
A Proof of Lemma 2

To prove Lemma 2 we start by proving a few inequalities. Since A is an (ε1, ε2,Q)-solver, using
Definition 4 and Taylor’s expansion, we get for any i ∈ [n] and j ∈ [k],

Ûαij ≤ (Uij + ε2)α (11)

= Uαij + αUα−1
ij ε2 + o(ε22) (12)

≤ Uαij + αε2 + o(ε22), (13)

where the last inequality follows from the fact that Uij ≤ 1. Also, for any i ∈ [n] and j ∈ [k], we
have ∥∥xi − µ̂j∥∥2

2
=
∥∥xi − µj∥∥2

2
+ 2 · (xi − µj)T (µj − µ̂j) +

∥∥µj − µ̂j∥∥2

2
(14)

≤
∥∥xi − µj∥∥2

2
+ 4 · R · ε1 + ε21, (15)

where the inequality follows from the fact that A is an (ε1, ε2,Q)-solver, the Cauchy-Schwarz
inequality, and the fact that since xi ∈ B(0,R) so as µj ∈ B(0,R), and thus

∥∥xi − µj∥∥2

2
≤ 4 · R2.

Finally, we have for any i 6= j ∈ [k],∥∥µ̂i − µ̂j∥∥2

2
≥
∥∥µi − µj∥∥2

2
+ ‖µ̂i − µi‖

2
2 +

∥∥µ̂j − µj∥∥2

2
+ 2(µi − µj)T (µ̂i − µi)

+ 2(µi − µj)T (µ̂j − µj) + 2(µ̂i − µi)T (µ̂j − µj) (16)

≥
∥∥µi − µj∥∥2

2
− 2ε21 − 8Rε1 − 2ε21 (17)

=
∥∥µi − µj∥∥2

2
− 8Rε1 − 4ε21. (18)

Now, with the above results, we note that

Jfm(X , P̂) =

n∑
i=1

k∑
j=1

Ûαij
∥∥xi − µ̂j∥∥2

2
(19)

≤
n∑
i=1

k∑
j=1

Uαij
∥∥xi − µ̂j∥∥2

2
+ αε2

n∑
i=1

k∑
j=1

∥∥xi − µ̂j∥∥2

2
+ o(ε22). (20)

Now since µj ∈ B(0,R), we can say that µ̂j ∈ B(0,R+ ε1). Therefore,
∥∥xi − µ̂j∥∥2

2
≤ 2[R2 + (R+

ε1)2]. Hence,

Jfm(X , P̂) ≤
n∑
i=1

k∑
j=1

Uαij
∥∥xi − µ̂j∥∥2

2
+ 2nkαε2[R2 + (R + ε1)2] + o(ε22). (21)

Next, using (15), we get

n∑
i=1

k∑
j=1

Uαij
∥∥xi − µ̂j∥∥2 ≤

n∑
i=1

k∑
j=1

Uαij
∥∥xi − µj∥∥2

2
+
[
4 · R · ε1 + ε21

] n∑
i=1

k∑
j=1

Uαij (22)

≤
n∑
i=1

k∑
j=1

Uαij
∥∥xi − µj∥∥2

2
+ n

[
4 · R · ε1 + ε21

]
(23)

= Jfm(X ,P) + n
[
4 · R · ε1 + ε21

]
, (24)

where the second inequality follows from the fact that Uij ∈ [0, 1], and thus
∑n
i=1

∑k
j=1 U

α
ij ≤∑n

i=1

∑k
j=1 Uij = n. Therefore, we obtain

Jfm(X , P̂) ≤ Jfm(X ,P) + n
[
4 · R · ε1 + ε21

]
+ 2nkαε2[R2 + (R + ε1)2] + o(ε22) (25)

≤ Jfm(X ,P) + n ·O(ε1) + nk ·O(ε2) + n · o(ε21) + nk · o(ε22). (26)

14

We are now in a position to bound XB(X , P̂). Using (18) and (26), we have

XB(X , P̂) =
Jfm(X , P̂)

nk ·mini 6=j
∥∥µ̂i − µ̂j∥∥2

2

(27)

≤ Jfm(X ,P) + n ·O(ε1) + nk ·O(ε2) + n · o(ε21) + nk · o(ε22)

nk ·
[
mini 6=j

∥∥µi − µj∥∥2

2
− 8Rε1 − 4ε21

] (28)

=
Jfm(X ,P)

nk ·mini 6=j
∥∥µi − µj∥∥2

2

+
n ·O(ε1) + nk ·O(ε2) + n · o(ε21) + nk · o(ε22)

nk ·mini 6=j
∥∥µi − µj∥∥2

2

+
Jfm(X ,P)

nk ·mini 6=j
∥∥µi − µj∥∥2

2

O(ε1)

mini 6=j
∥∥µi − µj∥∥2

2

+ o(ε21 + ε22) (29)

= XB(X ,P) + XB(X ,P) · O(ε1)

mini 6=j
∥∥µi − µj∥∥2

2

+
O(ε2)

mini6=j
∥∥µi − µj∥∥2

2

+ o

(
ε21 + ε22

mini6=j
∥∥µi − µj∥∥2

2

)
. (30)

Using the same steps a similar lower bound can be obtained, which concludes the proof.

