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A Appendix

In this section, we provide supplementary details of our VRDP 1. First, we give more details of
our physics model and the neuro-symbolic operations in the program executor. We then introduce
the datasets we use and build, including a synthetic dataset (CLEVRER [10]), a real-world dataset
(Real-Billiard [9]), and a newly built few-shot dataset (Generalized CLEVRER). After that, we detail
the training settings and steps.

A.1 Details of Physics Model

In this part, we provide supplementary details of our physics model. With the perceptually grounded
object shapes and trajectories from the perception module and the concept learner of VRDP, our
physics model performs differentiable simulation to optimize the physical parameters of the scene
and objects by comparing the simulation L′ with the video observations LBEV. The target bird’s-eye
view (BEV) trajectory LBEV is obtained by projecting the object center to the BEV coordinate. The
Camera-to-BEV projection can be written as:x
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where K is the estimated camera matrix, [x, y, z]camera is the point in 2D image coordinates (zcamera

can be calculated from the camera matrix K), [x, y]BEV denotes the horizontal position and vertical
position of the projected point in BEV coordinates.

Based on the graphics programming language DiffTaichi [4], our physics model is implemented
as an impulse-based differentiable rigid-body simulator. Based on conservation of momentum and
angular momentum, it iteratively simulates a small time step of ∆t based on the objects’ state in the
BEV coordinate through inferring collision events, forces and impulses acting on the object, and
updating the state of each object. In addition to calculating the acceleration based on the conservation
of momentum in our main paper, we also calculate the angular acceleration based on the angular
momentum. For example, we have:

−→
M = −→r ×

−→
F and M = I dω

dt , where
−→
M denotes moment of

force,
−→
F is the applied force, and −→r is the distance from the applied force to object. The momentum

of inertia I is 1/6m(2R)2 for the cube, where m represents its mass.

1Project page: http://vrdp.csail.mit.edu/

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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Figure 1: An illustration of circle-rectangle collision de-
tection. The gray part denotes the rectangle (cube) and we
transform the origin to the center of the rectangle so that
the coordinate axis is parallel to its side. For each simula-
tion step: we consider three situations: 1) if the center of
the circle is in the orange area, the circle and the rectangle
do not collide; 2) if the circle center is in the red area, the
circle collides with the rectangle and the collision direc-
tion is perpendicular to the coordinate axis; 3) if the circle
center falls in the purple area, the circle and the rectangle
collide and the collision direction is perpendicular to the
tangent of the collision position on the circle.
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Figure 2: An illustration of the reasoning process of the program executor and concept learner. The
program executor executes the parsed programs (e.g., Filter_static_concept (color, shape, material))
step-by-step with the visual representations and language concepts. For each step, it leverages the
concept learner or physical model to filter specific targets or simulate/predict new visual trajectories.

In this work, we perform collision detection between circles and rectangles in BEV view. Fig. 1
shows the illustration of our circle-rectangle collision detection algorithm. We project the center of
the rectangle (the gray part) to the origin so that the coordinate axis is parallel to its side. Then the
area outside the rectangle is divided into three parts that the center of the circle can fall: 1) collision
with the sides of the square (red); 2) collision with the corners of the square (purple); 3) no collision
(orange). The implementation of circle-circle and rectangle-rectangle collisions is similar.

A.2 Details of Neuro-Symbolic Programs

Following DCL [1], we represent the objects, events and moments through learnable embeddings and
quantize the static and dynamic concepts to perform temporal and causal reasoning. In this part, we
list all the available data types and operations for CLEVRER in Tab. 1. We refer interested readers to
DCL [1] for more details.

We also visualize the reasoning process of an example step-by-step in Fig. 2. It shows how we
get the correct answer for the counterfactual question ‘Without the green sphere, what will hap-
pen?’ with a choice ‘The green cylinder and the cyan object collide’. After the first program
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‘Filter_static_concept(all objects, green sphere)’ is executed, the executor removes the retrieved
object, reruns the simulation to get counterfactual trajectories, and updates the visual features. After
that, the executor runs the remaining programs and gets the final answer ‘True’ with a probability of
0.96 calculated through the cosine distance in the concept learner.

A.3 Details of Datasets

CLEVRER CLEVRER [10] is a diagnostic video dataset for systematic evaluation of computational
models on a wide range of reasoning tasks. Objects in CLEVRER videos adopt similar compositional
intrinsic attributes as in CLEVR [5], including three shapes (cube, sphere, and cylinder), two materials
(metal and rubber), and eight colours (gray, red, blue, green, brown, cyan, purple, and yellow). All
objects have the same size, same friction coefficient (except the sphere that rolling on the ground),
so no vertical bouncing occurs during the collision. Each object has a different mass and a different
restitution coefficient. CLEVRER introduces three types of events: enter, exit and collision, each of
which contains a fixed number of object participants: 2 for collision and 1 for enter and exit. The
objects and events form an abstract representation of the video.

