Supplementary Materials – Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language

Mingyu Ding	Zhenfang Chen	Tao Du	Ping Luo
MIT CSAIL and HKU	MIT-IBM Watson AI Lab	MIT CSAIL	HKU
Joshua B. Ten MIT BCS, CBM		Chuang Gan IIT-IBM Watson AI La	ab

A Appendix

In this section, we provide supplementary details of our VRDP¹. First, we give more details of our physics model and the neuro-symbolic operations in the program executor. We then introduce the datasets we use and build, including a synthetic dataset (CLEVRER [10]), a real-world dataset (Real-Billiard [9]), and a newly built few-shot dataset (Generalized CLEVRER). After that, we detail the training settings and steps.

A.1 Details of Physics Model

In this part, we provide supplementary details of our physics model. With the perceptually grounded object shapes and trajectories from the perception module and the concept learner of VRDP, our physics model performs differentiable simulation to optimize the physical parameters of the scene and objects by comparing the simulation L' with the video observations L^{BEV} . The target bird's-eye view (BEV) trajectory L^{BEV} is obtained by projecting the object center to the BEV coordinate. The Camera-to-BEV projection can be written as:

$$\begin{bmatrix} x\\ y\\ -\\ 1 \end{bmatrix}_{BEV} = \mathbf{K}^{-1} \cdot \begin{bmatrix} x \cdot z\\ y \cdot z\\ z\\ 1 \end{bmatrix}_{camera}$$
(1)

where **K** is the estimated camera matrix, $[x, y, z]_{camera}$ is the point in 2D image coordinates (z_{camera} can be calculated from the camera matrix **K**), $[x, y]_{BEV}$ denotes the horizontal position and vertical position of the projected point in BEV coordinates.

Based on the graphics programming language DiffTaichi [4], our physics model is implemented as an impulse-based differentiable rigid-body simulator. Based on conservation of momentum and angular momentum, it iteratively simulates a small time step of Δt based on the objects' state in the BEV coordinate through inferring collision events, forces and impulses acting on the object, and updating the state of each object. In addition to calculating the acceleration based on the conservation of momentum in our main paper, we also calculate the angular acceleration based on the angular momentum. For example, we have: $\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F}$ and $M = I \frac{d\omega}{dt}$, where \overrightarrow{M} denotes moment of force, \overrightarrow{F} is the applied force, and \overrightarrow{r} is the distance from the applied force to object. The momentum of inertia I is $1/6m(2R)^2$ for the cube, where m represents its mass.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

¹Project page: http://vrdp.csail.mit.edu/

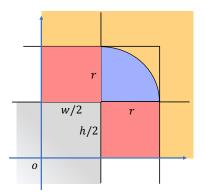


Figure 1: An illustration of circle-rectangle collision detection. The gray part denotes the rectangle (cube) and we transform the origin to the center of the rectangle so that the coordinate axis is parallel to its side. For each simulation step: we consider three situations: 1) if the center of the circle is in the orange area, the circle and the rectangle do not collide; 2) if the circle center is in the red area, the circle collides with the rectangle and the collision direction is perpendicular to the coordinate axis; 3) if the circle center falls in the purple area, the circle and the rectangle collide and the collision direction is perpendicular to the tangent of the collision position on the circle.

Counterfactual Question: Without the green sphere, what will happen? **Choice:** The green cylinder and the cyan object collide. **Answer:** True

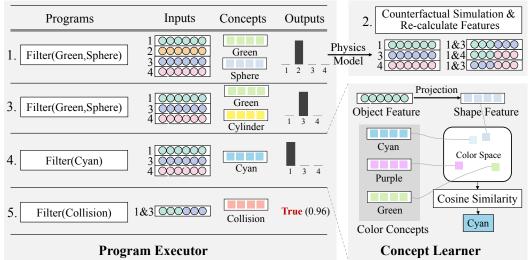


Figure 2: An illustration of the reasoning process of the program executor and concept learner. The program executor executes the parsed programs (*e.g.*, Filter_static_concept (color, shape, material)) step-by-step with the visual representations and language concepts. For each step, it leverages the concept learner or physical model to filter specific targets or simulate/predict new visual trajectories.