B Auxiliary Lemmata

In this section we present and prove a few auxiliary results which will be used in the proofs our main
results. We start with the following standard concentration inequalities.
Lemma 3 (Hoeffding’s inequality). Let X1,X2, . . . ,Xn be i.i.d random variables, such that |Xi| ≤ R
a.s., and EXi = µ, for all i ∈ [n]. Then, with probability at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

Xi − µ

∣∣∣∣∣ ≤ Rε, (31)

if n ≥ c log(1/δ)
2ε2 , where c > 0 is some absolute constant.

Lemma 4 (Generalized Hoeffding’s inequality). Let X1,X2, . . . ,Xn be i.i.d random vectors, such
that ‖Xi‖2 ≤ R a.s., and EXi = µ, for all i ∈ [n]. Then, with probability at least 1− δ,∣∣∣∣∣

∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ R2ε, (32)

if n ≥ c log(1/δ)
ε2 , where c > 0 is some absolute constant.

The following locality lemma states that the fuzzy k-means function is strictly increasing.
Lemma 5. Let (X ,P?) be a clustering instance, where P? refers to the optimal solution for the
fuzzy k-mean problem (namely, minimizes the objective in (2)). Then, for any i, j ∈ [n] and ` ∈ [k]

with ‖xi − µ?`‖
2
2 ≤ ‖xj − µ

?
`‖

2
2, we have Ui` ≥ Uj`.

Proof of Lemma 5. Consider some i, j ∈ [n] and ` ∈ [k] with ‖xi − µ?`‖
2
2 ≤ ‖xj − µ

?
`‖

2
2. By

definition {U?i`}ni=1 minimizes the cost
∑n
i=1 U

α
i` ‖xi − µ`‖

2
2. This implies that,

Uαi` ‖xi − µ`‖
2
2 + Uαj` ‖xj − µ`‖

2
2 ≤ Uαj` ‖xi − µ`‖

2
2 + Uαi` ‖xj − µ`‖

2
2 , (33)

which is equivalent to,

Uαi`

[
‖xi − µ`‖

2
2 − ‖xj − µ`‖

2
2

]
≤ Uαj`

[
‖xi − µ`‖

2
2 − ‖xj − µ`‖

2
2

]
. (34)

Since ‖xi − µ`‖
2
2 − ‖xj − µ`‖

2
2 ≤ 0, we get Uαi` ≥ Uαj`, which concludes the proof.

15

Algorithm 6 Algorithm for estimating the mean µj for any j ∈ [k].

Input: X , Ofuzzy, α, and m.
Output: µ̂j

1: Initialize S ← φ.
2: for s = 1, 2, . . . ,m do
3: Sample i uniformly at random from [n] and update S ← S ∪ {i}.
4: Query Ofuzzy(i, j).
5: end for
6: Compute µ̂j =

∑
i∈S Uαijxi∑
i∈S Uαij

.

Next, we analyze the performance of Algorithm 6, which estimates the center of a given cluster using
a set of randomly sampled elements. Note that this algorithm is used as a sub-routine in Algorithm 1.
Lemma 6 (Estimate of mean using uniform sampling). Let (X ,P) be a consistent center-based
clustering instance, and let δ ∈ (0, 1). With probability at least 1−δ, Algorithm 6 outputs an estimate
µ̂j such that

∥∥µj − µ̂j∥∥2

2
≤ 4R2

Y2

√
c

m
log

1

δ
, (35)

where Y , minj∈[k]
1
n

∑
i∈[n] U

α
ij , and c > 0 is some absolute constant.

Proof of Lemma 6. First, note that

µ̂j =

∑
i∈S U

α
ijxi∑

i∈S U
α
ij

=
(1/m)

∑
i∈S U

α
ijxi

(1/m)
∑
i∈S U

α
ij

,
λ̄x
Ȳ
. (36)

Recall that the true mean of the jth cluster is

µj =

∑
i∈[n] U

α
ijxi∑

i∈[n] U
α
ij

=
(1/n)

∑
i∈[n] U

α
ijxi

(1/n)
∑
i∈[n] U

α
ij

,
λx
Y
. (37)

It is clear that λ̄x and Ȳ are an unbiased estimators of λx and Y, respectively. Now, note that we can
write λ̄x as an average of m i.i.d random variables x̄ip = Uαipjxip , where ip is sampled uniformly
at random from [n], and included to the set S in the third step of Algorithm 6 as the pth sample.
Similarly, Ȳ can also be written as the average ofm i.i.d random variables Ȳip = Uαipj . Further, notice
that Ex̄ip = λx,

∥∥x̄ip∥∥2
≤ R, and similarly, EȲip = Y, and

∣∣Ȳi,p∣∣ ≤ 1, for all p ∈ {1, 2, . . . ,m}.
Next, note that

µ̂j =
λ̄x
Ȳ

=
µx
Y

+
λ̄x − λx

Y
+
λ̄x
Ȳ

Y − Ȳ

Y
. (38)

Thus, using the triangle inequality we get∥∥µ̂j − µj∥∥2
≤
∥∥∥∥ λ̄x − λxY

∥∥∥∥
2

+

∥∥∥∥ λ̄xȲ Y − Ȳ

Y

∥∥∥∥
2

≤
∥∥∥∥ λ̄x − λxY

∥∥∥∥
2

+ R

∥∥∥∥ Ȳ − Y

Y

∥∥∥∥
2

, (39)

where in the last inequality we have used the fact that
∥∥µ̂j∥∥2

=
∥∥λ̄x/Ȳ∥∥2

≤ R. Then, the generalized
Hoeffding’s inequality in Lemma 4, implies that with probability at least 1− δ,∥∥λ̄x − λx∥∥2

2
≤ R2

√
c

m
log

1

δ
, (40)

for some c > 0, and thus, ∥∥µ̂j − µj∥∥2

2
≤ 4R2

Y2

√
c

m
log

1

δ
. (41)

which concludes the proof.

