_t \mathbf{z}_t$ $\mathbf{y}_{t+1} \leftarrow \operatorname*{arg\,min}_{\mathbf{y}\in\mathcal{D}} \frac{1}{\alpha} \langle \nabla h(\mathbf{x}_t), \mathbf{y} - \mathbf{x}_t \rangle + \frac{\|\mathbf{y} - \mathbf{x}_t\|_{\star}^2}{2}.$ $z_{t+1} \leftarrow \operatorname*{arg\,min}_{\mathbf{z}\in\mathcal{D}} \eta_t \langle \nabla h(\mathbf{x}_t), \mathbf{z} - \mathbf{z}_t \rangle + D_w(\mathbf{z}_t, \mathbf{z}).$ end

For some stepsize parameter sequence η_t .

Algorithm 4 satisfies the following convergence guarantee:

G Stochastic Gradient Descent

In this section we will have all the proofs and results corresponding to Section 6 in the main. We start by showing the proof of Lemma 9.

Lemma 9. Let $f : \mathbb{R}^d \to \mathbb{R}$ be an *L*-smooth function. We consider the following update:

$$\mathbf{x}_{t+1}' = \mathbf{x}_t - \tau \left(\nabla f(\mathbf{x}_t) + \boldsymbol{\epsilon}_t + \mathbf{b}_t \right) ; \quad \mathbf{x}_{t+1} = \Pi_{\mathcal{D}}(\mathbf{x}_{t+1}').$$

If $\tau \leq \frac{2}{L}$ then:

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_{\star}) \leq \frac{\|\mathbf{x}_t - \mathbf{x}_{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}_{\star}\|^2}{2\tau} + 2\tau \|\nabla f(\mathbf{x}_t)\|^2 + 5\tau \|\mathbf{b}_t\|^2 + 5\tau \|\boldsymbol{\epsilon}_t\|^2 + \|\mathbf{b}_t\|_1 \|\mathbf{x}_t - \mathbf{x}_{\star}\|_{\infty} - \langle \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_{\star} \rangle.$$

Proof. Through the proof we use the notation $\|\cdot\|$ to denote the L_2 norm. By smoothness the following holds:

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|_{\infty}^2 \leq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2$$

Since $\mathbf{x}_{t+1} = \Pi_{\mathcal{D}}(\mathbf{x}'_{t+1})$ and by properties of a convex projection:

$$\langle \mathbf{x}_{t+1}' - \mathbf{x}_{t+1}, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \leq 0.$$

And therefore:

$$\langle \mathbf{x}_t - \tau \left(\nabla f(\mathbf{x}_t) + \mathbf{b}_t + \boldsymbol{\epsilon}_t \right) - \mathbf{x}_{t+1}, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \leq 0.$$

Which in turn implies that :

$$\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 \le \tau \langle \nabla f(\mathbf{x}_t) + \mathbf{b}_t + \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle.$$

We can conclude that:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2}{\tau} + \langle \mathbf{b}_t + \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle + \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2.$$
(24)

By convexity:

$$f(\mathbf{x}_{\star}) \ge f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{\star} - \mathbf{x}_t \rangle.$$

And therefore $f(\mathbf{x}_t) \leq f(\mathbf{x}_{\star}) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{\star} \rangle$. Combining this last result with Equation 24:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_{\star}) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{\star} \rangle + \left(\frac{L}{2} - \frac{1}{\tau}\right) \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + \langle \mathbf{b}_t + \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle.$$
(25)

Now observe that as a consequence of the contraction property of projections

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{x}_{\star}\|^{2} &\leq \|\mathbf{x}_{t} - \tau \left(\nabla f(\mathbf{x}_{t}) + \mathbf{b}_{t} + \boldsymbol{\epsilon}_{t}\right) - \mathbf{x}_{\star}\|^{2} \\ &= \|\mathbf{x}_{t} - \mathbf{x}_{\star}\|^{2} + \tau^{2} \|\nabla f(\mathbf{x}_{t}) + \mathbf{b}_{t} + \boldsymbol{\epsilon}_{t}\|^{2} - 2\tau \langle \nabla f(\mathbf{x}_{t}) + \mathbf{b}_{t} + \boldsymbol{\epsilon}_{t}, \mathbf{x}_{t} - \mathbf{x}_{\star} \rangle. \end{aligned}$$

And therefore:

$$\langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_\star \rangle \leq \frac{\|\mathbf{x}_t - \mathbf{x}_\star\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}_\star\|^2}{2\tau} + \frac{\tau}{2} \|\nabla f(\mathbf{x}_t) + \mathbf{b}_t + \boldsymbol{\epsilon}_t\|^2 - \langle \mathbf{b}_t + \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_\star \rangle.$$

Substituting this last inequality into Equation 25:

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_{\star}) \leq \frac{\|\mathbf{x}_t - \mathbf{x}_{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}_{\star}\|^2}{2\tau} + \frac{\tau}{2} \|\nabla f(\mathbf{x}_t) + \mathbf{b}_t + \boldsymbol{\epsilon}_t\|^2 - \langle \mathbf{b}_t + \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_{\star} \rangle +$$
(26)

$$\left(\frac{L}{2} - \frac{1}{\tau}\right) \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + \langle \mathbf{b}_t + \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle$$
(27)

Notice that as a consequence of the contraction property of projections:

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 &\leq \|\mathbf{x}_t - \tau \left(\nabla f(\mathbf{x}_t) + \mathbf{b}_t + \boldsymbol{\epsilon}_t\right) - \mathbf{x}_t\| \\ &= \tau \|\nabla f(\mathbf{x}_t) + \mathbf{b}_t + \boldsymbol{\epsilon}_t\| \end{aligned}$$

And therefore

:

$$\langle \mathbf{b}_t + \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \le \|\mathbf{b}_t + \boldsymbol{\epsilon}_t\| \|\mathbf{x}_t - \mathbf{x}_{t+1}\| \le \tau \|\mathbf{b}_t + \boldsymbol{\epsilon}_t\| \|\nabla f(\mathbf{x}_t) + \mathbf{b}_t + \boldsymbol{\epsilon}_t\|$$

Substituting this back into 27 and assuming $\frac{L}{2} \leq \frac{1}{\tau}$:

$$\begin{aligned} f(\mathbf{x}_{t+1}) - f(\mathbf{x}_{\star}) &\leq \frac{\|\mathbf{x}_{t} - \mathbf{x}_{\star}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}_{\star}\|^{2}}{2\tau} + \frac{\tau}{2} \|\nabla f(\mathbf{x}_{t}) + \mathbf{b}_{t} + \epsilon_{t}\|^{2} - \langle \mathbf{b}_{t} + \epsilon_{t}, \mathbf{x}_{t} - \mathbf{x}_{\star} \rangle + \\ &\tau \|\mathbf{b}_{t} + \epsilon_{t}\| \|\nabla f(\mathbf{x}_{t}) + \mathbf{b}_{t} + \epsilon_{t}\| \\ &\leq \frac{\|\mathbf{x}_{t} - \mathbf{x}_{\star}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}_{\star}\|^{2}}{2\tau} + \tau \|\nabla f(\mathbf{x}_{t}) + \mathbf{b}_{t} + \epsilon_{t}\|^{2} + \frac{\tau}{2} \|\mathbf{b}_{t} + \epsilon_{t}\|^{2} - \langle \mathbf{b}_{t} + \epsilon_{t}, \mathbf{x}_{t} - \mathbf{x}_{\star} \rangle \\ &\stackrel{(i)}{\leq} \frac{\|\mathbf{x}_{t} - \mathbf{x}_{\star}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}_{\star}\|^{2}}{2\tau} + 2\tau \|\nabla f(\mathbf{x}_{t})\|^{2} + 5\tau \|\mathbf{b}_{t}\|^{2} + 5\tau \|\mathbf{\epsilon}_{t}\|^{2} - \langle \mathbf{b}_{t} + \epsilon_{t}, \mathbf{x}_{t} - \mathbf{x}_{\star} \rangle \\ &\leq \frac{\|\mathbf{x}_{t} - \mathbf{x}_{\star}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}_{\star}\|^{2}}{2\tau} + 2\tau \|\nabla f(\mathbf{x}_{t})\|^{2} + 5\tau \|\mathbf{b}_{t}\|^{2} + 5\tau \|\mathbf{\epsilon}_{t}\|^{2} + \|\mathbf{b}_{t}\|_{1}\|\mathbf{x}_{t} - \mathbf{x}_{\star}\|_{\infty} - \langle \epsilon_{t}, \mathbf{x}_{t} - \mathbf{x}_{t} - \mathbf{x}_{t}\|_{\infty} - \langle \epsilon_{t}, \mathbf{x}_{t} - \mathbf{x}_{t}\|_{\infty} - \langle \epsilon_{t},$$

Inequality (i) is a result of a repeated use of Young's inequality. The last inequality is a result of Cauchy-Schwartz.

H Stochastic Gradients Analysis

We will make use of the following concentration inequality:

Lemma 13 (Uniform empirical Bernstein bound). In the terminology of Howard et al. [16], let $S_t = \sum_{i=1}^t Y_i$ be a sub- ψ_P process with parameter c > 0 and variance process W_t . Then with probability at least $1 - \delta$ for all $t \in \mathbb{N}$

$$\begin{split} S_t &\leq 1.44 \sqrt{(W_t \vee m) \left(1.4 \ln \ln \left(2 \left(\frac{W_t}{m} \vee 1 \right) \right) + \ln \frac{5.2}{\delta} \right)} \\ &+ 0.41c \left(1.4 \ln \ln \left(2 \left(\frac{W_t}{m} \vee 1 \right) \right) + \ln \frac{5.2}{\delta} \right) \end{split}$$

where m > 0 is arbitrary but fixed.

Proof. Setting s = 1.4 and $\eta = 2$ in the polynomial stitched boundary in Equation (10) of Howard et al. [16] shows that $u_{c,\delta}(v)$ is a sub- ψ_G boundary for constant c and level δ where

$$u_{c,\delta}(v) = 1.44 \sqrt{(v \lor 1) \left(1.4 \ln \ln (2(v \lor 1)) + \ln \frac{5.2}{\delta} \right)} + 1.21c \left(1.4 \ln \ln (2(v \lor 1)) + \ln \frac{5.2}{\delta} \right).$$

By the boundary conversions in Table 1 in Howard et al. [16] $u_{c/3,\delta}$ is also a sub- ψ_P boundary for constant c and level δ . The desired bound then follows from Theorem 1 by Howard et al. [16]. \Box

The following estimation bound holds:

Lemma 14. Let $\{(s_{\ell}, a_{\ell}, s'_{\ell})\}_{\ell=1}^{\infty}$ be samples generated as above. Let $N_t(s, a) = \sum_{\ell=1}^{t} \mathbf{1}(s_{\ell}, a_{\ell} = s, a)$. Let $\delta \in (0, 1)$. With probability at least $1 - (2|\mathcal{S}||\mathcal{A}|\delta)$ for all t such that $\ln(2t) + \ln \frac{5.2}{\delta} \leq \frac{t\beta}{6}$ and for all $s, a \in \mathcal{S} \times \mathcal{A}$ simultaneously:

$$N_t(s,a) \in \left[\frac{t\mathbf{q}_{s,a}}{4}, \frac{7t\mathbf{q}_{s,a}}{4}\right]$$

Additionally define $\widehat{\mathbf{q}}_{s,a} = \frac{N_t(s,a)}{t}$. For any $\epsilon \in (0,1)$ with probability at least $1 - (2|\mathcal{S}||\mathcal{A}|\delta)$ and for all t such that $\frac{t}{\ln \ln(2t)} \ge \frac{1+\ln \frac{5\cdot 2}{\delta}}{\beta\epsilon^2}$:

$$|\widehat{\mathbf{q}}_{s,a} - \mathbf{q}_{s,a}| \le 3.69 \epsilon \mathbf{q}_{s,a}.$$