In this work, we perform collision detection between circles and rectangles in BEV view. Fig. 1 shows the illustration of our circle-rectangle collision detection algorithm. We project the center of the rectangle (the gray part) to the origin so that the coordinate axis is parallel to its side. Then the area outside the rectangle is divided into three parts that the center of the circle can fall: 1) collision with the sides of the square (red); 2) collision with the corners of the square (purple); 3) no collision (orange). The implementation of circle-circle and rectangle-rectangle collisions is similar.

A.2 Details of Neuro-Symbolic Programs

Following DCL [1], we represent the objects, events and moments through learnable embeddings and quantize the static and dynamic concepts to perform temporal and causal reasoning. In this part, we list all the available data types and operations for CLEVRER in Tab. 1. We refer interested readers to DCL [1] for more details.

We also visualize the reasoning process of an example step-by-step in Fig. 2. It shows how we get the correct answer for the counterfactual question 'Without the green sphere, what will happen?' with a choice 'The green cylinder and the cyan object collide'. After the first program

'Filter_static_concept(all objects, green sphere)' is executed, the executor removes the retrieved object, reruns the simulation to get counterfactual trajectories, and updates the visual features. After that, the executor runs the remaining programs and gets the final answer 'True' with a probability of 0.96 calculated through the cosine distance in the concept learner.

A.3 Details of Datasets

CLEVRER CLEVRER [10] is a diagnostic video dataset for systematic evaluation of computational models on a wide range of reasoning tasks. Objects in CLEVRER videos adopt similar compositional intrinsic attributes as in CLEVR [5], including three shapes (cube, sphere, and cylinder), two materials (metal and rubber), and eight colours (gray, red, blue, green, brown, cyan, purple, and yellow). All objects have the same size, same friction coefficient (except the sphere that rolling on the ground), so no vertical bouncing occurs during the collision. Each object has a different mass and a different restitution coefficient. CLEVRER introduces three types of events: enter, exit and collision, each of which contains a fixed number of object participants: 2 for collision and 1 for enter and exit. The objects and events form an abstract representation of the video.

CLEVRER includes four types of question: descriptive (*e.g.* 'what color'), explanatory ('what's responsible for'), predictive ('what will happen next'), and counterfactual ('what if'), where the first two types concern more on video understanding and temporal reasoning, while the latter two types involve physical dynamics and predictions in reasoning. Therefore, we mainly focus on the predictive and counterfactual questions in this work. CLEVRER consists of 2,000 videos, with a number of 1,000 training videos, 5,000 validation videos, and 5,000 test videos. It also contains 219,918 descriptive questions, 33,811 explanatory questions, 14,298 predictive questions, and 37,253 counterfactual questions. In this paper, we tune the model using the validation set and evaluate it with the test set.

Generalized CLEVRER To evaluate the generalizability of reasoning methods, we collect a few-shot physical reasoning dataset with novel language and physical concepts (*e.g.*, 'heavier' and 'lighter'), termed generalized CLEVRER, containing 100 videos (split into 25/25/50 for train/validation/test) with 375 options in 158 counterfactual questions. This dataset is supplementary to CLEVRER [10] for generalizing to new concepts (*i.e.*, heavier, lighter) with very few samples. All videos last for 5 seconds and are generated by a physics engine [2] that simulates object motion plus a graphs engine that renders the frames. It has the same video settings (objects and events settings) with CLEVRER but different questions/concepts, *e.g.*, "What would happen if the blue sphere were heavier?", we generate the ground truth video in the counterfactual case by setting five times the weight and perform the physical simulation with Bullet [2]. In this work, we evaluate the QA accuracy of this dataset.

Real-Billiard For real-world scenarios, we conduct experiments on the Real-Billiard [9] dataset, which contains three-cushion billiards videos captured in real games for dynamics prediction. There are 62 training videos with 18,306 frames, and 5 testing videos with 1,995 frames. The bounding box annotations are from an off-the-shelf ResNet-101 FPN detector [6] pretrained on COCO [7] and fine-tuned on a subset of 30 images from our dataset. Wrong detections are manually filtered out. We generate 6 reasoning questions (*e.g.*, "will one billiard collide with ...?") for each video and evaluate both the prediction error and QA accuracy.