16

The following lemma shows that if for a given cluster j we have been able to approximate its center
well enough, then Algorithm 2 computes good estimates of the corresponding membership weights
with high probability.
Lemma 7 (Estimate of membership given estimated center). Let (X ,P) be a consistent center-based
clustering instance, and recall the definition of γ ∈ R+ in (8). Assume that for any j ∈ [k], there
exists an estimator µ̂j such that

∥∥µj − µ̂j∥∥2
≤ ε with ε ≤ γ. Then, Algorithm 2 outputs Ûij , for

i ∈ [n], such that

0 ≤ Uij − Ûij ≤ η, Ûij ∈ {0, η, 2η, . . . , 1}, ∀i ∈ [n], (42)

for some η ∈ R+, using Q = O (log n/η) queries to the membership-oracle.

Proof of Lemma 7. First, note that since P is a consistent center-based clustering, we have

Uπµj (i1)j ≥ Uπµj (i2)j if i1 < i2, i1, i2 ∈ [n]. (43)

Indeed, when the elements of X are sorted in ascending order according to their distance from µj , if
xi1 is closer to µj than it is to xi2 , then Ui1j > Ui2j . Also, since

∥∥µj − µ̂j∥∥2
≤ ε ≤ γ, using (8),

this ordering remains the same. Therefore, sorting the elements in X in ascending order from µ̂j as
in the first step of Algorithm 2 gives the same ordering with respect to the true mean. Now, given
η ∈ R+, for each s ∈ {0, 1, 2, . . . , 1/η}, in the third step of Algorithm 2 we binary search to find an
index `s such that

`s = argmax
i∈[n]

Uπµ̂j (i)j ≥ sη. (44)

This is done by using O(log n/η) membership-oracle queries. Finally, in the last three steps of
Algorithm 2, for each s ∈ {0, 1, 2, . . . , 1/η}, and for i ∈ {`s, `s − 1, . . . , `(s+1) + 1}, we assign
Ûπµ̂j (i)j = sη. It is then clear that the estimated memberships satisfy (42), which concludes the
proof.

C Proof of Theorem 1

In this section, we prove Theorem 1. To that end we use the auxiliary results established in the
previous section. We start with the following result.
Lemma 8 (Estimate all means). Let (X ,P) be a consistent center-based clustering instance, recall
the definition of β ∈ (0, 1) in (??), and let δ ∈ (0, 1). Then, with probability at least 1−δ, Algorithm 6

outputs µ̂j such that
∥∥µ̂j − µj∥∥2

≤ ε, for all j ∈ [k], if m ≥
(

Rkα

εβα

)4

c log k
δ , for some c > 0.

Proof. Using (??) and Hölder’s inequality, for any j ∈ [k] we have,∑
i∈[n]

Uαij

1/α∑
i∈[n]

1α/(α−1)

(α−1)/α

≥
∑
i∈[n]

Uij ≥
βn

k
, (45)

which implies that ∑
i∈[n]

Uαij

1/α

≥ βn

kn(α−1)/α
=
βn1/α

k
, (46)

and thus ∑
i∈[n]

Uαij ≥
nβα

kα
. (47)

Therefore,

Y = min
j∈[k]

∑
i∈[n] U

α
ij

n
≥
(β
k

)α

17

Now, using Lemma 6 and the last result, taking a union bound over all j ∈ [k], we get∥∥µ̂j − µj∥∥2
≤ 2Rkα

βα

(c
m

log
1

δ′

)1/4

≤ ε. (48)

with probability 1 − kδ′. Rearranging terms and substituting δ = kδ′, we get the proof of the
lemma.

Proof of Theorem 1. We are now in a position to prove Theorem 1. Using Lemma 8, we can conclude

that by taking m ≥
(

Rkα

εβα

)4

c log k
δ in Algorithm 1, which would require km membership-oracle

queries, we get
∥∥µ̂j − µj∥∥2

≤ ε, for all j ∈ [k]. The time-complexity required to estimate all
these means is of order O(kdm). Furthermore, using Lemma 7, using O(log n/η) membership-
oracle queries, Algorithm 1 outputs membership estimates such that (42) holds. This requires a
time-complexity of order O(log n/η). We note, however, that the membership {Ûij}kj=1, for any
i ∈ [n], may not sum up to unity, which is an invalid solution. To fix that in step 7 of Algorithm 1

we add to each Ûij a factor of
1−

∑k
j=1 Ûij
k , and then it is clear that the new estimated membership

weights sum up to unity. Furthermore, these updated membership weights satisfy |Ûij−Uij | ≤ η, for
all i ∈ [n] and j ∈ [k]. Therefore, we have shown that Algorithm 1 is (ε, η,Q)-solver with probability
at least 1− δ, which concludes the proof.

D Proof of Theorem 2

In this section, we prove Theorem 2 using induction.