Proof. We start by producing a lower bound for $N_t(s, a)$. Consider the martingale sequence $Z_{s,a}(\ell) = \mathbf{1}(s_\ell = s, a_\ell = a) - \mathbf{q}_{s,a}$ with the variance process $V_t = \sum_{\ell=1}^t \mathbb{E}\left[Z_{s,a}^2(\ell)|\mathcal{F}_{\ell-1}\right]$ satisfying $\mathbb{E}[Z_{s,a}^2(\ell)|\mathcal{F}_{\ell-1}] \leq \mathbf{q}_{s,a}$. The martingale process $Z_{s,a}(\ell)$ satisfies the sub- ψ_P condition of [16] with constant c = 1 (see Bennet case in Table 3 of [16]). By Lemma [13] and setting $m = \mathbf{q}_{s,a}$ we conclude that with probability at least $1 - \delta$ for all $t \in \mathbb{N}$:

$$N_{t}(s,a) \geq t\mathbf{q}_{s,a} - 1.44\sqrt{\mathbf{q}_{s,a}t\left(\ln\ln(2t) + \ln\frac{5.2}{\delta}\right)} - 0.41\left(1.4\ln\ln(2t) + \ln\frac{5.2}{\delta}\right)$$
(28)
$$\stackrel{(i)}{\geq} t\mathbf{q}_{s,a} - \frac{t\mathbf{q}_{s,a}}{2} - \frac{3}{2}\left(\ln\ln(2t) + \ln\frac{5.2}{\delta}\right)$$
$$= \frac{t\mathbf{q}_{s,a}}{2} - \frac{3}{2}\left(\ln\ln(2t) + \ln\frac{5.2}{\delta}\right)$$

Inequality (i) holds because $\sqrt{\mathbf{q}_{s,a}t\left(\ln\ln(2t) + \ln\frac{5.2}{\delta}\right)} \leq \frac{\mathbf{q}_{s,a}t}{2} + \frac{\ln\ln(2t) + \ln\frac{5.2}{\delta}}{2}$. As a consequence of Assumption 2 we can infer that with probability at least $1 - \delta$ for all t such that $\ln\ln(2t) + \ln\frac{5.2}{\delta} \leq \frac{t\beta}{6} \leq \frac{t\mathbf{q}_{s,a}}{6}$:

$$N_t(s,a) \ge \frac{t\mathbf{q}_{s,a}}{4}$$

The same sequence of inequalities but inverted implies the upper bound result. The last result is a simple consequence of the union bound. To obtain the stronger bound we start by noting that since $\frac{t}{\ln \ln(2t)} \ge \frac{1+\ln \frac{5\cdot 2}{\beta\epsilon^2}}{\beta\epsilon^2} \ge \frac{1+\ln \frac{5\cdot 2}{q_{s,a}\epsilon^2}}{\operatorname{qs}_{s,a}\epsilon^2} \text{ for all } (s,a) \text{ we can transform Equation 28 as:}$

$$\begin{split} N_t(s,a) &\geq t\mathbf{q}_{s,a} - 1.44\sqrt{\mathbf{q}_{s,a}t\left(\ln\ln(2t) + \ln\frac{5.2}{\delta}\right)} - 0.41\left(1.4\ln\ln(2t) + \ln\frac{5.2}{\delta}\right) \\ &\geq t\mathbf{q}_{s,a} - 2.88\sqrt{\mathbf{q}_{s,a}t\ln\ln(2t)(1 + \ln\frac{5.2}{\delta})} - 0.81\ln\ln(2t)(1 + \ln\frac{5.2}{\delta}) \\ &\geq t\mathbf{q}_{s,a} - 3.69\sqrt{\mathbf{q}_{s,a}t\ln\ln(2t)(1 + \ln\frac{5.2}{\delta})} \\ &\geq t\mathbf{q}_{s,a} - 3.69\mathbf{q}_{s,a}\epsilon \end{split}$$

The same sequence of inequalities but inverted implie the upper bound. This finishes the proof.

The gradients of $J_D(\mathbf{v})$ can be written as:

$$\begin{aligned} \left(\nabla_{\mathbf{v}} J_D(\mathbf{v})\right)_s &= (1-\gamma)\boldsymbol{\mu}_s + \gamma \sum_{s',a} \frac{\exp\left(\eta \mathbf{A}_{s',a}^{\mathbf{v}}\right) \mathbf{q}_{s',a}}{\mathbf{Z}} P_a(s|s') - \\ &\sum_a \frac{\exp\left(\eta \mathbf{A}_{s,a}^{\mathbf{v}}\right) \mathbf{q}_{s,a}}{\mathbf{Z}}, \end{aligned}$$

Where $Z = \sum_{s,a} \exp(\eta \mathbf{A}_{s,a}^{\mathbf{v}}) \mathbf{q}_{s,a}$. We will work under the assumption that $\mathbf{q}_{s,a} \propto \exp(\eta \mathbf{A}_{s,a}^{\mathbf{v}'})$ for some value vector \mathbf{v}' . Given a value vector \mathbf{v} we denote its induced policy $\pi^{\mathbf{v}}$ as:

$$\pi^{\mathbf{v}}(a|s) = \frac{\exp\left(\eta \mathbf{A}_{s,a}^{\mathbf{v}}\right) \mathbf{q}_{s,a}}{\mathbf{Z}_{s}}$$

Where $\mathbf{Z}_s = \sum_a \exp(\eta \mathbf{A}_{s,a}^{\mathbf{v}}) \mathbf{q}_{s,a}$. If we define $\mathbf{q}_s = \sum_a \mathbf{q}_{s,a}$, and we define $\mathbf{q}_{a|s} = \frac{\mathbf{q}_{s,a}}{\mathbf{q}_s}$ then we can write:

$$\pi^{\mathbf{v}}(a|s) = \frac{\exp\left(\eta \mathbf{A}_{s,a}^{\mathbf{v}}\right) \mathbf{q}_{a|s}}{\mathbf{Z}_{a|s}}$$

Where $\mathbf{Z}_s = \sum_a \exp(\eta \mathbf{A}_{s,a}^{\mathbf{v}}) \mathbf{q}_{a|s}$. We work under the assumption that $\mathbf{q}_{a|s}$ is a policy, and therefore known to the learner. We start by showing how to maintain a good estimator $\hat{\mathbf{A}}_{s,a}^{\mathbf{v}}$ using stochastic gradient descent over a quadratic objective. Let $\mathbf{W}_{s,a}^{\mathbf{v}} = \sum_{s'} P_a(s'|s) \mathbf{v}_{s'}$ so that $\mathbf{A}_{s,a}^{\mathbf{v}} = \mathbf{r}_{s,a} - \mathbf{v}_s + \gamma \mathbf{W}_{s,a}^{\mathbf{v}}$ where both $\mathbf{W}^{\mathbf{v}}$ and $\widehat{\mathbf{W}}^{\mathbf{v}}$ are seen as vectors in $\mathbb{R}^{|S| \times |A|}$.

If we had access to an estimator $\widehat{\mathbf{W}}^{\mathbf{v}}$ of $\mathbf{W}^{\mathbf{v}}$ such that for some $\epsilon \in (0, 1)$:

$$\|\mathbf{W}^{\mathbf{v}} - \widehat{\mathbf{W}}^{\mathbf{v}}\|_{\infty} \le \epsilon.$$
⁽²⁹⁾

We can use $\widehat{\mathbf{W}}^{\mathbf{v}}$ to produce an estimator of $\mathbf{A}_{s,a}^{\mathbf{v}}$ via $\widehat{\mathbf{A}}_{s,a}^{\mathbf{v}} = \mathbf{r}_{s,a} - \mathbf{v}_s + \gamma \widehat{\mathbf{W}}_{s,a}^{\mathbf{v}}$ such that:

$$\|\widehat{\mathbf{A}}^{\mathbf{v}} - \mathbf{A}^{\mathbf{v}}\|_{\infty} \le \gamma \epsilon.$$

We now consider the problem of estimating $\mathbf{W}^{\mathbf{v}}$ from samples. We assume the following stochastic setting:

- 1. The learner receives samples $\{(s_{\ell}, a_{\ell}, s'_{\ell})\}_{\ell=1}^{\infty}$ such that $(s_{\ell}, a_{\ell}) \sim \mathbf{q}$ while $s'_{\ell} \sim P_{a_{\ell}}(\cdot|s_{\ell})$. Let $N_t(s, a) = \sum_{\ell=1}^t \mathbf{1}(s_{\ell}, a_{\ell} = s, a)$.
- 2. Define $\widehat{\mathbf{W}}_{s,a}^{\mathbf{v}}(t) = \frac{1}{N_t(s,a)} \sum_{\ell=1}^T \mathbf{1}(s_\ell, a_\ell = s, a) \mathbf{v}_{s'_\ell}$. Notice that for all $s, a \in S \times A$, the estimator's noise $\xi_{s,a}(t) = \widehat{\mathbf{W}}_{s,a}^{\mathbf{v}}(t) \mathbf{W}_{s,a}^{\mathbf{v}}$ satisfies $\mathbb{E}[\xi_{s,a}(t)|\mathcal{F}_{t-1}] = 0$ and $|\xi_{s,a}(t)| \leq 2 \|\mathbf{v}'\|_{\infty}$. Where \mathcal{F}_{t-1} is the sigma algebra corresponding to all the algorithmic choices up to round t 1.

Lemma 15. Let $\{(s_{\ell}, a_{\ell}, s'_{\ell})\}_{\ell=1}^{\infty}$ samples generated as above. Let $\widehat{\mathbf{W}}^{\mathbf{v}}(t)$ be the empirical estimator of $\mathbf{W}^{\mathbf{v}}$ defined as:

$$\widehat{\mathbf{W}}_{s,a}^{\mathbf{v}}(t) = \frac{1}{N_t(s,a)} \sum_{\ell=1}^t \mathbf{1}(s_\ell, a_\ell = s, a) \mathbf{v}_{s'_\ell}.$$

Where $N_t(s, a) = \sum_{\ell=1}^t \mathbf{1}(s_\ell, a_\ell = s, a)$. Let $\delta \in (0, 1)$. With probability at least $1 - (2|S||A|)\delta$ for all $t \in \mathbb{N}$ such that $\ln \ln(2t) + \ln \frac{5.2}{\delta} \leq \frac{t\beta}{6}$ and for all $(s, a) \in S$ simultaneously:

$$\|\mathbf{W}_{s,a}^{\mathbf{v}} - \widehat{\mathbf{W}}_{s,a}^{\mathbf{v}}(t)\| \le 8\|\mathbf{v}\|_{\infty} \left(\sqrt{\frac{\ln\ln(2t) + \ln\frac{10.4}{\delta}}{t\beta}} + \frac{\ln\ln(2t) + \ln\frac{10.4}{\delta}}{t\beta}\right)$$

Proof. Consider the martingale difference sequence $X_{s,a}(\ell) = \mathbf{1}(s_{\ell}, a_{\ell} = s, a) \left(\mathbf{W}_{s,a}^{\mathbf{v}} - \mathbf{v}_{s_{\ell}'} \right)$. Notice that for all $s, a \in \mathcal{S} \times \mathcal{A} |X_{s,a}(t)| \leq 2 \|\mathbf{v}'\|_{\infty}$ The process $S_t = \sum_{\ell=1}^{t} X_{s,a}(\ell)$ with variance process $W_t = \sum_{\ell=1}^{t} \mathbb{E} \left[X_{s,a}^2(\ell) | \mathcal{F}_{\ell-1} \right]$ satisfies the sub- ψ_P condition of [16] with constant $c = 2 \|\mathbf{v}'\|_{\infty}$ (see Bennet case in Table 3 of [16]). By Lemma [13] the bound:

$$S_t \le 1.44 \sqrt{(W_t \lor m) \left(1.4 \ln \ln \left(2(W_t/m \lor 1) \right) + \ln \frac{5.2}{\delta} \right)} + 0.81 \|\mathbf{v}\|_{\infty} \left(1.4 \ln \ln \left(2\left(\frac{W_t}{m} \lor 1\right) \right) + \ln \frac{5.2}{\delta} \right)$$

holds for all $t \in \mathbb{N}$ with probability at least $1 - \delta$. Notice that $\mathbb{E}[X_{s,a}^2(\ell)|\mathcal{F}_{\ell-1}] \leq 1$ $4\|\mathbf{v}\|_{\infty}^{2}\operatorname{Var}_{\mathbf{q}}(\mathbf{1}_{s,a}) = 4\|\mathbf{v}\|_{\infty}^{2}\mathbf{q}_{s,a}(1-\mathbf{q}_{s,a}) \leq \mathbf{q}_{s,a}\|\mathbf{v}\|_{\infty}^{2} \text{ and therefore } W_{t} \leq t\mathbf{q}_{s,a}\|\mathbf{v}\|_{\infty}^{2}.$ We set $m = \mathbf{q}_{s,a}\|\mathbf{v}\|_{\infty}^{2}$. And obtain that with probability $1-\delta$ and for all $t \in \mathbb{N}$:

$$\left| \underbrace{\frac{1}{N_t(s,a)} \sum_{\ell=1}^t \mathbf{1}(s_\ell = s, a_\ell = 1) \mathbf{v}_{s'_\ell}}_{\widehat{\mathbf{w}}_{s,a}^{\mathbf{v}}(t)} - \mathbf{W}_{s,a}^{\mathbf{v}} \right| \le \frac{1}{N_t(s,a)} \left(1.44 \|\mathbf{v}\|_{\infty} \sqrt{\mathbf{q}_{s,a} t \left(\ln \ln(2t) + \ln \frac{10.4}{\delta} \right)} + 0.81 \|\mathbf{v}\|_{\infty} \left(1.4 \ln \ln(2t) + \ln \frac{10.2}{\delta} \right) \right)$$
(30)