A.4 Details of Training Settings

As in [10, 1], we use a pre-trained Faster R-CNN model [3] that is trained on 4,000 video frames randomly sampled from the training set with object masks and attribute annotations to generate object proposals for each frame. We train the language program parser with 1,000 programs for all question types. All deep modules (concept learner and program executor) are trained using Adam optimizer for 40 epochs on 8 Nvidia 1080Ti GPUs and the learning rate is set to 10^{-4} . The camera matrix is optimized from 20 training videos. We set $\Delta t = 0.004$ s, D = 256, C = 64, K = 10, S = 10, and T = 128 for CLEVRER [10] and T = 20 for Real-Billiard [9]. In addition to our standard model that grounds object properties from question-answer pairs, we also train a variant (VRDP \dagger) on CLEVRER with an explicit rule-based program executor [10] and object attribute supervisions (attribute annotation in 4000 frames learned by the Faster R-CNN model). For the physical model, we use the L-BFGS optimizer [8] with an adaptive learning rate to optimize all physical parameters. The optimization terminates when it reaches a certain number of steps or the loss is less than a certain value. In all experiments, the number of the optimization step is set to 20. The loss threshold is set to 0.0005 for the learning of collision-independent parameters (*i.e.*, initial velocity, initial location, and initial angle), and 0.0002, 0.001, 0.01 for the optimization of collision-dependent parameters (mass and restitution) on [0, 40], [0, 80], and [0, 128] frames, respectively.

The training of VRDP can be summarized into three stages. First, we extract the visual features directly from the video by the visual perception module, and learn language concepts in the concept learner from all descriptive and explanatory questions; second, we optimize all physical parameters by using the perceived trajectories and the learned concepts; third, after obtaining the physics model, we re-calculate the visual features from the simulated trajectories and finetune language concept embeddings from all question types, including predictive and counterfactual questions. During this training process, the three parts of VRDP are integrated seamlessly and benefit each other.

A.5 Visualizations

We show visualization examples (including failure cases) on CLEVRER [10] in Fig. 3 and Fig. 4. We also show examples on Real-Billiards [9] in Fig. 5. These figures show that our model can accurately learn physical parameters from video and language and perform causal simulations, predictive simulations, and counterfactual simulations for dynamic visual reasoning. Note that the billiard table is a chaotic system, and highly accurate long-term prediction is intractable. For more failure analysis, please refer to our main paper.

Broader Impact

Our work focuses on dynamic visual reasoning about object interactions, dynamics, and physics with question answering, which is central to human intelligence and a key goal of artificial intelligence. We envision that the work will benefit a wide range of applications involving cognition and reasoning, such as robot control. The proposed method improves the accuracy, interpretability, and robustness of these applications, ultimately leading to better safety. We do not foresee obvious undesirable ethical/social impacts at this moment.

References

- Z. Chen, J. Mao, J. Wu, K.-Y. K. Wong, J. B. Tenenbaum, and C. Gan. Grounding physical concepts of objects and events through dynamic visual reasoning. In *ICLR*, 2021. 2, 3
- [2] E. Coumans. Bullet physics engine. Open Source Software: http://bulletphysics.org, 1(3):84, 2010. 3
- [3] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 3
- [4] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. Diffaichi: Differentiable programming for physical simulation. In *ICLR*, 2020. 1
- [5] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and R. Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In CVPR, 2017. 3
- [6] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object detection. In CVPR, pages 2117–2125, 2017. 3
- [7] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, pages 740–755. Springer, 2014. 3
- [8] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization. *Mathematical programming*, pages 503–528, 1989.
- [9] H. Qi, X. Wang, D. Pathak, Y. Ma, and J. Malik. Learning long-term visual dynamics with region proposal interaction networks. In *ICLR*, 2021. 1, 3, 4
- [10] K. Yi, C. Gan, Y. Li, P. Kohli, J. Wu, A. Torralba, and J. B. Tenenbaum. Clevrer: Collision events for video representation and reasoning. In *ICLR*, 2020. 1, 3, 4, 7