Base Case: As can be seen from Algorithm 4, in the first step of this algorithm we sample m indices
uniformly at random and obtain the multiset S ⊆ X . Subsequently, we we query Uij for all i ∈ S
and j ∈ [k], and then in the third step of the algorithm we choose the cluster t1 with the highest
membership value, namely,

t1 = argmax
j∈[k]

∑
i∈S

Uαij . (49)

Then, in the fourth step of this algorithm we estimate the mean of this cluster by

µ̂t1 ,

∑
i∈S U

α
ijxi∑

i∈S U
α
ij

. (50)

We have the following lemma, which is similar to Lemma 6.
Lemma 9 (Guarantees on the largest cluster). Let (X ,P) be a consistent center-based clustering
instance, and let δ ∈ (0, 1). With probability at least 1− δ/k, the estimator in (50) satisfies

∥∥µ̂t1 − µt1∥∥2
≤

2R
(
c
m log 2k

δ

)1/4
1
kα −

√
c

2m log 2k
δ

, (51)

where c > 0 is an absolute constant.

Proof of Lemma 9. Recall that Lemma 6 tells us that with probability at least 1− δ/(2k),∥∥µ̂t1 − µt1∥∥2
≤ 2R

Y

(
c

m
log

2k

δ

)1/4

, (52)

where Y = (1/n)
∑
i∈[n] U

α
it1

. Now, since t1 is chosen as the cluster with the maximum membership

in the subset S, we will first bound Ŷ , (1/m)
∑
i∈S U

α
it1

. Notice that
∑
i∈S
∑k
j=1 Uij = m, and

therefore, using Hölder’s inequality we have that for α > 1,∑
i∈S

k∑
j=1

Uαij

1/α∑
i∈S

k∑
j=1

1α/(α−1)

(α−1)/α

≥
∑
i∈S

k∑
j=1

Uij ≥ m, (53)

18

which implies that ∑
i∈S

k∑
j=1

Uαij

1/α

≥ m

(km)(α−1)/α
=

m1/α

k(α−1)/α
, (54)

and therefore, ∑
i∈S

k∑
j=1

Uαij ≥
m

kα−1
. (55)

Accordingly, we must have
∑
i∈S Uit1 ≥

m
kα which in turn implies that Ŷ ≥ 1

kα . Next, using

Hoeffding’s inequality in Lemma 3 we obtain that |Y − Ŷ| ≤
√

c
2m log 2k

δ , with probability at least

1− δ/(2k), and therefore Y ≥ Ŷ −
√

c
2m log 2k

δ , which concludes the proof.

Using the above result and Lemma 7 we obtain the following corollaries.
Corollary 4. Let (X ,P) be a consistent center-based clustering instance, and let δ ∈ (0, 1).
Then, with probability at least 1 − δ/k, the estimator in (50) satisfies

∥∥µ̂t1 − µt1∥∥2
≤ ε, if

m ≥ cR4k4α

ε4 log 2k
δ . Also, this estimate requires O

(
R4k4α+1

ε4 log 2k
δ

)
membership-oracle queries,

and a time-complexity of O
(
dR4k4α

ε4 log 2k
δ

)
.

Proof of Corollary 4. The proof follows from rearranging terms of Lemma 9. The query complexity
follows from the fact that we query the membership values Uij for all the i ∈ S, j ∈ [k] and the
time-complexity follows from the fact that we take the mean of m d-dimensional vectors in order to
return the estimator µ̂t1 .

Corollary 5. Let (X ,P) be a consistent center-based clustering instance, and recall the definition
of γ ∈ R+ in (8). Assume that there exists an estimator µ̂t1 such that

∥∥µt1 − µ̂t1∥∥2
≤ ε with ε ≤ γ.

Then, Algorithm 4 outputs Ûit1 , for i ∈ [n], such that

0 ≤ Uit1 − Ûit1 ≤ η1, Ûit1 ∈ {0, η1, 2η1, . . . , 1}, ∀i ∈ [n], (56)

for some η ∈ R+, using Q = O (log n/η1) queries to the membership-oracle.

Proof of Corollary 5. The proof of this lemma follows the same steps as in the proof of Lemma 7.

Corollaries 4 and 5 show that the base case of our induction is correct.

Induction Hypothesis: We condition on the event that we have been able to estimate
µt1 ,µt2 , . . . ,µt` by their corresponding estimators µ̂t1 , µ̂t2 , . . . , µ̂t` , respectively, such that∥∥∥µ̂tj − µtj∥∥∥

2
≤ ε, ∀ j ∈ [`], (57)

and further, we have been able to recover Uitj , for all i ∈ [n] and j ∈ [`], in the sense that

0 ≤ Uitj − Ûitj ≤ η1, Ûitj ∈ {0, η1, 2η1, . . . , 1} ,∀ i ∈ [n], j ∈ [`]. (58)

The induction hypothesis states that we have been able to estimate the means of ` clusters up to an
error of ε and subsequently also estimated the memberships of every element in X to those ` clusters
such that the estimated memberships are an integral multiple of η1 and also have a precision error of
at most η1. Given the induction hypothesis, we characterize next the sufficient query complexity and
time-complexity required in order to estimate the mean of the (`+ 1)th cluster and its membership
weights.