As a consequence of Lemma 14 we know that with probability at least $1 - \delta$ for all t such that $\ln\ln(2t) + \ln\frac{5.2}{\delta} \le \frac{t\beta}{6} \le \frac{t\mathbf{q}_{s,a}}{6}:$

$$N_t(s,a) \ge \frac{t\mathbf{q}_{s,a}}{4}$$

Plugging this into Equation 30 and applying a union bound over all $s, a \in \mathcal{S} \times \mathcal{A}$ yields that for all t such that $\ln \ln(2t) + \ln \frac{5.2}{\delta} \leq \frac{t\beta}{6} \leq \frac{t\mathbf{q}_{s,a}}{6}$ and with probability $1 - 2|S||A|\delta$ for all $s, a \in \mathcal{S}$ simultaneously:

$$\begin{split} |\mathbf{W}_{s,a}^{\mathbf{v}} - \widehat{\mathbf{W}}_{s,a}^{\mathbf{v}}(t)| &\leq \frac{4}{t\mathbf{q}_{s,a}} \left(1.44 \|\mathbf{v}\|_{\infty} \sqrt{t\mathbf{q}_{s,a} \ln \ln(2t) + t \ln \frac{10.4}{\delta}} + 0.81 \|\mathbf{v}'\|_{\infty} \left(1.4 \ln \ln(2t) + \ln \frac{10.4}{\delta} \right) \right) \\ &\leq 8 \|\mathbf{v}\|_{\infty} \left(\sqrt{\frac{\ln \ln(2t) + \ln \frac{10.4}{\delta}}{t\mathbf{q}_{s,a}}} + \frac{\ln \ln(2t) + \ln \frac{10.4}{\delta}}{t\mathbf{q}_{s,a}} \right) \\ &\leq 8 \|\mathbf{v}\|_{\infty} \left(\sqrt{\frac{\ln \ln(2t) + \ln \frac{10.4}{\delta}}{t\beta}} + \frac{\ln \ln(2t) + \ln \frac{10.4}{\delta}}{t\beta} \right). \end{split}$$
The result follows.

The result follows.

We can now derive a concentration result for $\widehat{\mathbf{A}}_{s,a}^{\mathbf{v}}(t) = \mathbf{r}_{s,a} - \mathbf{v}_s + \gamma \widehat{\mathbf{W}}_{s,a}^{\mathbf{v}}(t)$, the advantage estimator resulting from $\widehat{\mathbf{W}}_{s,a}^{\mathbf{v}}(t)$:

Corollary 3. Let $\delta \in (0,1)$. With probability at least $1 - (2|S||A|)\delta$ for all $t \in \mathbb{N}$ such that $\ln \ln(2t) + \ln \frac{5.2}{\delta} \leq \frac{t\beta}{6}$ and for all $(s,a) \in S$ simultaneously:

$$\|\mathbf{A}_{s,a}^{\mathbf{v}} - \widehat{\mathbf{A}}_{s,a}^{\mathbf{v}}(t)\| \le 8\gamma \|\mathbf{v}\|_{\infty} \left(\sqrt{\frac{\ln\ln(2t) + \ln\frac{10.4}{\delta}}{t\beta}} + \frac{\ln\ln(2t) + \ln\frac{10.4}{\delta}}{t\beta}\right).$$

And therefore:

$$|\mathbf{A}_{s,a}^{\mathbf{v}} - \widehat{\mathbf{A}}_{s,a}^{\mathbf{v}}(t)| \le 16\gamma \|\mathbf{v}\|_{\infty} \sqrt{\frac{\ln \ln(2t) + \ln \frac{10.4}{\delta}}{t\beta}}$$

H.1 Estimating the Gradients

Lemma 16. If $\xi \in \mathbb{R}$ such that $|\xi| \le \epsilon < 1$, and $y \in \mathbb{R}$, then: $\exp(y)\left(1-\epsilon\right) \le \exp(y+\xi) \le \exp(y)\left(1+2\epsilon\right)$

Proof. Notice that for $\epsilon \in (0, 1)$:

$$\exp(\epsilon) \le 1 + 2\epsilon$$
, and $1 - \epsilon \le \exp(-\epsilon)$

The result follows by noting that:

$$\exp(y)\exp(-|\xi|) \le \exp(y+\xi) \le \exp(y)\exp(|\xi|).$$

A simple consequence of Lemma 16 is the following:

Lemma 17. Let $\epsilon \in (0, 1/2)$. If $\mathbf{C}, \widehat{\mathbf{C}} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$ and $\widehat{\mathbf{b}}, \mathbf{b} \in \mathbb{R}_{+}^{|\mathcal{S}| \times |\mathcal{A}|}$ are two vectors satisfying:

$$\|\widehat{\mathbf{C}} - \mathbf{C}\|_{\infty} \le \epsilon, \qquad |\widehat{\mathbf{b}}_{s,a} - \mathbf{b}_{s,a}| \le \epsilon \mathbf{b}_{s,a}.$$

For all $s, a \in S \times A$ define $\mathbf{B}_{s,a} = \frac{\exp(\mathbf{C}_{s,a})}{\mathbf{Z}}$ and $\widehat{\mathbf{B}}_{s,a} = \frac{\exp(\widehat{\mathbf{C}}_{s,a})}{\widehat{\mathbf{Z}}}$ where $\mathbf{Z} = \sum_{s,a} \exp(\mathbf{C}_{s,a}) \mathbf{b}_{s,a}$ and $\widehat{\mathbf{Z}} = \sum_{s,a} \exp(\widehat{\mathbf{C}}_{s,a}) \widehat{\mathbf{b}}_{s,a}$:

$$\left| \widehat{\mathbf{B}}_{s,a} - \mathbf{B}_{s,a} \right| \le 38\epsilon \mathbf{B}_{s,a} \le 38\epsilon$$

Proof. Let's define an intermediate $\tilde{\mathbf{B}}_{s,a} = \frac{\exp(\mathbf{C}_{s,a})\hat{\mathbf{b}}_{s,a}}{\tilde{\mathbf{Z}}}$ where $\tilde{\mathbf{Z}} = \sum_{s,a} \exp(\mathbf{C}_{s,a})\hat{\mathbf{b}}_{s,a}$. By Lemma 16 we can conclude that for any $s, a \in S \times \mathcal{A}$:

$$\widetilde{\mathbf{B}}_{s,a} \frac{1-\epsilon}{1+2\epsilon} \leq \widehat{\mathbf{B}}_{s,a} \leq \frac{1+2\epsilon}{1-\epsilon} \widetilde{\mathbf{B}}_{s,a}$$

And therefore:

$$\widehat{\mathbf{B}}_{s,a}, \widetilde{\mathbf{B}}_{s,a} \in \left[\widetilde{\mathbf{B}}_{s,a} \frac{1-\epsilon}{1+2\epsilon}, \frac{1+2\epsilon}{1-\epsilon} \widetilde{\mathbf{B}}_{s,a}\right]$$

Which in turn implies that:

$$\left|\widehat{\mathbf{B}}_{s,a} - \widetilde{\mathbf{B}}_{s,a}\right| \le \left(\frac{1+2\epsilon}{1-\epsilon} - \frac{1-\epsilon}{1+2\epsilon}\right) \widetilde{\mathbf{B}}_{s,a} \le 15\epsilon \widetilde{\mathbf{B}}_{s,a}$$

We now bound $|\widetilde{\mathbf{B}}_{s,a} - \mathbf{B}_{s,a}|$. By assumption for all $s, a \in \mathcal{S} \times \mathcal{A}$, it follows that $\widehat{\mathbf{b}}_{s,a}(1-\epsilon) \leq \mathbf{b}_{s,a} \leq \widehat{\mathbf{b}}_{s,a}(1+\epsilon)$ and therefore:

$$\frac{\mathbf{B}_{s,a}}{1+\epsilon} \leq \widetilde{\mathbf{B}}_{s,a} \leq \frac{\mathbf{B}_{s,a}}{1-\epsilon}$$

And therefore:

$$\widetilde{\mathbf{B}}_{s,a}, \mathbf{B}_{s,a} \in \left[\frac{\mathbf{B}_{s,a}}{1+\epsilon}, \frac{\mathbf{B}_{s,a}}{1-\epsilon}\right].$$

Hence:

$$\left|\widetilde{\mathbf{B}}_{s,a} - \mathbf{B}_{s,a}\right| \le \left(\frac{1}{1-\epsilon} - \frac{1}{1+\epsilon}\right) \mathbf{B}_{s,a} \le \frac{8}{3}\epsilon \mathbf{B}_{s,a}.$$

And therefore:

$$|\widehat{\mathbf{B}}_{s,a} - \mathbf{B}_{s,a}| \le |\widehat{\mathbf{B}}_{s,a} - \widetilde{\mathbf{B}}_{s,a}| + |\widetilde{\mathbf{B}}_{s,a} - \mathbf{B}_{s,a}| \le 15\epsilon \widetilde{\mathbf{B}}_{s,a} + \frac{8}{3}\epsilon \mathbf{B}_{s,a} \le \left(15\epsilon(1 + \frac{8}{3}\epsilon) + \frac{8}{3}\epsilon\right) \mathbf{B}_{s,a} \le 38\epsilon \mathbf{B}_{s,a}$$

The result follows.

If we set $\mathbf{C} = \eta \mathbf{A}^{\mathbf{v}}$, $\widehat{\mathbf{C}} = \eta \widehat{\mathbf{A}}^{\mathbf{v}}$ we obtain the following corollary of Lemma 17: Corollary 4. Let $\epsilon \in (0, 1/2)$. If $\widehat{\mathbf{A}}^{\mathbf{v}}$ and $\widehat{\mathbf{q}}$ satisfies:

$$\|\widehat{\mathbf{A}}^{\mathbf{v}} - \mathbf{A}^{\mathbf{v}}\|_{\infty} \le \epsilon, \quad and \quad |\widehat{\mathbf{q}}_{s,a} - \mathbf{q}_{s,a}| \le \epsilon \mathbf{q}_{s,a}$$

Then:

$$\left| \widehat{\mathbf{B}}_{s,a}^{\mathbf{v}} - \mathbf{B}_{s,a}^{\mathbf{v}} \right| \le 111 \eta \epsilon \mathbf{B}_{s,a}^{\mathbf{v}} \le 111 \eta \epsilon$$

We can combine the sample complexity results of Corollary 3 and the approximation results of Corollary 4 and Lemma 14 to obtain:

Corollary 5. If $\delta, \xi \in (0, 1)$, with probability at least $1 - (4|S||A|\delta)$ for all t such that:

$$\frac{t}{\ln\ln(2t)} \ge \frac{120(\ln\frac{10.4}{\delta} + 1)}{\beta\xi^2} \max\left(480\eta^2\gamma^2 \|\mathbf{v}\|_{\infty}^2, 1\right)$$

then for all $(s, a) \in S \times A$ simultaneously:

$$\left|\widehat{\mathbf{B}}_{s,a}^{\mathbf{v}}(t) - \mathbf{B}_{s,a}^{\mathbf{v}}\right| \le \xi \mathbf{B}_{s,a}^{\mathbf{v}} \le \frac{\xi}{\beta}, \quad and \quad \widehat{\mathbf{B}}_{s,a}^{\mathbf{v}} \le \mathbf{B}_{s,a}^{\mathbf{v}}(1 + \frac{\xi}{\beta}) \le \frac{1}{\beta}(1 + \frac{\xi}{\beta}).$$