Input Frames			Causal Simulation
Descriptive Q1: How many collisions happen?	A: 2	GT: 2	
Descriptive Q2: What shape is the first object to collide with the blue cylinder?	A: sphere	GT: sphere	•
Descriptive Q3: What color is the object that exits the scene?	A: gray	GT: gray	
 Explanatory Q: Which of the following is not responsible for the collision between the blue cylinder and the cube? a) The collision between the gray sphere and the blue sphere. b) The presence of the gray metal object. c) The presence of the gray rubber object. 	A: True A: True A: False	GT: True GT: True GT: False	Predictive Simulation
Predictive Q: Which event will happen next?a) The gray sphere and the cube collide.b) The brown cube and the blue object collide.	A: True A: True	GT: True GT: False	
 c) The blue cylinder exits the scene. Counterfactual Q: Without the blue cylinder, what will happen? a) The metal sphere collide with the cube. 	A: False A: True	GT: False GT: True	1
b) The cube and the rubber object collide.c) The metal sphere collide with the gray rubber object.	A: False A: False	GT: False GT: False	Counterfactual Simulation (without the blue cylinder)

Mistake: because the gray sphere does not collide in the video, we cannot optimize its mass and restitution (set to the default).

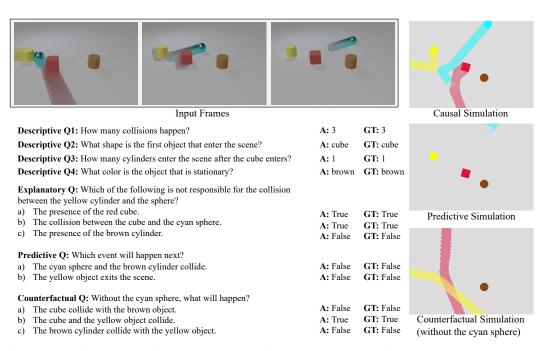


Figure 3: Visualization (1) of the videos and question-answering results of our VRDP on CLEVRER. We highlighted our failure in red and explained the cause of it.

		6	
Input Frames			Causal Simulation
Descriptive Q1: Are there any moving red objects when the video ends?	A: no	GT: no	
Descriptive Q2: What color is the object that enters the scene?	A: purple	GT: purple	
Descriptive Q3: What is the color of the first object to collide with the sphere?	A: green	GT: green	
Explanatory Q: Which of the following is not responsible for the sphere's exiting the scene?a) The presence of the cyan object.	4 T	GT: True	•
b) The presence of the purple rubber cube.	A: True A: False	GT: False	Predictive Simulation
c) The presence of the green metal cylinder.	A: True	GT: True	Predictive Simulation
d) The collision between the sphere and the cyan cylinder.	A: True	GT: True	
Predictive Q: Which event will happen next?			•
a) The green cylinder and the sphere collide.	A: False	GT: False	
b) The green cylinder collides with the cube.	A: True	GT: True	
Counterfactual Q: Without the green cylinder, what will not happen?			
a) The sphere and the cube collide.	A: True	GT: False	
b) The sphere and the cyan cylinder collide.	A: True	GT: True	Counterfactual Simulation
c) The cube and the cyan cylinder collide.	A: True	GT: True	(without the green cylinder)

Mistake: since only a part of the purple object is in the image plane in many frames, our model underestimates its velocity.

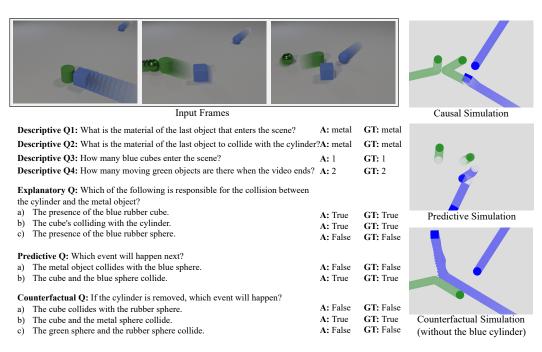
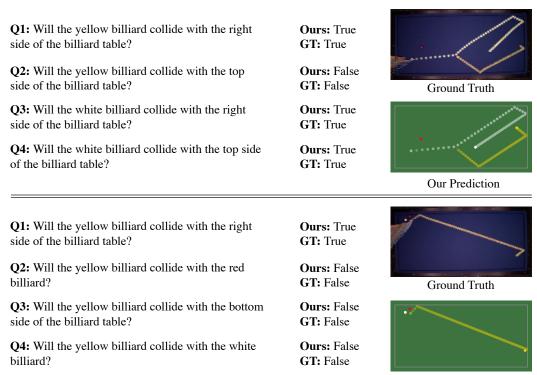



Figure 4: Visualization (2) of the videos and question-answering results of our VRDP on CLEVRER. We highlighted our failure in red and explained the cause of it.