Inductive Step: Let Z` ,
∑
i∈[n]

∑
j∈[`] Uitj , and define Xs , {i ∈ [n] :

∑
j∈[`] Ûitj = sη1}, for

s ∈ {0, 1, . . . , 1/η1}. In step 10 of Algorithm 4, we sub-sample r indices uniformly at random

19

with replacement from each of the sets Xs, for s ∈ {0, 1, 2, . . . , 1/η1} . Let us denote the multi-
set of indices chosen from Xs by Ys. Subsequently, in the step 12 of Algorithm 4, for every
s ∈ {0, 1, 2, . . . , 1/η1} and for every element in Ys, we query the memberships to all the clusters
except t1, t2, . . . , t` from the oracle, and set

t`+1 = argmax
j∈[k]\{t1,t2,...,t`}

∑
s

|Xs|
r

∑
i∈Ys

Uαij . (59)

Step 13 of Algorithm 4 computes

µ̂t`+1 ,

∑
s
|Xs|
r

∑
i∈Ys U

α
it`+1

xi∑
s
|Xs|
r

∑
i∈Ys U

α
it`+1

. (60)

The following analysis the performance of the estimator in (60). We relegate the proof of this result
to the end of this section.
Lemma 10 (Performance of (60)). Let (X ,P) be a consistent center-based clustering instance, and
let δ ∈ (0, 1). With probability at least 1− δ/k, the estimator in (60) satisfies

∥∥∥µ̂t`+1
− µt`+1

∥∥∥
2
≤

2R
(
c
r log 4k

η1δ

)1/4 (
n− Z` + n`η1

)
(
n−Z`−n`η1

√
c
2r log 4k

η1δ

)α
nα−1(k−`)α − (n− Z` − n`η1)

√
c
2r log 4k

η1δ

, (61)

where c > 0 is an absolute constant. The query and time-complexity required for evaluating this
estimator are of order O(kr/η1) and O(rd/η1), respectively.

Using the above result and Lemma 7 we obtain the following corollaries.
Corollary 6. Let (X ,P) be a consistent center-based clustering instance, recall the definition of β ∈
(0, 1) in (??), and let δ ∈ (0, 1). Then, with probability at least 1− δ/k, the estimator in (60) satisfies∥∥∥µ̂t`+1

− µt`+1

∥∥∥
2
≤ ε, if r ≥ c′R4k4α

ε4β4α−4 log 4k
η1δ

and η1 ≤ 1
k

(
1− β

k

)
. Also, this estimate requires

O
(

R4k4α+1

ε4β4α−4 log 4k
η1δ

)
membership-oracle queries, and a time-complexity of O

(
R4k4α

ε4β4α−4 log 4k
η1δ

)
.

Proof of Corollary 6. Using (??) and the fact that n − Z` =
∑
i∈[n]

∑
j∈[k]\[`] Uitj , we have the

following upper and lower bound
n− Z`
k − `

≥ βn

k
and n− Z` ≤ n−

βn

k
, (62)

which follows from the fact that the average membership size of the any k − ` clusters must be
larger than the membership size of the smallest cluster. Thus, if η1 ≤ 1

k

(
1− β

k

)
, as claimed in the

statement of the lemma, we have n`η1 ≤ n− Z`. With the chosen values of η1 and r, and the fact
that ` < k, we get n`η1

√
c
2r log 4k

η1δ
= o(n− Z`). Therefore,

∥∥∥µ̂t`+1
− µt`+1

∥∥∥
2
≤

4R
(
c
r log 4k

η1δ

)1/4

(n− Z`)

(n−Z`)α
nα−1(k−`)α − 2

√
c
2r log 4k

η1δ
(n− Z`)

(63)

=
4R
(
c
r log 4k

η1δ

)1/4

(n−Z`)α−1

nα−1(k−`)α − 2
√

c
2r log 4k

η1δ

(64)

≤
4R
(
c
r log 4k

η1δ

)1/4

βα−1

kα(k−`) − 2
√

c
2r log 4k

η1δ

. (65)

Again, for the chosen value of r, it is clear that
√

c
2r log 4k

η1δ
= o

(
βα−1

kα(k−`)

)
, and thus we get that∣∣∣∣∣∣µ̂t`+1

− µt`+1

∣∣∣∣∣∣
2
≤ ε, with probability at least 1− δ/k.

20

Corollary 7. Let (X ,P) be a consistent center-based clustering instance, and recall the definition

of γ ∈ R+ in (8). Assume that there exists an estimator µ̂t`+1
such that

∥∥∥µt`+1
− µ̂t`+1

∥∥∥
2
≤ ε with

ε ≤ γ. Then, Algorithm 4 outputs Ûit`+1
, for i ∈ [n], such that

0 ≤ Uit`+1
− Ûit`+1

≤ η1, Ûit`+1
∈ {0, η1, 2η1, . . . , 1}, ∀i ∈ [n], (66)

for some η ∈ R+, using Q = O (log n/η1) queries to the membership-oracle.

Proof of Corollary 7. The proof of this lemma follows the same steps as in the proof of Lemma 7.

Proof of Theorem 2. We are now in a position to proof Theorem 2. To that end, we use our
induction mechanism. Specifically, Corollaries 4 and 5 prove the base case for the first cluster t1.
Subsequently, Corollaries 6 and 7 prove the induction step after taking a union bound over all clusters
and using η1 = 1

k

(
1 − β

k

)
. Finally, we can use Lemma 7 in order to estimate the memberships

Uij ∀ i ∈ [n], j ∈ [k] up to a precision of η2 using an addition query and time-complexity of
O(k log n/η2).

It is left to prove Lemma 10.