H.2 Biased Stochastic Gradients

Notice that:

$$\begin{aligned} \left(\nabla_{\mathbf{v}} J_D(\mathbf{v})\right)_s &= (1-\gamma)\boldsymbol{\mu}_s + \gamma \sum_{s',a} \frac{\exp\left(\eta \mathbf{A}_{s',a}^{\mathbf{v}}\right) \mathbf{q}_{s',a}}{\mathbf{Z}} P_a(s|s') - \sum_a \frac{\exp\left(\eta \mathbf{A}_{s,a}^{\mathbf{v}}\right) \mathbf{q}_{s,a}}{\mathbf{Z}} \\ &= (1-\gamma)\boldsymbol{\mu}_s + \gamma \mathbb{E}_{(s',a)\sim \mathbf{q},s''\sim P_a(\cdot|s')} \left[\mathbf{B}_{s',a}^{\mathbf{v}} \mathbf{1}(s''=s)\right] - \mathbb{E}_{(s',a)\sim \mathbf{q}} \left[\mathbf{B}_{s,a}^{\mathbf{v}} \mathbf{1}(s'=s)\right] \\ &= (1-\gamma)\boldsymbol{\mu}_s + \mathbb{E}_{(s',a)\sim \mathbf{q},s''\sim P_a(\cdot|s')} \left[\mathbf{B}_{s',a}^{\mathbf{v}}\left(\gamma \mathbf{1}(s''=s) - \mathbf{1}(s'=s)\right)\right], \end{aligned}$$

We now proceed to bound the bias of this estimator and prove a more fine grained version of Lemma 8 Lemma 18. Let $\delta, \xi \in (0, 1)$. With probability at least $1 - \delta$ for all $t \in \mathbb{N}$ such that

$$\frac{t}{\ln\ln(2t)} \ge \frac{120(\ln\frac{41.6|\mathcal{S}||\mathcal{A}|}{\delta} + 1)}{\beta\xi^2} \max\left(480\eta^2\gamma^2 \|\mathbf{v}\|_{\infty}^2, 1\right)$$

the plugin estimator $\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v})$ satisfies:

$$\max_{u \in \{1,2,\infty\}} \left\| \widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) - \mathbb{E}_{s_{t+1}, a_{t+1}, s'_{t+1}} \left[\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) \middle| \widehat{\mathbf{B}}^{\mathbf{v}}(t) \right] \right\|_u \le \frac{4}{\beta} (1 + \frac{\xi}{\beta})$$
(31)

$$\max_{u \in \{1,2,\infty\}} \left\| \mathbb{E}\left[\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) \right] - \nabla_{\mathbf{v}} J_D(\mathbf{v}) \right\|_u \le 2(1+\gamma)\xi(1+\frac{\xi}{\beta}), \tag{32}$$

$$\mathbb{E}\left[\left\|\widehat{\nabla}_{\mathbf{v}}J_{D}(\mathbf{v}) - \mathbb{E}_{s_{t+1},a_{t+1},s_{t+1}'}[\widehat{\nabla}_{\mathbf{v}}J_{D}(\mathbf{v})\Big|\widehat{\mathbf{B}}^{\mathbf{v}}(t)]\right\|_{2}^{2}\Big|\widehat{\mathbf{B}}^{\mathbf{v}}(t)\right] \leq (1+\gamma^{2})(1+4\xi)\frac{1}{\beta}(1+\frac{\xi}{\beta})$$
(33)

Proof. As a consequence of Corollary 5 we can conclude that for all t satisfying the assumptions of the Lemma and with probability at leat $1 - \delta$ simultaneously for all $(s, a) \in \mathcal{S} \times \mathcal{A}$:

$$\left|\widehat{\mathbf{B}}_{s,a}^{\mathbf{v}}(t) - \mathbf{B}_{s,a}^{\mathbf{v}}\right| \le \xi \mathbf{B}_{s,a}^{\mathbf{v}}(1 + \frac{\xi}{\beta}), \quad \text{and} \quad \widehat{\mathbf{B}}_{s,a}^{\mathbf{v}} \le \mathbf{B}_{s,a}^{\mathbf{v}}(1 + \frac{\xi}{\beta}) \le \frac{1}{\beta}(1 + \frac{\xi}{\beta}). \tag{34}$$

Let's start by bounding the first term. Notice that $\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) - (1 - \gamma) \boldsymbol{\mu}$ has at most 2 nonzero entries and therefore:

$$\max_{u \in \{1,2,\infty\}} \|\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) - (1-\gamma)\boldsymbol{\mu}\|_u \le \frac{2}{\beta} (1+\frac{\xi}{\beta}).$$

Therefore for all $u \in \{1, 2, \infty\}$:

$$\left\|\mathbb{E}_{s_{t+1},a_{t+1},s_{t+1}'}\left[\widehat{\nabla}_{\mathbf{v}}J_D(\mathbf{v}) - (1-\gamma)\boldsymbol{\mu}\right]\right\|_{u} \leq \mathbb{E}_{s_{t+1},a_{t+1},s_{t+1}'}\left[\|\widehat{\nabla}_{\mathbf{v}}J_D(\mathbf{v}) - (1-\gamma)\boldsymbol{\mu}\|_{u}\right] \widehat{\mathbf{B}}^{\mathbf{v}}(t) \leq \frac{2}{\beta}(1+\frac{\xi}{\beta})$$

$$\begin{aligned} \left\| \widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) - \mathbb{E} \left[\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) \middle| \widehat{\mathbf{B}}^{\mathbf{v}}(t) \right] \right\|_u &\leq \left\| \widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) - (1 - \gamma) \boldsymbol{\mu} \right\|_u + \left\| \mathbb{E} \left[\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) \middle| \widehat{\mathbf{B}}^{\mathbf{v}}(t) \right] - (1 - \gamma) \boldsymbol{\mu} \right\|_u \\ &\leq \frac{4}{\beta} (1 + \frac{\xi}{\beta}) \end{aligned}$$

Furthermore, notice that the following estimator of $\nabla_{\mathbf{v}} J_D(\mathbf{v})$ is unbiased:

$$\left(\widetilde{\nabla}_{\mathbf{v}} J_D(\mathbf{v})\right)_s = (1-\gamma)\boldsymbol{\mu}_s + \mathbf{B}_{s_{t+1},a_{t+1}}^{\mathbf{v}}(t) \left(\gamma \mathbf{1}(s_{t+1}' = s) - \mathbf{1}(s_{t+1} = s)\right).$$

We conclude that for all $s \in \mathcal{S}$:

$$\left(\widehat{\nabla}_{\mathbf{v}}J_D(\mathbf{v})\right)_s - \left(\widetilde{\nabla}_{\mathbf{v}}J_D(\mathbf{v})\right)_s = \left(\gamma \mathbf{1}(s_{t+1}' = s) - \mathbf{1}(s_{t+1} = s)\right) \left(\widehat{\mathbf{B}}_{s_{t+1}, a_{t+1}}'(t) - \mathbf{B}_{s_{t+1}, a_{t+1}}'(t)\right)$$

Consequently $\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) - \widetilde{\nabla}_{\mathbf{v}} J_D(\mathbf{v})$ has at most 2 nonzero entries. Now observe that any nonzero entry *s* satisfies:

$$\begin{aligned} \left| \mathbb{E} \left[\left(\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) \right)_s \right] &- \left(\nabla_{\mathbf{v}} J_D(\mathbf{v}) \right)_s \right| = \left| \mathbb{E}_{s_{t+1}, a_{t+1} \sim \mathbf{q}} \left[\left(\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) \right)_s - \left(\widetilde{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) \right)_s \right] \right| \\ &\leq \mathbb{E}_{s_{t+1}, a_{t+1} \sim \mathbf{q}} \left[\left| \gamma \mathbf{1}(s'_{t+1} = s) - \mathbf{1}(s_{t+1} = s) \right| \left| \widehat{\mathbf{B}}_{s_{t+1}, a_{t+1}}^{\mathbf{v}}(t) - \mathbf{B}_{s_{t+1}, a_{t+1}}^{\mathbf{v}}(t) \right| \right] \\ &\stackrel{(i)}{\leq} \mathbb{E}_{s_{t+1}, a_{t+1} \sim \mathbf{q}} \left[\left(\gamma \mathbf{1}(s'_{t+1} = s) + \mathbf{1}(s_{t+1} = s) \right) \xi \mathbf{B}_{s_{t+1}, a_{t+1}}^{\mathbf{v}}(1 + \frac{\xi}{\beta}) \right] \\ &\leq (1 + \gamma) \xi (1 + \frac{\xi}{\beta}) \mathbb{E}_{s_{t+1}, a_{t+1} \sim \mathbf{q}} \left[\mathbf{B}_{s_{t+1}, a_{t+1}} \right] \\ &= (1 + \gamma) \xi (1 + \frac{\xi}{\beta}) \end{aligned}$$

Inequality (i) holds by the triangle inequality and Equation 34 and because $\mathbf{B}_{s,a}^{\mathbf{v}} \geq 0$. This finishes the proof of the first result. Since $\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) - \widetilde{\nabla}_{\mathbf{v}} J_D(\mathbf{v})$ has at most 2 nonzero entries for all $u \in \{1, 2, \infty\}$:

$$\left\| \mathbb{E}\left[\left(\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}) \right)_s \right] - \left(\nabla_{\mathbf{v}} J_D(\mathbf{v}) \right)_s \right\|_u \le 2(1+\gamma)\xi(1+\frac{\xi}{\beta})$$

The second inequality follows.

Recall that for any s:

$$\left(\widehat{\nabla}_{\mathbf{v}}J_D(\mathbf{v})\right)_s = (1-\gamma)\boldsymbol{\mu}_s + \widehat{\mathbf{B}}_{s_{t+1},a_{t+1}(t)}^{\mathbf{v}}\left(\gamma \mathbf{1}(s_{t+1}'=s) - \mathbf{1}(s_{t+1}=s)\right).$$

Observe that:

$$\mathbb{E}\left[\left\|\widehat{\nabla}_{\mathbf{v}}J_{D}(\mathbf{v}) - \mathbb{E}[\widehat{\nabla}_{\mathbf{v}}J_{D}(\mathbf{v})\Big|\widehat{\mathbf{B}}^{\mathbf{v}}(t)]\right\|_{2}^{2}\left|\widehat{\mathbf{B}}^{\mathbf{v}}(t)\right] \leq \mathbb{E}\left[\left\|\widehat{\nabla}_{\mathbf{v}}J_{D}(\mathbf{v})\right\|_{2}^{2}\left|\widehat{\mathbf{B}}^{\mathbf{v}}(t)\right] \\
= \sum_{s',a} \left(\widehat{\mathbf{B}}_{s',a}^{\mathbf{v}}(t)\right)^{2} \gamma^{2} \mathbf{q}_{s',a} P_{a}(s|s') + \\
\sum_{a} \left(\widehat{\mathbf{B}}_{s,a}^{\mathbf{v}}(t)\right)^{2} \mathbf{q}_{s,a} \left(1 - 2\gamma\right) P_{a}(s|s) \\
\leq (1 + \gamma^{2})\mathbb{E}_{(s',a)\sim\widehat{\mathbf{q}}(t)\widehat{\mathbf{B}}^{\mathbf{v}}(t)} \left[\widehat{\mathbf{B}}_{s',a}^{\mathbf{v}}(t)\frac{\mathbf{q}_{s',a}}{\widehat{\mathbf{q}}_{s',a}}\right] \\
\overset{(i)}{\leq} (1 + \gamma^{2})(1 + 4\xi)\frac{1}{\beta}(1 + \frac{\xi}{\beta}).$$

Inequality (i) follows because $\widehat{\mathbf{B}}_{s,a}\mathbf{q}_{s,a} \leq \frac{\mathbf{q}_{s,a}}{\widehat{\mathbf{q}}_{s,a}} \leq (1+4\xi)$ and because by Corollary 5 we have that $\widehat{\mathbf{B}}_{s,a}^{\mathbf{v}} \leq \frac{1}{\beta}(1+\frac{\xi}{\beta})$.

The result follows.