CLEVRER includes four types of question: descriptive (e.g.‘what color’), explanatory (‘what’s
responsible for’), predictive (‘what will happen next’), and counterfactual (‘what if’), where the
first two types concern more on video understanding and temporal reasoning, while the latter two
types involve physical dynamics and predictions in reasoning. Therefore, we mainly focus on the
predictive and counterfactual questions in this work. CLEVRER consists of 2,000 videos, with a
number of 1,000 training videos, 5,000 validation videos, and 5,000 test videos. It also contains
219,918 descriptive questions, 33,811 explanatory questions, 14,298 predictive questions, and 37,253
counterfactual questions. In this paper, we tune the model using the validation set and evaluate it
with the test set.

Generalized CLEVRER To evaluate the generalizability of reasoning methods, we collect a
few-shot physical reasoning dataset with novel language and physical concepts (e.g., ‘heavier’
and ‘lighter’), termed generalized CLEVRER, containing 100 videos (split into 25/25/50 for
train/validation/test) with 375 options in 158 counterfactual questions. This dataset is supplementary
to CLEVRER [10] for generalizing to new concepts (i.e., heavier, lighter) with very few samples.
All videos last for 5 seconds and are generated by a physics engine [2] that simulates object motion
plus a graphs engine that renders the frames. It has the same video settings (objects and events
settings) with CLEVRER but different questions/concepts, e.g., “What would happen if the blue
sphere were heavier?”, we generate the ground truth video in the counterfactual case by setting five
times the weight and perform the physical simulation with Bullet [2]. In this work, we evaluate the
QA accuracy of this dataset.

Real-Billiard For real-world scenarios, we conduct experiments on the Real-Billiard [9] dataset,
which contains three-cushion billiards videos captured in real games for dynamics prediction. There
are 62 training videos with 18,306 frames, and 5 testing videos with 1,995 frames. The bounding
box annotations are from an off-the-shelf ResNet-101 FPN detector [6] pretrained on COCO [7] and
fine-tuned on a subset of 30 images from our dataset. Wrong detections are manually filtered out. We
generate 6 reasoning questions (e.g., “will one billiard collide with ...?”) for each video and evaluate
both the prediction error and QA accuracy.

A.4 Details of Training Settings

As in [10, 1], we use a pre-trained Faster R-CNN model [3] that is trained on 4,000 video frames
randomly sampled from the training set with object masks and attribute annotations to generate object
proposals for each frame. We train the language program parser with 1,000 programs for all question
types. All deep modules (concept learner and program executor) are trained using Adam optimizer
for 40 epochs on 8 Nvidia 1080Ti GPUs and the learning rate is set to 10−4. The camera matrix
is optimized from 20 training videos. We set ∆t = 0.004s, D = 256, C = 64,K = 10, S = 10,
and T = 128 for CLEVRER [10] and T = 20 for Real-Billiard [9]. In addition to our standard
model that grounds object properties from question-answer pairs, we also train a variant (VRDP †)
on CLEVRER with an explicit rule-based program executor [10] and object attribute supervisions
(attribute annotation in 4000 frames learned by the Faster R-CNN model).
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For the physical model, we use the L-BFGS optimizer [8] with an adaptive learning rate to optimize
all physical parameters. The optimization terminates when it reaches a certain number of steps
or the loss is less than a certain value. In all experiments, the number of the optimization step is
set to 20. The loss threshold is set to 0.0005 for the learning of collision-independent parameters
(i.e., initial velocity, initial location, and initial angle), and 0.0002, 0.001, 0.01 for the optimization
of collision-dependent parameters (mass and restitution) on [0, 40], [0, 80], and [0, 128] frames,
respectively.

The training of VRDP can be summarized into three stages. First, we extract the visual features
directly from the video by the visual perception module, and learn language concepts in the concept
learner from all descriptive and explanatory questions; second, we optimize all physical parameters
by using the perceived trajectories and the learned concepts; third, after obtaining the physics model,
we re-calculate the visual features from the simulated trajectories and finetune language concept
embeddings from all question types, including predictive and counterfactual questions. During this
training process, the three parts of VRDP are integrated seamlessly and benefit each other.

A.5 Visualizations

We show visualization examples (including failure cases) on CLEVRER [10] in Fig. 3 and Fig. 4. We
also show examples on Real-Billiards [9] in Fig. 5. These figures show that our model can accurately
learn physical parameters from video and language and perform causal simulations, predictive
simulations, and counterfactual simulations for dynamic visual reasoning. Note that the billiard table
is a chaotic system, and highly accurate long-term prediction is intractable. For more failure analysis,
please refer to our main paper.