Proof of Lemma 10. Let Σ , {0, 1, . . . , 1/η1}. We have

µt`+1
=

∑
i∈[n] U

α
it`+1

xi∑
i∈[n] U

α
it`+1

=

∑
s∈Σ

∑
i∈Xs U

α
it`+1

xi∑
s∈Σ

∑
i∈Xs U

α
it`+1

,

∑
s∈Σ λs∑
s∈Σ Ys

, (67)

and that

µ̂t`+1
=

∑
s∈Σ

|Xs|
r

∑
i∈Ys U

α
it`+1

xi∑
s∈Σ

|Xs|
r

∑
i∈Ys U

α
it`+1

,

∑
s∈Σ λ̄s∑
s∈Σ Ȳs

. (68)

Now, note that we can write λ̄s as an average of r i.i.d random variables x̄s,ip , |Xs|Uαipt`+1
xip ,

where ip is sampled uniformly at random from [n], and included to the set Ys in the step 9 of
Algorithm 4 as the pth sample. Similarly, Ȳs can also be written as the average of r i.i.d random
variables Ȳs,ip = |Xs|Uαipt`+1

. Therefore, it is evident that Ex̄s,ip = λs and EȲs,ip = Ys for all
p ∈ [r]. This implies that the numerator and denominator of (68) are both unbiased. Now, note that

µ̂t`+1
=

∑
s∈Σ λ̄s∑
s∈Σ Ȳs

=

∑
s∈Σ λs∑
s∈Σ Ys

+

∑
s∈Σ λ̄s − λs∑

s∈Σ Ys
+

∑
s∈Σ λ̄s∑
s∈Σ Ȳs

∑
s∈Σ Ys − Ȳs∑

s∈Σ Ys
. (69)

Thus, using the triangle inequality we get∥∥∥µ̂t`+1
− µt`+1

∥∥∥
2
≤
∑
s∈Σ

∥∥∥∥ λ̄s − λs∑
s∈Σ Ys

∥∥∥∥
2

+ R
∑
s∈Σ

∥∥∥∥ Ys − Ȳs∑
s∈Σ Ys

∥∥∥∥
2

, (70)

where the last inequality follows from the fact that
∥∥∥µ̂t`+1

∥∥∥
2

=
∥∥∥∑

s∈Σ λ̄s∑
s∈Σ Ȳs

∥∥∥
2
≤ R.

Next, we note that for i ∈ Ys, we have

Uαit`+1
≤ (1−

∑
j∈[`]

Uitj)
α ≤ (1−

∑
j∈[`]

Ûitj)
α = (1− sη1)α, (71)

where we have used the induction hypothesis in (58). Also, using Lemmas 3 and 4, for all s ∈ Σ,
with probability at least 1− δ/2k,

∣∣∣∣λ̄s − λs∣∣∣∣2 ≤ R|Xs|(1− sη1)α
(
c

r
log

4k

η1δ

)1/4

≤ R|Xs|(1− sη1)

(
c

r
log

4k

η1δ

)1/4

, (72)

21

and ∣∣Ȳs − Ys
∣∣ ≤ |Xs|(1− sη1)α

√
c

r
log

4k

η1δ

≤ |Xs|(1− sη1)

√
c

2r
log

4k

η1δ
. (73)

Using the induction hypothesis in (58) once again, we have

Z` =
∑
s∈Σ

∑
i∈Xs

∑
j∈[`]

Uitj ≤
∑
s∈Σ

∑
i∈Xs

(
`η1 +

∑
j∈[`]

Ûitj

)
≤
∑
s∈Σ

|Xs| sη1 + n`η1, (74)

and thus ∑
s∈Σ

|Xs|(1− sη1) ≤ n− Z` + n`η1. (75)

Next, we lower bound
∑
s∈Σ Ys. To that end, in light of (70), it is suffice to bound

∑
s∈Σ Ȳs. Using

Hölder’s inequality we have(∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`}

Uαij

)1/α(∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`}

1α/(α−1)
)(α−1)/α

≥
∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`}

Uij , (76)

which implies that(∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`}

Uαij

)1/α

≥
∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`} Uij

(r(k − `))(α−1)/α
, (77)

and therefore,

∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`}

Uαij ≥

(∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`} Uij

)α
(r(k − `))(α−1)

. (78)

To further lower bound the r.h.s. of (78), we use the power means inequality and ger∑
s∈Σ

|Xs|
r

(∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`} Uij

)α
∑
s′∈Σ

|Xs′ |
r

≥

(∑
s∈Σ

|Xs|
r

∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`} Uij∑

s′∈Σ
|Xs′ |
r

)α
.

(79)

Thus, the fact that
∑
s∈Σ

|Xs|
r = n

r , combined with (78) and (79), imply that

∑
s∈Σ

|Xs|
r

∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`}

Uαij ≥

(∑
s∈Σ

|Xs|
r

∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`} Uij

)α
(n(k − `))(α−1)

(80)

=

(
n−

∑
s∈Σ

|Xs|
r

∑
i∈Ys

∑
j∈{t1,t2,...,t`} Uij

)α
(n(k − `))(α−1)

. (81)

We next upper bound the term inside the brackets at the r.h.s. of (81). To that end, for a given s, we
define the random variables

Hs,ip , |Xs|

 ∑
j∈{t1,t2,...,t`}

Uipj − sη1

 , (82)

22

where where ip is sampled uniformly at random from [n], and included to the set Ys in the step 9 of Al-
gorithm 4 as the pth sample. With this definition, it is evident that |Xs|r

∑
i∈Ys(

∑
j∈{t1,t2,...,t`} Uij −

sη1) can be written as the average of these r i.i.d random variables, namely,

|Xs|
r

∑
i∈Ys

 ∑
j∈{t1,t2,...,t`}

Uij − sη1

 =
1

r

∑
i∈Ys

Hs,i. (83)