Combining the guarantees of Lemma 9 and 8 for Algorithm 3 applied to the objective function J_D : Lemma 19. Let $\xi_t = \min(\sqrt{\frac{c'}{t}}, \beta)$ for all t where $c' = 2(|\mathcal{S}| + 1)^2 \eta^2 D^2 + \frac{320}{\beta^2} + 240$ and $D = \frac{1}{1-\gamma} \left(1 + \frac{\log \frac{|\mathcal{S}||\mathcal{A}|}{\beta}}{\eta}\right)$. If n(t) is such that: $m(t) = \frac{120 \left(\ln \frac{83.2|\mathcal{S}||\mathcal{A}|t^2}{\xi} + 1\right)$

$$\frac{n(t)}{\ln\ln(2n(t))} \ge \frac{120\left(\ln\frac{\cos(2\beta)}{\delta} + 1\right)}{\beta\xi_t^2} \max\left(280\eta^2\gamma^2 \|\mathbf{v}_t\|_{\infty}^2, 1\right)$$
(35)

And $\tau_t = \frac{c}{\sqrt{t}}$ where $c = \frac{D}{2\sqrt{c'}}$ then for all $t \ge 1$ we have that with probability at least $1 - 2\delta$ and simulataneously for all $T \in \mathbb{N}$:

$$J_D\left(\frac{1}{T}\sum_{t=1}^T \mathbf{v}_t\right) \le J_D(\mathbf{v}_\star) + \frac{36D}{\sqrt{T}}\max\left(\left(|\mathcal{S}|+1\right)\eta D, \frac{18 + 16\sqrt{\ln\ln(2T) + \ln\frac{5.2}{\delta}}}{\beta}, 16\right)$$

Proof. We will make use of Lemmas 8 and 9. We identify $\boldsymbol{\epsilon}_t = \widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}_t) - \mathbb{E}\left[\widehat{\nabla}_{\mathbf{v}} J_D(\mathbf{v}_t) \middle| \widehat{\mathbf{B}}^{\mathbf{v}_t}(n(t)) \right]$ and $\mathbf{b}_t = \nabla_{\mathbf{v}} J_D(\mathbf{v}_t) - \mathbb{E}\left[\widehat{\nabla}_{\mathbf{v}_t} J_D(\mathbf{v}_t) \middle| \widehat{\mathbf{B}}^{\mathbf{v}_t}(n(t)) \right]$. As a consequence of Cauchy-Schwartz and Lemma 8 we see that if n(t) is such that:

$$\frac{n(t)}{\ln \ln(2n(t))} \ge \frac{120\left(\ln \frac{83.2|\mathcal{S}||\mathcal{A}|t^2}{\delta} + 1\right)}{\beta\xi_t^2} \max\left(280\eta^2\gamma^2 \|\mathbf{v}_t\|_{\infty}^2, 1\right)$$

Then for all t with probability at least $1 - \frac{\delta}{2t^2}$ the bounds in Equations 31, 32, and 33 in Lemma 8 hold and therefore:

$$|\langle \boldsymbol{\epsilon}_t, \mathbf{v}_t - \mathbf{v}_\star \rangle| \le \|\mathbf{v}_t - \mathbf{v}_\star\|_\infty \|\boldsymbol{\epsilon}_t\|_1 \le \frac{1}{1 - \gamma} \left(1 + \frac{\log \frac{|\mathcal{S}||\mathcal{A}|}{\beta\rho}}{\eta} \right) \frac{4}{\beta} (1 + \frac{\xi_t}{\beta}) \stackrel{(i)}{\le} \underbrace{\frac{1}{1 - \gamma} \left(1 + \frac{\log \frac{|\mathcal{S}||\mathcal{A}|}{\beta\rho}}{\eta} \right) \frac{8}{\beta}}_{:=U_1}$$

Where inequality (i) holds by the assumption $\xi_t \leq \beta$. Notice that $X_t = \langle \epsilon_t, \mathbf{v}_t - \mathbf{v}_\star \rangle$ is a martingale difference sequence. A simple application of Lemma 13 yields that with probability at least $1 - \delta$ for all $t \in \mathbb{N}$:

$$-\sum_{t=1}^{T} \langle \boldsymbol{\epsilon}_t, \mathbf{x}_t - \mathbf{x}_\star \rangle \le 2U_1 \sqrt{t \left(\ln \frac{2t^2}{\delta} \right)}$$
(36)

Similarly observe that for all t with probability at least $1 - \frac{\delta}{2t^2}$, since the bounds in Equations 31 32, and 33 in Lemma 8 hold,

$$\|\mathbf{b}_t\|_1 = \left\|\nabla_{\mathbf{v}} J_D(\mathbf{v}_t) - \mathbb{E}\left[\widehat{\nabla}_{\mathbf{v}_t} J_D(\mathbf{v}_t) \middle| \widehat{\mathbf{B}}^{\mathbf{v}_t}(n(t)) \right] \right\|_1 \le 2(1+\gamma)\xi_t(1+\frac{\xi_t}{\beta})$$
(37)

Notice that similarly and for all t with probability at least $1 - \frac{\delta}{2t^2}$, since the bounds in Equations 31 32, and 33 in Lemma 8 hold:

$$\|\epsilon_t\|_2^2 \le \frac{16}{\beta^2} \left(1 + \frac{\xi_t}{\beta}\right)^2$$
, and $\|\mathbf{b}_t\|_2^2 \le 4(1+\gamma)^2 \xi_t^2 (1 + \frac{\xi_t}{\beta})^2$

Finally we show a bound on the l_2 norm of the gradient of J_D . Since $\mathbf{v}_{\star} \in \mathcal{D} = \left\{ \mathbf{v} \text{ s.t. } \|\mathbf{v}\|_{\infty} \leq \frac{1}{1-\gamma} \left(1 + \frac{\log \frac{|\mathcal{S}||\mathcal{A}|}{\beta\rho}}{\eta} \right) \right\}$. Recall that by Lemma 3, we have that J_D is $(|\mathcal{S}| + 1)\eta$ -smooth in the $\|\cdot\|_{\infty}$ norm. Therefore by Lemma 12:

$$\|\nabla J_D(\mathbf{v}_t)\|_1 \le (|\mathcal{S}|+1)\frac{\eta}{1-\gamma} \left(1 + \frac{\log \frac{|\mathcal{S}||\mathcal{A}|}{\beta\rho}}{\eta}\right)$$

Since $\|\nabla J_D(\mathbf{v}_t)\|_2 \le \|\nabla J_D(\mathbf{v}_t)\|_1$ this in turn implies that:

$$\|\nabla J_D(\mathbf{v}_t)\|_2^2 \le (|\mathcal{S}|+1)^2 \frac{\eta^2}{(1-\gamma)^2} \left(1 + \frac{\log \frac{|\mathcal{S}||\mathcal{A}|}{\beta\rho}}{\eta}\right)^2$$

We now invoke the guarantees of Lemma 9 to show that with probability $1 - 2\delta$ and simultaneously for all $T \in \mathbb{N}$:

$$\begin{split} \sum_{t=1}^{T} J_D(\mathbf{v}_t) - J_D(\mathbf{v}_\star) &\leq \sum_{t=1}^{T} \frac{\|\mathbf{v}_t - \mathbf{v}_\star\|^2 - \|\mathbf{v}_{t+1} - \mathbf{v}_\star\|^2}{2\tau_t} + \\ & \tau_t \left(2(|\mathcal{S}|+1)^2 \frac{\eta^2}{(1-\gamma)^2} \left(1 + \frac{\log \frac{|\mathcal{S}||\mathcal{A}|}{\beta\rho}}{\eta} \right)^2 + \frac{80}{\beta^2} \left(1 + \frac{\xi_t}{\beta} \right)^2 + 20(1+\gamma)^2 \xi_t^2 (1 + \frac{\xi_t}{\beta})^2 \right) + \\ & 2(1+\gamma)\xi_t (1 + \frac{\xi_t}{\beta}) \times \frac{1}{1-\gamma} \left(1 + \frac{\log \frac{|\mathcal{S}||\mathcal{A}|}{\beta\rho}}{\eta} \right) + 2U_1 \sqrt{T \left(\ln \frac{2t^2}{\delta} \right)} \\ & \stackrel{(i)}{\leq} \sum_{t=1}^{T} \frac{\|\mathbf{v}_t - \mathbf{v}_\star\|^2 - \|\mathbf{v}_{t+1} - \mathbf{v}_\star\|^2}{2\tau_t} + \tau_t \left(2(|\mathcal{S}|+1)^2 \eta^2 D^2 + \frac{320}{\beta^2} + 240 \right) + 8D\xi_t + \\ & 2U_1 \sqrt{T \left(\ln \frac{2t^2}{\delta} \right)} \end{split}$$

Recall that $U_1 = \frac{1}{1-\gamma} \left(1 + \frac{\log \frac{|S||A|}{\beta\rho}}{\eta} \right) \frac{8}{\beta} = \frac{8D}{\beta}$ and where $D = \frac{1}{1-\gamma} \left(1 + \frac{\log \frac{|S||A|}{\beta\rho}}{\eta} \right)$. Inequality (*i*) holds because $\xi_t \leq \beta$ and because $\gamma \leq 1$. Let $\tau_t = \frac{c}{\sqrt{t}}$ for some constant to be specified later and let's analyze the terms in the sum above that depend on these τ_t values:

$$\begin{split} \sum_{t=1}^{T} \frac{\|\mathbf{v}_{t} - \mathbf{v}_{\star}\|^{2} - \|\mathbf{v}_{t+1} - \mathbf{v}_{\star}\|^{2}}{2\tau_{t}} &= -\frac{\|\mathbf{v}_{T+1} - \mathbf{v}_{\star}\|^{2}}{2\tau_{T}} + \frac{1}{2c} \sum_{t=1}^{T} \|\mathbf{v}_{t} - \mathbf{v}_{\star}\|^{2} \left(\sqrt{t} - \sqrt{t-1}\right) \\ &\leq \frac{D^{2}}{2c} \sqrt{T} \end{split}$$

The second term can be bounded as:

$$\sum_{t=1}^{T} \tau_t c' = cc' \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \le cc' 2\sqrt{T}$$

Where $c' = 2(|\mathcal{S}| + 1)^2 \eta^2 D^2 + \frac{320}{\beta^2} + 240$. Therefore under this assumption we obtain:

$$\sum_{t=1}^{T} J_D(\mathbf{v}_t) - J_D(\mathbf{v}_\star) \le \frac{D^2}{2c} \sqrt{T} + cc' 2\sqrt{T} + 8D\left(\sum_{t=1}^{T} \xi_t\right) + 2U_1 \sqrt{T\left(\ln\frac{2t^2}{\delta}\right)}.$$

The minimizing choice for c equals $c=\frac{D}{2\sqrt{c'}}.$ And in this case:

$$\sum_{t=1}^{T} J_D(\mathbf{v}_t) - J_D(\mathbf{v}_\star) \le 2D\sqrt{c'T} + 8D\left(\sum_{t=1}^{T} \xi_t\right) + 2U_1\sqrt{T\left(\ln\frac{2t^2}{\delta}\right)}$$

If we set $\xi_t = \min(\sqrt{\frac{c'}{t}}, \beta)$ we get:

$$\begin{split} \sum_{t=1}^{T} J_D(\mathbf{v}_t) - J_D(\mathbf{v}_{\star}) &\leq 18D\sqrt{c'T} + 2U_1\sqrt{T\left(\ln\frac{2t^2}{\delta}\right)} \\ &\stackrel{(i)}{\leq} 36D\max\left(\left(|\mathcal{S}|+1\right)\eta D, \frac{18}{\beta}, 16\right)\sqrt{T} + 2U_1\sqrt{T\left(\ln\frac{2t^2}{\delta}\right)} \\ &\leq 36D\max\left(\left(|\mathcal{S}|+1\right)\eta D, \frac{18 + 16\sqrt{\ln\ln(2T) + \ln\frac{5.2}{\delta}}}{\beta}, 16\right)\sqrt{T} \end{split}$$

Inequality (i) holds because $\sqrt{c'} \leq 2 \max\left(\left(|\mathcal{S}|+1\right) \eta D, \frac{18}{\beta}, 16\right)$. We conclude that:

$$J_D\left(\frac{1}{T}\sum_{t=1}^T \mathbf{v}_t\right) \stackrel{(i)}{\leq} \frac{1}{T}\sum_{t=1}^T J_D(\mathbf{v}_t)$$
$$\leq J_D(\mathbf{v}_\star) + \frac{36D}{\sqrt{T}} \max\left((|\mathcal{S}|+1)\eta D, \frac{18 + 16\sqrt{\ln\ln(2T) + \ln\frac{5.2}{\delta}}}{\beta}, 16\right)$$

Inequality (i) holds by convexity of J_D . The result follows.

We are ready to present the proof of Lemma 10 which corresponds to a simplified version of Lemma 19.

H.3 Proof of Lemma 10

Lemma 10. We assume $\eta \geq \frac{4}{\beta}$. Set $\xi_t = \frac{8|S|\eta D}{\sqrt{t}}$ and $\tau_t = \frac{1}{16|S|\eta\sqrt{t}}$. If we take t gradient steps using n(t) samples from $\mathbf{q} \times \mathbf{P}$ (possibly reusing the samples for multiple gradient computations) with n(t) satisfying $n(t) \geq \frac{525t \left(\ln \frac{100|S||A|t^2}{\delta} + 1\right)^3}{\beta|S|^2}$. Then for all $t \geq 1$ we have that with probability at least $1 - 3\delta$ and simultaneously for all $t \in \mathbb{N}$ such that $t \geq \frac{64|S|^2\eta^2 D^2}{\beta}$:

$$J_D\left(\frac{1}{t}\sum_{\ell=1}^t \mathbf{v}_\ell\right) \le J_D(\mathbf{v}_\star) + \widetilde{\mathcal{O}}\left(\frac{D^2|\mathcal{S}|\eta}{\sqrt{t}}\right).$$

Proof. First note that the c' of Lemma 19 satisfies $c' = \max\left(2\left(|\mathcal{S}|+1\right)^2 \eta^2 D^2, \frac{320}{\beta^2}, 240\right)$ and therefore:

$$c' \le 8 \max\left(8|\mathcal{S}|^2 \eta^2 D^2, \frac{320}{\beta}\right)$$

Thus $\sqrt{c'} = \max(8|S|\eta D, \frac{31}{\beta}) = 8|S|\eta D$ (the last equality holds because $\eta \ge \frac{4}{\beta}$) and therefore:

$$\xi_t = \min(\frac{8|\mathcal{S}|\eta D}{\sqrt{t}}, \beta) = \frac{8|\mathcal{S}|\eta D}{\sqrt{t}}$$

The last equality holds because $t \geq \frac{64|\mathcal{S}|^2 \eta^2 D^2}{\beta}$.