Туре	Operation	Signature
	Start	$() \rightarrow event$
	Returns the special "start" event	
	end Paturns the special "and" event	$() \rightarrow event$
Input	Returns the special "end" event Objects	$() \rightarrow objects$
Operations	Returns all objects in the video	() / cojeciis
	Events	$() \rightarrow events$
	Returns all events happening in the video	
	UnseenEvents	$() \rightarrow events$
	Returns all future events happening in the video	
	Query_color	$(object) \rightarrow color$
	Returns the color of the input object Query_material	$(object) \rightarrow material$
	Returns the material of the input objects	$(object) \rightarrow material$
Output	Query_shape	$(object) \rightarrow shape$
Operations	Returns the shape of the input objects	
	Count	$(objects) \rightarrow int$
	Returns the number of the input objects/ events Exist	$(events) \rightarrow int$ $(objects) \rightarrow bool$
	Returns "yes" if the input objects is not empty	$(bbjecis) \rightarrow bbbi$
	Belong_to	$(event, events) \rightarrow bool$
	Returns "yes" if the input event belongs to the input event sets	
	Negate	$(bool) \rightarrow bool$
	Returns the negation of the input boolean	
	Counterfactual_simulation	$(object) \rightarrow events, representations$
	Perform simulation with the object removed	
Physics	Predictive_simulation Perform simulation after the video ends	$(objects) \rightarrow events, representations$
Operations	Apply_heavier	$(object) \rightarrow object$
operations	Assign the object five times its weight before the counterfactual simulation	(coject) , coject
	Apply_lighter	$(object) \rightarrow object$
	Assign the object one-fifth of its weight before the counterfactual simulation	
Object ¹	Filter_static_concept	$(objects, concept) \rightarrow objects$
Filter	Select objects from the input list with the input static concept	
Operations	Filter_dynamic_concept Selects objects in the input frame with the dynamic concept	$(objects, concept, frame) \rightarrow objects$
	Unique	$(objects) \rightarrow object$
	Return the only object in the input list	(cojecis) / cojeci
	Filter_in	$(events, objects) \rightarrow events$
	Select incoming events of the input objects	(events, objects) / events
	Filter_out	$(events, objects) \rightarrow events$
	Select existing events of the input objects	<i>.</i>
	Filter_collision	$(events, objects) \rightarrow events$
	Select all collisions that involve an of the input objects Get_col_partner	$(event, object) \rightarrow object$
Event Re Filter Se Operations Fi Se Fi Se Ge Re Un	Return the collision partner of the input object	$(even, object) \rightarrow object$
	Filter_before	$(events, events) \rightarrow events$
	Select all events before the target event	
	Filter_after	$(events, events) \rightarrow events$
	Select all events after the target event Filter_order	$(events, order) \rightarrow event$
	Select the event at the specific time order	(creius, oraci) - eveni
	Filter_ancestor	$(event, events) \rightarrow events$
	Select all ancestors of the input event in the causal graph	
	Get_frame	$(event) \rightarrow frame$
	Return the frame of the input event in the video	
	Unique Return the only event in the input list	$(events) \rightarrow event$
	Return the only event in the input list	

Table 1: All neuro-symbolic operations on the CLEVRER dataset [10]. Our model contains five types of operations, including input, output, physics, object filter, and event filter operations. In this table, "order" denotes the chronological order of an event, *e.g.* "First", "Second" and "Last"; "static concept" denotes object-level static concepts like "Blue", "Cube" and "Metal"; "dynamic concept" represents object-level dynamic concepts like "Moving" and "Stationary"; and "representations" denotes the visual features that are calculated from object trajectories.

Our Prediction

Figure 5: Visualization examples of the videos and question-answering results of our VRDP on Real-Billiards. Note that the billiard table is a chaotic system, and highly accurate long-term prediction is intractable.