Note that EHs,ip =
∑
i∈Xs

∑
j∈{t1,t2,...,t`} Uij − |Xs|sη1 and

∣∣Hs,ip ∣∣ ≤ `η1 for all ip ∈ [r].
For simplicity of notation we define Zs` ,

∑
i∈Xs

∑
j∈{t1,t2,...,t`} Uij . Then, using Hoeffding’s

inequality in Lemma 3, we have with probability at least 1− δ/4k,∣∣∣∣∣∣ |Xs|r
∑
i∈Ys

 ∑
j∈{t1,t2,...,t`}

Uij − sη1

− Zs` + |Xs|sη1

∣∣∣∣∣∣
≤ |Xs| `η1

√
c

2r
log

4k

η1δ
, (84)

and thus,

|Xs|
r

∑
i∈Ys

∑
j∈{t1,t2,...,t`}

Uij ≤ max

(
|Xs| ,Zs` + |Xs| `η1

√
c

2r
log

4k

η1δ

)
(85)

= Zs` + max

(
|Xs| − Zs`, |Xs| `η1

√
c

2r
log

4k

η1δ

)
. (86)

Summing (86) over s ∈ Σ and using the fact that
∑
s∈Σ Zs` = Z`, we obtain

n−
∑
s∈Σ

|Xs|
r

∑
i∈Ys

∑
j∈{t1,t2,...,t`}

Uij ≥ n− Z` −min

(
n− Z`, n`η1

√
c

2r
log

4k

η1δ

)
. (87)

Substituting the last inequality in (81), we finally get

∑
s∈Σ

|Xs|
r

∑
i∈Ys

∑
j∈[k]\{t1,t2,...,t`}

Uαij ≥

(
n− Z` − n`η1

√
c
2r log 4k

η1δ

)α
(n(k − `))(α−1)

. (88)

Next, recall that the index of the (`+ 1)th cluster is chosen as

t`+1 = argmax
j∈[k]\{t1,t2,...,t`}

∑
s∈Σ

|Xs|
r

∑
i∈Ys

Uαij , (89)

and therefore, ∑
s∈Σ

Ȳs =
∑
s∈Σ

|Xs|
r

∑
i∈Ys

Uαit`+1
(90)

≥

(
n− Z` − n`η1

√
c
2r log 4k

η1δ

)α
nα−1(k − `)α

. (91)

Combining (73), (75), and (91), we get a lower bound on
∑
s∈Σ Ys as follows

∑
s∈Σ

Ys ≥

(
n− Z` − n`η1

√
c
2r log 4k

η1δ

)α
nα−1(k − `)α

− (n− Z` − n`η1)

√
c

2r
log

4k

η1δ
. (92)

23

Algorithm 7 MEMBERSHIP2(X , µ̂t1 , α) Estimate the memberships Uit2 for all i ∈ [n] given an
estimated mean µ̂t1

Input: Ofuzzy.
1: Sort the elements x1,x2, . . . ,xn in ascend-

ing order according to
∥∥xi − µ̂t1∥∥2

. Denote
the resultant permutation of [n] correspond-
ing to the sorted elements by πµ̂t1 .

2: Set η1 , 1− Uπµ̂t1 (n)t1 and pη1
, n.

3: Query Ofuzzy(πµ̂t1
(n), t1) to obtain

Uπµ̂t1 (n)t1 . Set Uπµ̂t1 (n),t2 = 1 −
Uπµ̂t1 (n)t1 .

4: Initialize P1,P2 = φ
5: for q = 2, 3, . . . , 3 log n do
6: Initialize Xq = φ and set ηq =

ηq−1

2
7: Find p′ηq = argmini∈[n]Uπµ̂t1 (i),t2 ≥ ηq

using BINARYSEARCH2(X , πµ̂t1 , ηq).
8: if |p′ηq − pηq−1

| ≥ log n then
9: Set pηq = p′ηq

10: for i = pηq , pηq + 1, . . . , pηq−1
− 1 do

11: Set Xq = Xq ∪ πµ̂t1
(i) and set

Ûπµ̂t1 (i),t2 = 1− Uπµ̂t1 (pηq)t1

12: end for
13: else

14: Query Ofuzzy(πµ̂t1
(min(0, pηq−1 −

log n − 1)), t1) and obtain the mem-
bership Uπµ̂t1 (min(0,pηq−1

−logn−1)),t1 .
15: Set ηq = Uπµ̂t1 (min(0,pηq−1

−logn−1)),t2

and pηq = min(0, pηq−1 − 1− log n).
16: for i = pηq , pηq + 1, . . . , pηq−1 − 1 do
17: Query Ofuzzy(πµ̂t1

(i), t1) to obtain
Uπµ̂t1 (i)t1 .

18: Set Ûπµ̂t1 (i),t2 = 1− Uπµ̂t1 (i)t1 and
set X ′q = X ′q ∪ πµ̂t1 (i)

19: end for
20: end if
21: end for
22: for i = 0, 1, . . . , η3 logn − 1 do
23: Set Ûπµ̂t1 (i),t2 = 0 and set P1 = P1 ∪

πµ̂t1
(i)

24: end for
25: Set P2 = ∪qX ′q .
26: Return P1,P2,X1,X2, . . . ,Xq and Ûit2 for

all i ∈ [n].