Then the condition in Equation 35 of Lemma 19 is satisfies whenever:

$$\frac{n(t)}{\ln\ln(2n(t))} \ge \frac{120t \times 280\eta^2 D^2 \left(\ln\frac{100|\mathcal{S}||\mathcal{A}|t^2}{\delta} + 1\right)}{\beta 64|\mathcal{S}|^2 \eta^2 D^2} = \frac{525t \left(\ln\frac{100|\mathcal{S}||\mathcal{A}|t^2}{\delta} + 1\right)}{\beta|\mathcal{S}|^2}$$
(38)

And therefore if we set $n(t) = \frac{525t \left(\ln \frac{100|\mathcal{S}||\mathcal{A}|t^2}{\delta} + 1\right)^3}{\beta|\mathcal{S}|^2} \ge \frac{525t \ln \ln(2t) \left(\ln \frac{100|\mathcal{S}||\mathcal{A}|t^2}{\delta} + 1\right)}{\beta|\mathcal{S}|^2} \ln(\frac{2t^2}{\delta})$ we see that with probability at least $1 - 3\delta$ and simultaneously for all $t \in \mathbb{N}$:

$$J_D\left(\frac{1}{t}\sum_{\ell=1}^t \mathbf{v}_\ell\right) \le J_D(\mathbf{v}_\star) + \frac{36D}{\sqrt{t}} \max\left(\left(|\mathcal{S}|+1\right)\eta D, \frac{18 + 16\sqrt{\ln\ln(2t) + \ln\frac{5.2}{\delta}}}{\beta}, 16\right)$$
$$= J_D(\mathbf{v}_\star) + \frac{72D^2|\mathcal{S}|\eta}{\sqrt{t}} \left(5 + 4\sqrt{\ln\ln(2t) + \ln\frac{5.2}{\delta}}\right)$$

The last inequality holds since $\eta \ge \frac{4}{\beta}$. This implies that using a budget of n(t) samples where n(t) satisfies Inequality 38 we can take t gradient steps.

I Extended Results for Tsallis Entropy Regularizers

For $\alpha > 1$ recall the Tsallis entropy between distributions $\mathbf{q}, \boldsymbol{\lambda}$ equals:

$$D_{\alpha}^{\mathcal{T}}(\boldsymbol{\lambda} \parallel \mathbf{q}) = \frac{1}{\alpha - 1} \left(\mathbb{E}_{(s,a) \sim \mathbf{q}} \left[\left(\frac{\boldsymbol{\lambda}_{s,a}}{\mathbf{q}_{s,a}} \right)^{\alpha} - 1 \right] \right)$$
$$= \frac{1}{\alpha - 1} \left(\mathbb{E}_{(s,a) \sim \boldsymbol{\lambda}} \left[\left(\frac{\boldsymbol{\lambda}_{s,a}}{\mathbf{q}_{s,a}} \right)^{\alpha - 1} - 1 \right] \right)$$

Let $F(\lambda) = \frac{1}{\eta} D_{\alpha}^{\mathcal{T}}(\lambda \parallel \mathbf{q})$. The Fenchel Dual of a Tsallis Entropy satisfies:

$$F^*(\mathbf{u}) = \left\langle \boldsymbol{\lambda}(\mathbf{u}), \mathbf{u} - \frac{(\mathbf{u} + x_* \mathbf{1})}{\alpha} \boldsymbol{\lambda}(\mathbf{u})^{\alpha - 1} + \frac{1}{\eta(\alpha - 1)} \mathbf{1} \right\rangle$$

Where $\lambda(\mathbf{u}) = (\eta \mathbf{u} + \eta x_* \mathbf{1})^{1/(\alpha-1)} \left(\frac{\alpha-1}{\alpha}\right)^{1/(\alpha-1)} \mathbf{q}$ and where $x_* \in \mathbb{R}$ such that $\sum_{s,a} \lambda_{s,a}(\mathbf{u}) = 1$ and $\lambda_{s,a}(\mathbf{u}) \ge 0$ for all $s, a \in \mathcal{S} \times \mathcal{A}$. This implies that:

$$J_D^{\mathcal{T},\alpha}(\mathbf{v}) = (1-\gamma)\sum_s \mathbf{v}_s \boldsymbol{\mu}_s + \left\langle \boldsymbol{\lambda}(\mathbf{A}^{\mathbf{v}}), \mathbf{A}^{\mathbf{v}} - \frac{(\mathbf{A}^{\mathbf{v}} + x_* \mathbf{1})}{\alpha} \boldsymbol{\lambda}(\mathbf{A}^{\mathbf{v}})^{\alpha - 1} + \frac{1}{\eta(\alpha - 1)} \mathbf{1} \right\rangle$$

I.0.1 Strong Convexity of Tsallis Entropy

In this section we show that whenever $\alpha \in (1, 2]$, the Tsallis entropy is a strongly convex function of λ in the $\|\cdot\|_2$ norm,

Lemma 20. If $\alpha \in (1, 2]$, the function $F(\lambda) = \frac{1}{\eta} D_{\alpha}^{\mathcal{T}}(\lambda \parallel \mathbf{q})$ is $\frac{\alpha}{\eta}$ -strongly convex in the $\parallel \cdot \parallel_2$ norm.

Proof. It is easy to see that $\nabla^2_{\lambda} D^{\mathcal{T}}_{\alpha}(\lambda \parallel \mathbf{q})$ is a diagonal matrix satisfying:

$$\left[\nabla_{\boldsymbol{\lambda}}^{2} D_{\alpha}^{\mathcal{T}}(\boldsymbol{\lambda} \parallel \mathbf{q})\right]_{s,a} = \frac{\alpha \boldsymbol{\lambda}_{s,a}^{\alpha-2}}{\eta \mathbf{q}_{s,a}^{\alpha-1}}$$

Whenever $\alpha \leq 2$, and noting that $\mathbf{q} \in [0, 1]$ we conclude that any of these terms must be lower bounded by $\frac{\alpha}{n}$. The result follows.

I.1 Tsallis entropy version of Lemma 4

Lemma 21. Let $\tilde{\mathbf{v}} \in \mathbb{R}^{|\mathcal{S}|}$ be arbitrary and let $\tilde{\boldsymbol{\lambda}}$ be its corresponding candidate primal variable (i.e. $\tilde{\boldsymbol{\lambda}} = \boldsymbol{\lambda}(\mathbf{A}^{\mathbf{v}})$). If $\|\nabla_{\mathbf{v}} J_D(\tilde{\mathbf{v}})\|_1 \leq \epsilon$ and Assumptions $\boldsymbol{\beta}$ and $\boldsymbol{2}$ hold then whenever $|\mathcal{S}| \geq 2$:

$$J_P^{\mathcal{T},\alpha}(\boldsymbol{\lambda}^{\tilde{\pi}}) \ge J_P^{\mathcal{T},\alpha}(\boldsymbol{\lambda}^*_{\eta}) - \epsilon \left(\frac{1+c}{1-\gamma} + \|\tilde{\mathbf{v}}\|_{\infty}\right)$$

Where $c = \frac{1}{\eta(\alpha-1)} \frac{1}{\beta^{\alpha-1}} \left(\max(\alpha-1, \frac{2}{\rho^{\alpha-1}}) + 2 \right)$ and λ_{η}^{\star} is the J_P optimum.

Proof. For any λ and \mathbf{v} let the lagrangian $J_L(\lambda, \mathbf{v})$ be defined as,

$$J_L(\boldsymbol{\lambda}, \mathbf{v}) = (1 - \gamma) \langle \boldsymbol{\mu}, \mathbf{v} \rangle + \left\langle \boldsymbol{\lambda}, \mathbf{A}^{\mathbf{v}} - \frac{1}{\eta(\alpha - 1)} \left(\left(\frac{\boldsymbol{\lambda}}{\mathbf{q}} \right)^{\alpha - 1} - 1 \right) \right\rangle$$

Note that $J_D(\widetilde{\mathbf{v}}) = J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}})$ and that in fact J_L is linear in $\overline{\mathbf{v}}$; *i.e.*,

$$J_L(\widetilde{\boldsymbol{\lambda}}, \overline{\mathbf{v}}) = J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}}) + \langle \nabla_{\mathbf{v}} J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}}), \overline{\mathbf{v}} - \widetilde{\mathbf{v}} \rangle.$$

Using Holder's inequality we have:

$$J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}}) \ge J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}}) - \|\nabla_{\mathbf{v}} J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}})\|_1 \cdot \|\overline{\mathbf{v}} - \widetilde{\mathbf{v}}\|_{\infty} = J_D(\widetilde{\mathbf{v}}) - \|\nabla_{\mathbf{v}} J_L(\widetilde{\boldsymbol{\lambda}}, \widetilde{\mathbf{v}})\|_1 \cdot \|\overline{\mathbf{v}} - \widetilde{\mathbf{v}}\|_{\infty}$$

Let λ_{\star} be the candidate primal solution to the optimal dual solution $\mathbf{v}_{\star} = \arg \min_{\mathbf{v}} J_D(\mathbf{v})$. By weak duality we have that $J_D(\widetilde{\mathbf{v}}) \ge J_P(\lambda^{\star}) = J_D(\mathbf{v}_{\star})$, and since by assumption $\|\nabla_{\mathbf{v}} J_L(\widetilde{\lambda}, \widetilde{\mathbf{v}})\|_1 \le \epsilon$:

$$J_L(\widetilde{\boldsymbol{\lambda}}, \overline{\mathbf{v}}) \ge J_P(\boldsymbol{\lambda}^*) - \epsilon \| \overline{\mathbf{v}} - \widetilde{\mathbf{v}} \|_{\infty}.$$
(39)

In order to use this inequality to lower bound the value of $J_P(\lambda^{\tilde{\pi}})$, we will need to choose an appropriate $\bar{\mathbf{v}}$ such that the LHS reduces to $J_P(\lambda^{\tilde{\pi}})$ while keeping the ℓ_{∞} norm on the RHS small. Thus we consider setting $\bar{\mathbf{v}}$ as:

$$\bar{\mathbf{v}}_{s} = \mathbb{E}_{a,s' \sim \tilde{\pi} \times \mathcal{T}} \left[\mathbf{z}_{s} + \mathbf{r}_{s,a} - \frac{1}{\eta(\alpha - 1)} \left(\left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right)^{\alpha - 1} - 1 \right) + \gamma \bar{\mathbf{v}}_{s'} \right]$$

Where $\mathbf{z} \in \mathbb{R}^{|S|}$ is some function to be determined later. It is clear that an appropriate \mathbf{z} exists as long as $\mathbf{z}, \mathbf{r}, \frac{1}{\eta(\alpha-1)} \left(\left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right) - 1 \right)^{\alpha-1}$ are uniformly bounded. Furthermore:

$$\|\bar{\mathbf{v}}\|_{\infty} \leq \frac{\max_{s,a} \left| \mathbf{z}_{s} + \mathbf{r}_{s,a} - \frac{1}{\eta(\alpha-1)} \left(\left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right)^{\alpha-1} - 1 \right) \right|}{1 - \gamma} \leq \frac{\|\mathbf{z}\|_{\infty} + \|\mathbf{r}\|_{\infty} + \frac{1}{\eta(\alpha-1)} \left\| \left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right)^{\alpha-1} - 1 \right\|_{\infty}}{1 - \gamma} \tag{40}$$