Broader Impact

Our work focuses on dynamic visual reasoning about object interactions, dynamics, and physics with
question answering, which is central to human intelligence and a key goal of artificial intelligence.
We envision that the work will benefit a wide range of applications involving cognition and reasoning,
such as robot control. The proposed method improves the accuracy, interpretability, and robustness
of these applications, ultimately leading to better safety. We do not foresee obvious undesirable
ethical/social impacts at this moment.
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Descriptive Q1: How many collisions happen? A: 2

Input Frames Causal Simulation

Predictive Simulation

Counterfactual Simulation
(without the blue cylinder)

Explanatory Q: Which of the following is not responsible for the collision 
between the blue cylinder and the cube? 
a) The collision between the gray sphere and the blue sphere.
b) The presence of the gray metal object.
c) The presence of the gray rubber object.

A: True
A: True
A: False

Descriptive Q2: What shape is the first object to collide with the blue cylinder? A: sphere

Predictive Q: Which event will happen next? 
a) The gray sphere and the cube collide.
b) The brown cube and the blue object collide.
c) The blue cylinder exits the scene.

Counterfactual Q: Without the blue cylinder, what will happen?
a) The metal sphere collide with the cube.
b) The cube and the rubber object collide.
c) The metal sphere collide with the gray rubber object.

Descriptive Q3: What color is the object that exits the scene? A: gray

A: True
A: True
A: False

A: True
A: False
A: False

GT: 2

GT: True
GT: True
GT: False

GT: sphere
GT: gray

GT: True
GT: False
GT: False

GT: True
GT: False
GT: False

Mistake: because the gray sphere does not collide in the video, we cannot optimize its mass and restitution (set to the default).

———————————————————————————————————————-

Descriptive Q1: How many collisions happen? A: 3

Input Frames Causal Simulation

Predictive Simulation

Counterfactual Simulation
(without the cyan sphere)

Explanatory Q: Which of the following is not responsible for the collision 
between the yellow cylinder and the sphere? 
a) The presence of the red cube.
b) The collision between the cube and the cyan sphere.
c) The presence of the brown cylinder.

A: True
A: True
A: False

Descriptive Q2: What shape is the first object that enter the scene? A: cube

Predictive Q: Which event will happen next? 
a) The cyan sphere and the brown cylinder collide.
b) The yellow object exits the scene.

Counterfactual Q: Without the cyan sphere, what will happen?
a) The cube collide with the brown object.
b) The cube and the yellow object collide.
c) The brown cylinder collide with the yellow object.

Descriptive Q3: How many cylinders enter the scene after the cube enters? A: 1

A: False
A: False

A: False
A: True
A: False

GT: 3

GT: True
GT: True
GT: False

GT: cube
GT: 1

GT: False
GT: False

GT: False
GT: True
GT: False

Descriptive Q4: What color is the object that is stationary? A: brown GT: brown

Figure 3: Visualization (1) of the videos and question-answering results of our VRDP on CLEVRER.
We highlighted our failure in red and explained the cause of it.
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Descriptive Q1: Are there any moving red objects when the video ends? A: no

Input Frames Causal Simulation

Predictive Simulation

Counterfactual Simulation
(without the green cylinder)

Explanatory Q: Which of the following is not responsible for the sphere's 
exiting the scene?
a) The presence of the cyan object.
b) The presence of the purple rubber cube.
c) The presence of the green metal cylinder.
d) The collision between the sphere and the cyan cylinder.

A: True
A: False
A: True
A: True

Descriptive Q2: What color is the object that enters the scene? A: purple

Predictive Q: Which event will happen next? 
a) The green cylinder and the sphere collide.
b) The green cylinder collides with the cube.

Counterfactual Q: Without the green cylinder, what will not happen?
a) The sphere and the cube collide.
b) The sphere and the cyan cylinder collide.
c) The cube and the cyan cylinder collide.

Descriptive Q3: What is the color of the first object to collide with the sphere? A: green

A: False
A: True

A: True
A: True
A: True

GT: no

GT: True
GT: False
GT: True
GT: True

GT: purple
GT: green

GT: False
GT: True

GT: False
GT: True
GT: True

Mistake: since only a part of the purple object is in the image plane in many frames, our model underestimates its velocity.

———————————————————————————————————————-

Descriptive Q1: What is the material of the last object that enters the scene? A: metal

Input Frames Causal Simulation

Predictive Simulation

Counterfactual Simulation
(without the blue cylinder)

Explanatory Q: Which of the following is responsible for the collision between 
the cylinder and the metal object? 
a) The presence of the blue rubber cube.
b) The cube's colliding with the cylinder.
c) The presence of the blue rubber sphere.