We proceed to bound the norm of $\left\| \left(\frac{\lambda_{\overline{s},a}^{\overline{\pi}}}{\mathbf{q}_{s,a}} \right)^{\alpha-1} - 1 \right\|_{\infty}$. Observe that by Assumptions 2 and 3, for all states $s, a \in \mathcal{S} \times \mathcal{A}$, the ratio $\left| \frac{\lambda_{\overline{s},a}^{\overline{\pi}}}{\mathbf{q}_{s,a}} \right| \leq \frac{1}{\beta}$ and therefore:

$$\left\| \left(\frac{\boldsymbol{\lambda}_{s,a}^{\tilde{\pi}}}{\mathbf{q}_{s,a}} \right)^{\alpha-1} - 1 \right\|_{\infty} \le 1 + \frac{1}{\beta^{\alpha-1}}$$

Notice the following relationships hold:

Where $\widetilde{\lambda}_s = \sum_a \widetilde{\lambda}_{s,a}$ and $\lambda_s^{\widetilde{\pi}} = \sum_a \lambda_{s,a}^{\widetilde{\pi}}$. Note that by definition:

$$(1-\gamma)\langle\boldsymbol{\mu},\bar{\mathbf{v}}\rangle = \left\langle\boldsymbol{\lambda}^{\widetilde{\pi}},\mathbf{z}+\mathbf{r}-\frac{1}{\eta(\alpha-1)}\left(\left(\frac{\boldsymbol{\lambda}^{\widetilde{\pi}}}{\mathbf{q}}\right)^{\alpha-1}-1\right)\right\rangle = J_P(\boldsymbol{\lambda}^{\widetilde{\pi}}) + \langle\boldsymbol{\lambda}^{\widetilde{\pi}},\mathbf{z}\rangle.$$
(42)

Let's expand the definition of $J_L(\widetilde{\lambda}, \overline{\mathbf{v}})$ using Equations 11 and 12:

$$\begin{split} J_{L}(\widetilde{\boldsymbol{\lambda}}, \overline{\mathbf{v}}) &= (1 - \gamma) \langle \boldsymbol{\mu}, \overline{\mathbf{v}} \rangle + \left\langle \widetilde{\boldsymbol{\lambda}}, \mathbf{A}^{\overline{\mathbf{v}}} - \frac{1}{\eta(\alpha - 1)} \left(\left(\frac{\widetilde{\boldsymbol{\lambda}}}{\mathbf{q}} \right)^{\alpha - 1} - 1 \right) \right\rangle \\ &= J_{P}(\boldsymbol{\lambda}^{\widetilde{\pi}}) + \langle \boldsymbol{\lambda}^{\widetilde{\pi}}, \mathbf{z} \rangle + \sum_{s} \widetilde{\boldsymbol{\lambda}}_{s} \left(\frac{1}{\eta(\alpha - 1)} \left(\left(\frac{\boldsymbol{\lambda}_{s}^{\widetilde{\pi}}}{\mathbf{q}_{s}} \right)^{\alpha - 1} - \left(\frac{\widetilde{\boldsymbol{\lambda}}_{s}}{\mathbf{q}_{s}} \right)^{\alpha - 1} \right) \left[\sum_{a} \frac{\widetilde{\pi}^{\alpha}(a|s)}{\mathbf{q}_{a|s}^{\alpha - 1}} \right] - \mathbf{z}_{s} \right) \\ &= J_{P}(\boldsymbol{\lambda}^{\widetilde{\pi}}) + \sum_{s} \left(\mathbf{z}_{s}(\boldsymbol{\lambda}_{s}^{\widetilde{\pi}} - \widetilde{\boldsymbol{\lambda}}_{s}) + \frac{\widetilde{\boldsymbol{\lambda}}_{s}}{\eta(\alpha - 1)} \left(\left(\frac{\boldsymbol{\lambda}_{s}^{\widetilde{\pi}}}{\mathbf{q}_{s}} \right)^{\alpha - 1} - \left(\frac{\widetilde{\boldsymbol{\lambda}}_{s}}{\mathbf{q}_{s}} \right)^{\alpha - 1} \right) \left[\sum_{a} \frac{\widetilde{\pi}^{\alpha}(a|s)}{\mathbf{q}_{a|s}^{\alpha - 1}} \right] \right) \end{split}$$

Since we want this expression to equal $J_P(\lambda^{\widetilde{\pi}})$, we need to choose \mathbf{z} such that:

$$\mathbf{z}_{s} = \frac{\frac{1}{\eta(\alpha-1)} \left(\left(\frac{\boldsymbol{\lambda}_{s}^{\tilde{\pi}}}{\mathbf{q}_{s}}\right)^{\alpha-1} - \left(\frac{\tilde{\boldsymbol{\lambda}}_{s}}{\mathbf{q}_{s}}\right)^{\alpha-1} \right) \left[\sum_{a} \frac{\tilde{\pi}^{\alpha}(a|s)}{\mathbf{q}_{a|s}^{\alpha-1}} \right]}{1 - \frac{\boldsymbol{\lambda}_{s}^{\tilde{\pi}}}{\tilde{\boldsymbol{\lambda}}_{s}}}$$

Observe that $\mathbf{z}_{s} = \frac{\frac{1}{\eta(\alpha-1)} \left(\left(\boldsymbol{\lambda}_{s}^{\tilde{\pi}} \right)^{\alpha-1} - \left(\tilde{\boldsymbol{\lambda}}_{s} \right)^{\alpha-1} \right) \left[\sum_{a} \frac{\tilde{\pi}^{\alpha}(a|s)}{\mathbf{q}_{s,a}^{\alpha-1}} \right]}{1 - \frac{\boldsymbol{\lambda}_{s}^{\tilde{\pi}}}{\boldsymbol{\lambda}_{s}}} \text{ and therefore, since for all } s \text{ and when}$ $\alpha \ge 1 \text{ by Assumption } \frac{2}{2} \text{ we have that } \sum_{a} \frac{\tilde{\pi}^{\alpha}(a|s)}{\mathbf{q}_{s,a}^{\alpha-1}} \le \frac{1}{\beta^{\alpha-1}},$ $|\mathbf{z}_{s}| \le \frac{1}{\eta(\alpha-1)} \frac{1}{\beta^{\alpha-1}} \frac{\left| \left(\boldsymbol{\lambda}_{s}^{\tilde{\pi}} \right)^{\alpha-1} - \tilde{\boldsymbol{\lambda}}_{s}^{\alpha-1} \right|}{\left| 1 - \frac{\boldsymbol{\lambda}_{s}^{\tilde{\pi}}}{\boldsymbol{\lambda}_{s}} \right|}$

Let $\frac{\boldsymbol{\lambda}_s^{\tilde{\pi}}}{\tilde{\boldsymbol{\lambda}}_s} = \frac{1}{\theta}$ where $\theta \in [0, \frac{1}{\rho}]$. Then,

$$|\mathbf{z}_s| \le \frac{1}{\eta(\alpha - 1)\beta^{\alpha - 1}} \boldsymbol{\lambda}_s^{\widetilde{\pi}} \frac{|1 - \theta^{\alpha - 1}|}{|1 - \frac{1}{\theta}|}$$

It is easy to see that when $\alpha \geq 0$ the function $f(\theta) = \frac{1-\theta^{\alpha-1}}{1-\frac{1}{\theta}} = \frac{\theta-\theta^{\alpha}}{\theta-1}$ is decreasing in the interval (0, 1] and increasing afterwards. Furthermore, by L'Hopital's rule, $f(1) = 1 - \alpha$ and $f(\frac{1}{\rho}) = \frac{\frac{1}{\rho^{\alpha}} - \frac{1}{\rho}}{\frac{1}{\rho} - 1} \leq \frac{2}{\rho^{\alpha-1}}$ since $\rho \leq \frac{1}{2}$. This implies,

$$|\mathbf{z}_s| \le \frac{1}{\eta(\alpha - 1)} \frac{1}{\beta^{\alpha - 1}} \max(\alpha - 1, \frac{2}{\rho^{\alpha - 1}}).$$

And therefore Equation 40 implies:

$$\|\bar{\mathbf{v}}\|_{\infty} \le \frac{\frac{1}{\eta(\alpha-1)} \frac{1}{\beta^{\alpha-1}} \max(\alpha-1, \frac{2}{\rho^{\alpha-1}}) + 1 + \frac{1}{\eta(\alpha-1)} \left(\frac{1}{\beta^{\alpha-1}} + 1\right)}{1-\gamma} = \frac{\frac{1}{\eta(\alpha-1)} \frac{1}{\beta^{\alpha-1}} \left(\max(\alpha-1, \frac{2}{\rho^{\alpha-1}}) + 2\right) + 1}{1-\gamma}$$

Putting these together we obtain the following version of equation 39

$$J_L(\widetilde{\boldsymbol{\lambda}}, \overline{\mathbf{v}}) \ge J_P(\boldsymbol{\lambda}^{\star}) - \epsilon \left(\frac{\frac{1}{\eta(\alpha-1)} \frac{1}{\beta^{\alpha-1}} \left(\max(\alpha-1, \frac{2}{\rho^{\alpha-1}}) + 2 \right) + 1}{1-\gamma} + \|\widetilde{\mathbf{v}}\|_{\infty} \right)$$

I.2 Extension of Lemma 5 to Tsallis Entropy

Lemma 22. Under Assumptions [] 2 and 3 the optimal dual variables are bounded as

$$\|\mathbf{v}^*\|_{\infty} \le \frac{1}{1-\gamma} \left(1 + \frac{2}{\eta(\alpha-1)\beta^{\alpha-1}} \right) = D_{\mathcal{D},\alpha}.$$
(43)

Proof. Recall the Lagrangian form,

$$\min_{\mathbf{v}}, \max_{\boldsymbol{\lambda}_{s,a} \in \Delta_{S \times A}} J_L(\boldsymbol{\lambda}, \mathbf{v}) := (1 - \gamma) \langle \mathbf{v}, \boldsymbol{\mu} \rangle + \left\langle \boldsymbol{\lambda}, \mathbf{A}^{\mathbf{v}} - \frac{1}{\eta(\alpha - 1)} \left(\left(\frac{\boldsymbol{\lambda}_{s,a}}{\mathbf{q}_{s,a}} \right)^{\alpha - 1} - 1 \right) \right\rangle.$$

The KKT conditions of λ^* , \mathbf{v}^* imply that for any s, a, either (1) $\lambda^*_{s,a} = 0$ and $\frac{\partial}{\partial \lambda_{s,a}} J_L(\lambda^*, v^*) \leq 0$ or (2) $\frac{\partial}{\partial \lambda_{s,a}} J_L(\lambda^*, \mathbf{v}^*) = 0$. The partial derivative of J_L is given by,

$$\frac{\partial}{\partial \boldsymbol{\lambda}_{s,a}} J_L(\boldsymbol{\lambda}^*, \mathbf{v}^*) = \mathbf{r}_{s,a} + \gamma \sum_{s'} P_a(s'|s) \mathbf{v}_{s'}^* - \mathbf{v}_s^* - \frac{\alpha}{\eta(\alpha-1)} \left(\frac{\boldsymbol{\lambda}_{s,a}^*}{\mathbf{q}_{s,a}}\right)^{\alpha-1} + \frac{1}{\eta(\alpha-1)}.$$
 (44)

Thus, for any s, a, either

$$\boldsymbol{\lambda}_{s,a}^{*} = 0 \text{ and } \mathbf{v}_{s}^{*} \ge \mathbf{r}_{s,a} - \frac{\alpha}{\eta(\alpha - 1)} \left(\frac{\boldsymbol{\lambda}_{s,a}^{*}}{\mathbf{q}_{s,a}}\right)^{\alpha - 1} + \frac{1}{\eta(\alpha - 1)} + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*}, \tag{45}$$

or,

$$\boldsymbol{\lambda}_{s,a}^* > 0 \text{ and } \mathbf{v}_s^* = \mathbf{r}_{s,a} - \frac{\alpha}{\eta(\alpha - 1)} \left(\frac{\boldsymbol{\lambda}_{s,a}^*}{\mathbf{q}_{s,a}}\right)^{\alpha - 1} + \frac{1}{\eta(\alpha - 1)} + \gamma \sum_{s'} P_a(s'|s) \mathbf{v}_{s'}^*.$$
(46)

Recall that λ^* is the discounted state-action visitations of some policy π_* ; *i.e.*, $\lambda^*_{s,a} = \lambda^{\pi_*}_s \cdot \pi_*(a|s)$ for some π_* . Note that by Assumption 3 any policy π has $\lambda^{\pi_*}_s > 0$ for all s. Accordingly, the KKT conditions imply,

$$\pi_{\star}(a|s) = 0 \text{ and } \mathbf{v}_{s}^{*} \ge \mathbf{r}_{s,a} - \frac{\alpha}{\eta(\alpha - 1)} \left(\frac{\boldsymbol{\lambda}_{s,a}^{*}}{\mathbf{q}_{s,a}}\right)^{\alpha - 1} + \frac{1}{\eta(\alpha - 1)} + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*}, \quad (47)$$

or,

$$\pi_{\star}(a|s) > 0 \text{ and } \mathbf{v}_{s}^{*} = \mathbf{r}_{s,a} - \frac{\alpha}{\eta(\alpha - 1)} \left(\frac{\boldsymbol{\lambda}_{s,a}^{*}}{\mathbf{q}_{s,a}}\right)^{\alpha - 1} + \frac{1}{\eta(\alpha - 1)} + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*}.$$
(48)

Equivalently,

$$\mathbf{v}_{s}^{*} = \mathbb{E}_{a \sim \pi_{\star}(s)} \left[\mathbf{r}_{s,a} - \frac{\alpha}{\eta(\alpha - 1)} \left(\frac{\boldsymbol{\lambda}_{s,a}^{*}}{\mathbf{q}_{s,a}} \right)^{\alpha - 1} + \frac{1}{\eta(\alpha - 1)} + \gamma \sum_{s'} P_{a}(s'|s) \mathbf{v}_{s'}^{*} \right]$$
(49)
(50)

We may express these conditions as a Bellman recurrence for \mathbf{v}_s^* and the solution to these Bellman equations is bounded when $\mathbf{r}_{s,a} - \frac{\alpha}{\eta(\alpha-1)} \left(\frac{\boldsymbol{\lambda}_{s,a}^*}{\mathbf{q}_{s,a}}\right)^{\alpha-1} + \frac{1}{\eta(\alpha-1)}$ is bounded [24]. And indeed, by Assumptions 2 and 1, $\left|\mathbf{r}_{s,a} - \frac{\alpha}{\eta(\alpha-1)} \left(\frac{\boldsymbol{\lambda}_{s,a}^*}{\mathbf{q}_{s,a}}\right)^{\alpha-1} + \frac{1}{\eta(\alpha-1)}\right| \leq 1 + \frac{1}{\eta(\alpha-1)} + \frac{1}{\eta(\alpha-1)\beta^{\alpha-1}}$ We may thus bound the solution as,

$$\|\mathbf{v}^*\|_{\infty} \le \frac{1}{1-\gamma} \left(1 + \frac{2}{\eta(\alpha-1)\beta^{\alpha-1}} \right).$$
(51)

I.3 Gradient descent results for the Tsallis Entropy

Remark 1. Throughout this section we make the assumption that $\alpha \in (1, 2]$.

We start by characterizing the smoothness properties of $J_D^{\mathcal{T},\alpha}(\mathbf{v})$, the dual function of the Tsallis regularized LP.

Lemma 23. If $\alpha \in (1,2]$ the dual function $J_D^{\mathcal{T},\alpha}(\mathbf{v})$ is $\frac{\eta|\mathcal{S}||\mathcal{A}|}{\alpha}$ -smooth in the $\|\cdot\|_2$ norm.

Proof. Recall that PrimalReg- λ can be written as RegLP

$$\max_{\boldsymbol{\lambda} \in \mathcal{D}} \langle \mathbf{r}, \boldsymbol{\lambda} \rangle - F(\boldsymbol{\lambda})$$

s.t. $\mathbf{E}\boldsymbol{\lambda} = b$.

Where the regularizer $(F(\boldsymbol{\lambda}) := \frac{1}{\eta} D_{\alpha}^{\mathcal{T}}(\boldsymbol{\lambda} \parallel \mathbf{q}))$ is $\frac{\alpha}{\eta} - \|\cdot\|_2$ strongly convex. In this problem \mathbf{r} corresponds to the reward vector, the vector $\mathbf{b} = (1 - \gamma)\boldsymbol{\mu} \in \mathbb{R}^{|\mathcal{S}|}$ and matrix $\mathbf{E} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{S}| \times |\mathcal{A}|}$ takes the form:

$$\mathbf{E}[s,s',a] = \begin{cases} \gamma \mathbf{P}_a(s|s') & \text{if } s \neq s' \\ 1 - \gamma \mathbf{P}_a(s|s) & \text{o.w.} \end{cases}$$

Therefore (since $\|\mathbf{E}\|_{2,2}$ is simply the Frobenius norm of matrix **E**),

$$\|\mathbf{E}\|_{2,2} \le 2|\mathcal{S}||\mathcal{A}|$$

The result follows as a corollary of Lemma 1.

Throughout this section we use the notation $D_{\mathcal{T},\alpha}$ to refer to $\|\mathbf{v}^*\|_{\infty} \leq \frac{1}{1-\gamma} \left(1 + \frac{2}{\eta(\alpha-1)\beta^{\alpha-1}}\right)$. We are ready to prove convergence guarantees for Algorithm 4 when applied to the objective $J_D^{\mathcal{T},\alpha}$. **Lemma 24.** Let Assumptions [], 2 and 3 hold. Let $\mathcal{D}_{\mathcal{T},\alpha} = \{\mathbf{v} \ s.t. \ \|\mathbf{v}\|_{\infty} \leq D_{\mathcal{T},\alpha}\}$, and define the

Lemma 24. Let Assumptions [I] and bound hold. Let $\mathcal{D}_{\mathcal{T},\alpha} = \{\mathbf{v} \ s.t. \|\mathbf{v}\|_{\infty} \leq D_{\mathcal{T},\alpha}\}$, and define the distance generating function to be $w(\mathbf{x}) = \|\mathbf{x}\|_2^2$. After T steps of Algorithm 4 the objective function $J_D^{\mathcal{T},\alpha}$ evaluated at the iterate $\mathbf{v}_T = y_T$ satisfies:

$$J_D^{\mathcal{T},\alpha}(\mathbf{v}_T) - J_D^{\mathcal{T},\alpha}(\mathbf{v}^*) \le 4\eta \frac{|\mathcal{S}|^2|\mathcal{A}|}{\alpha} \frac{(1+c')^2}{(1-\gamma)^2 T^2}$$

Where $c' = \frac{2}{\eta(\alpha-1)\beta^{\alpha-1}}$.

Proof. This results follows simply by invoking the guarantees of Theorem II making use of the fact that $J_D^{\mathcal{T},\alpha}$ is $\frac{\eta|\mathcal{S}||\mathcal{A}|}{\alpha}$ -smooth as proven by Lemma 3 observing that as a consequence of Lemma 22 $\mathbf{v}^* \in \mathcal{D}_{\mathcal{T},\alpha}$ and using the inequality $\|\mathbf{x}\|_2^2 \leq |\mathcal{S}| \|\mathbf{x}\|_{\infty}^2$ for $\mathbf{x} \in \mathbb{R}^{|\mathcal{S}|}$.

Lemma 24 can be easily turned into the following guarantee regarding the dual function value of the final iterate:

Corollary 6. Let $\epsilon > 0$. If Algorithm 4 is ran for at least T rounds

$$T \ge 2\eta^{1/2} (|\mathcal{S}||\mathcal{A}|^{1/2}) \frac{(1+c')}{\alpha^{1/2} (1-\gamma) \sqrt{\epsilon}}$$

then \mathbf{v}_T is an ϵ -optimal solution for the dual objective $J_D^{T,\alpha}$.

If T satisfies the conditions of Corollary 6 a simple use of Lemma 6 allows us to bound the $\|\cdot\|_2$ norm of the dual function's gradient at \mathbf{v}_T :

$$\|\nabla J_D(\mathbf{v}_T)\|_2 \le \sqrt{\frac{2|\mathcal{S}||\mathcal{A}|\eta\epsilon}{\alpha}}$$

If we denote as π_T to be the policy induced by $\lambda^{\mathbf{v}_T}$, and λ^*_{η} is the candidate dual solution corresponding to \mathbf{v}^* . A simple application of Lemma 21 yields:

$$J_P(\boldsymbol{\lambda}^{\pi_T}) \ge J_P(\boldsymbol{\lambda}^{\star}_{\eta}) - \frac{1}{1-\gamma} \left(2 + c + c'\right) \sqrt{\frac{2|\mathcal{S}||\mathcal{A}|\eta\epsilon}{\alpha}}$$

Where $c = \frac{1}{\eta(\alpha-1)} \frac{1}{\beta^{\alpha-1}} \left(\max(\alpha-1, \frac{2}{\rho^{\alpha-1}}) + 2 \right), c' = \frac{2}{\eta(\alpha-1)\beta^{\alpha-1}} \text{ and } \lambda_{\eta}^{\star} \text{ is the } J_P \text{ optimum.}$

This leads us to the main result of this section:

Corollary 7. Let $\alpha \in (1, d]$. For any $\xi > 0$. If $T \ge 4\eta |\mathcal{S}|^{3/2} |\mathcal{A}|^{1/2} \frac{(2+c+c')^2}{\alpha(1-\gamma)^2 \xi}$ then: $J_P(\boldsymbol{\lambda}^{\pi_T}) \ge J_P(\boldsymbol{\lambda}^{\pi}) - \xi.$

Thus Algorithm 4 achieves an $\mathcal{O}(1/(1-\gamma)^2\epsilon)$ rate of convergence to an ϵ -optimal regularized policy. We now proceed to show that an appropriate choice for η can be leveraged to obtain an ϵ -optimal policy.

Theorem 5. For any $\epsilon > 0$, let $\eta = \frac{2}{(\alpha-1)\epsilon\beta^{\alpha}}$. If $T \ge 8|\mathcal{S}|^{3/2}|\mathcal{A}|^{1/2}\frac{(2+c+c')^2}{(\alpha-1)\alpha(1-\gamma)^2\beta^{\alpha}\epsilon^2}$, then π_T is an ϵ -optimal policy.

Proof. As a consequence of Corollary 7, we can conclude that:

$$J_P(\boldsymbol{\lambda}^{\pi_T}) \geq J_P(\boldsymbol{\lambda}^{\star,\eta}) - \frac{\epsilon}{2}.$$

Where λ_n^* is the regularized optimum. Recall that:

$$J_P(\boldsymbol{\lambda}) = \sum_{s,a} \boldsymbol{\lambda}_{s,a} \mathbf{r}_{s,a} - \frac{1}{(\alpha - 1)\eta} \left(\mathbb{E}_{(s,a) \sim \mathbf{q}} \left[\left(\frac{\boldsymbol{\lambda}_{s,a}}{\mathbf{q}_{s,a}} \right)^{\alpha} - 1 \right] \right).$$

Since $\lambda^{\star,\eta}$ is the maximizer of the regularized objective, it satisfies $J_P(\lambda^{\star,\eta}) \ge J_P(\lambda^{\star})$ where λ^{\star} is the visitation frequency of the optimal policy corresponding to the unregularized objective. We can conclude that:

$$\sum_{s,a} \lambda_{s,a}^{\pi_T} \mathbf{r}_{s,a} \ge \sum_{s,a} \lambda_{s,a}^{\star} \mathbf{r}_{s,a} + \frac{1}{(\alpha - 1)\eta} \left(\sum_{s,a} \mathbf{q}_{s,a} \left(\left(\frac{\lambda_{s,a}^{\pi_T}}{\mathbf{q}_{s,a}} \right)^{\alpha} - 1 \right) - \sum_{s,a} \mathbf{q}_{s,a} \left(\left(\frac{\lambda_{s,a}^{\star}}{\mathbf{q}_{s,a}} \right)^{\alpha} - 1 \right) \right) \right) - \frac{\epsilon}{2}$$
$$= \sum_{s,a} \lambda_{s,a}^{\star} \mathbf{r}_{s,a} + \frac{1}{(\alpha - 1)\eta} \left(\sum_{s,a} \mathbf{q}_{s,a} \left(\frac{\lambda_{s,a}^{\pi_T}}{\mathbf{q}_{s,a}} \right)^{\alpha} - \sum_{s,a} \mathbf{q}_{s,a} \left(\frac{\lambda_{s,a}^{\star}}{\mathbf{q}_{s,a}} \right)^{\alpha} \right) - \frac{\epsilon}{2}$$
$$\ge \sum_{s,a} \lambda_{s,a}^{\star} \mathbf{r}_{s,a} - \frac{1}{(\alpha - 1)\eta} \left(\frac{1}{\beta} \right)^{\alpha} - \frac{\epsilon}{2}$$

And therefore if $\eta = \frac{2}{(\alpha - 1)\epsilon\beta^{\alpha}}$, we can conclude that:

$$\sum_{s,a} \boldsymbol{\lambda}_{s,a}^{\pi_T} \mathbf{r}_{s,a} \geq \sum_{s,a} \boldsymbol{\lambda}_{s,a}^{\star} \mathbf{r}_{s,a} - \epsilon$$