A: True
A: True
A: False

Descriptive Q2: What is the material of the last object to collide with the cylinder?A: metal

Predictive Q: Which event will happen next? 
a) The metal object collides with the blue sphere.
b) The cube and the blue sphere collide.

Counterfactual Q: If the cylinder is removed, which event will happen?
a) The cube collides with the rubber sphere.
b) The cube and the metal sphere collide.
c) The green sphere and the rubber sphere collide.

Descriptive Q3: How many blue cubes enter the scene? A: 1

A: False
A: True

A: False
A: True
A: False

GT: metal

GT: True
GT: True
GT: False

GT: metal
GT: 1

GT: False
GT: True

GT: False
GT: True
GT: False

Descriptive Q4: How many moving green objects are there when the video ends? A: 2 GT: 2

Figure 4: Visualization (2) of the videos and question-answering results of our VRDP on CLEVRER.
We highlighted our failure in red and explained the cause of it.
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Type Operation Signature

Input
Operations

Start ()→ event
Returns the special “start” event
end ()→ event
Returns the special “end” event
Objects ()→ objects
Returns all objects in the video
Events ()→ events
Returns all events happening in the video
UnseenEvents ()→ events
Returns all future events happening in the video

Output
Operations

Query_color (object)→ color
Returns the color of the input object
Query_material (object)→ material
Returns the material of the input objects
Query_shape (object)→ shape
Returns the shape of the input objects
Count (objects)→ int
Returns the number of the input objects/ events (events)→ int
Exist (objects)→ bool
Returns “yes” if the input objects is not empty
Belong_to (event, events)→ bool
Returns “yes” if the input event belongs to the input event sets
Negate (bool)→ bool
Returns the negation of the input boolean

Physics
Operations

Counterfactual_simulation (object)→ events, representations
Perform simulation with the object removed
Predictive_simulation (objects)→ events, representations
Perform simulation after the video ends
Apply_heavier (object)→ object
Assign the object five times its weight before the counterfactual simulation
Apply_lighter (object)→ object
Assign the object one-fifth of its weight before the counterfactual simulation

Object
Filter
Operations

Filter_static_concept (objects, concept)→ objects
Select objects from the input list with the input static concept
Filter_dynamic_concept (objects, concept, frame)→ objects
Selects objects in the input frame with the dynamic concept
Unique (objects)→ object
Return the only object in the input list

Event
Filter
Operations

Filter_in (events, objects)→ events
Select incoming events of the input objects
Filter_out (events, objects)→ events
Select existing events of the input objects
Filter_collision (events, objects)→ events
Select all collisions that involve an of the input objects
Get_col_partner (event, object)→ object
Return the collision partner of the input object
Filter_before (events, events)→ events
Select all events before the target event
Filter_after (events, events)→ events
Select all events after the target event
Filter_order (events, order)→ event
Select the event at the specific time order
Filter_ancestor (event, events)→ events
Select all ancestors of the input event in the causal graph
Get_frame (event)→ frame
Return the frame of the input event in the video
Unique (events)→ event
Return the only event in the input list

Table 1: All neuro-symbolic operations on the CLEVRER dataset [10]. Our model contains five types
of operations, including input, output, physics, object filter, and event filter operations. In this table,
“order” denotes the chronological order of an event, e.g.“First”, “Second” and “Last”; “static concept”
denotes object-level static concepts like “Blue”, “Cube” and “Metal”; “dynamic concept” represents
object-level dynamic concepts like “Moving” and “Stationary”; and “representations” denotes the
visual features that are calculated from object trajectories.
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Q1: Will the yellow billiard collide with the right 
side of the billiard table?

Ground Truth

Our Prediction

Ground Truth

Our Prediction

Ours: True
GT: True

Q2: Will the yellow billiard collide with the top 
side of the billiard table?

Ours: False
GT: False

Q3: Will the white billiard collide with the right 
side of the billiard table?

Ours: True
GT: True

Q4: Will the white billiard collide with the top side 
of the billiard table?

Ours: True
GT: True

Q1: Will the yellow billiard collide with the right 
side of the billiard table?

Ours: True
GT: True

Q2: Will the yellow billiard collide with the red 
billiard?

Ours: False
GT: False

Q3: Will the yellow billiard collide with the bottom 
side of the billiard table? 

Ours: False
GT: False

Q4: Will the yellow billiard collide with the white 
billiard?

Ours: False
GT: False

Figure 5: Visualization examples of the videos and question-answering results of our VRDP on Real-
Billiards. Note that the billiard table is a chaotic system, and highly accurate long-term prediction is
intractable.
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