Finally, combining (70), (72), and (92), we get∥∥∥µ̂t`+1
− µt`+1

∥∥∥
2
≤
∑
s∈Σ

∥∥∥∥ λ̄s − λs∑
s∈Σ Ys

∥∥∥∥
2

+ R
∑
s∈Σ

∥∥∥∥ Ys − Ȳs∑
s∈Σ Ys

∥∥∥∥
2

(93)

≤
2R
(
c
r log 4k

η1δ

)1/4 (
n− Z` + n`η1

)
(
n−Z`−n`η1

√
c
2r log 4k

η1δ

)α
nα−1(k−`)α − (n− Z` − n`η1)

√
c
2r log 4k

η1δ

, (94)

with probability at least 1− δ/k, which concludes the proof.

E Proof of Theorem 3

To prove Theorem 3 we will establish some preliminary results.

E.1 Auxiliary Lemmata

We start with the following result which shows that given a good estimate for the larger cluster among
the two, we can approximate the membership weights of the smaller cluster reliably. This is done in
Procedure 7.

Lemma 11. Let (X ,P) be a consistent center-based clustering instance, recall the definition of
γ ∈ R+ in (8), and let k = 2. Assume that there exists an estimator µ̂t1 such that

∥∥µt1 − µ̂t1∥∥2
≤ ε

with ε ≤ γ. Then, Procedure 7 outputs Ûit2 , for i ∈ [n], such that

Ûit2 ∈ A ⊂ {Uit2 : i ∈ [n]}, (95)

24

Algorithm 8 BINARYSEARCH2(X , π, x): Search for the minimum index i such that 1−Uπ(i)t1 ≥ x

Input: Ofuzzy.
1: Set low = 1 and high = n.
2: while low 6= high do
3: Set mid = b(low + high)/2c.
4: Query Ofuzzy(π(mid)t1) to obtain Uπ(mid)t1 .
5: if Uπ(mid)t1 ≥ 1− x then
6: Set low = mid + 1
7: else
8: Set high = mid
9: end if

10: end while
11: Return low.

with |A| = O(log2 n), and

max
i∈[n]:Ûit2=x

Uit2 ≤ max

(
maxi∈[n] Uit2

n3
, min
i∈[n]:Ûit2=x

2Uit2

)
, (96)

for all x ∈ A, and for some η ∈ R+, using Q = O(log2 n) queries to the membership-oracle, and
time-complexity O(log2 n).

Proof of Lemma 11. First, note that since P is a consistent center-based clustering, we have
Uσµt1 (r1)t2 ≤ Uσµt1 (r2)t2 if r1 < r2, r1, r2 ∈ [n]. (97)

Indeed, when the elements of X are sorted in ascending order according to their distance from
µt1 , if xi is closer to µt1 than it is to xj , then Uit1 ≥ Ujt1 and thus Uit2 ≤ Ujt2 . Also, since∥∥µt1 − µ̂t1∥∥2

≤ ε ≤ γ, using (8), this ordering remains the same. Therefore, sorting the elements in
X in ascending order from µ̂t1 as in the first step of Procedure 7 gives the same ordering with respect
to the true mean. Now, given η ∈ R+, we search for the index

p′η , argminj∈[n]1
[
Uπµ̂t1 (j)t2 ≥ η

]
, (98)

which can be done by using the binary search routine in Procedure 8, which ask for at most O(log n)
membership-oracle queries. We will do this step for η1, η2, . . . , η3 logn, as described in Algorithm 7.
The values of {ηi} are chosen as follows. We initialize η1 = Uπµ̂t1 (n)t2 and pη1

, n, and update the

other values of ηi’s recursively as follows. Let V , {1, 2, . . . , 3 log n}. For each q ∈ V \ 1, we first
set ηq = ηq−1/2 and subsequently, if |p′ηq − pηq−1

| ≥ log n, then ηq remains unchanged and we set
pηq = p′ηq . Otherwise, if |p′ηq − pηq−1

| < log n, then we update both ηq and pηq as follows:

pηq = min(0, pηq−1
− 1− log n) (99)

ηq = Uπµ̂t1 (pηq)t2 (100)

For each value of q ∈ V , we initialize two sets Xq,X ′q = φ. If |p′ηq − pηq−1
| ≥ log n, then we

update Xq = {πµ̂t1 (i) : pηq ≤ i ≤ pηq−1
− 1, i ∈ [n]} and if |p′ηq − pηq−1

| < log n, we update
X ′q = {πµ̂t1 (i) : pηq ≤ i ≤ pηq−1 − 1, i ∈ [n]}. It is clear that ηq ≤ ηq−1/2 and therefore, we must
have η3 logn ≤ η1/n

3. We now define the following sets:

P1 , {i ∈ [n] : Uit2 ≤ η3 logn}, (101)

P2 ,
⋃
q

X ′q. (102)

For each i ∈ P1, we estimate Ûit2 = 0 and since Uit2 ≤ Uπµ̂t1 (n)t2/n
3 and Uπµ̂t1 (n)t2 =

maxi∈[n] Uit2 , we must have∣∣∣Ûit2 − Uit2

∣∣∣ ≤ maxi∈[n] Uit2
n3

for all i ∈ P1. (103)

25

For each i ∈ P2, we query Uit2 and estimate Ûit2 = Uit2 . Notice that we have

[n] \ {P1 ∪ P2} =
⋃
q

Xq, (104)

and therefore for each Xq such that Xq 6= φ, we estimate Ûit2 = Uπµ̂t1 (pηq)t2 for all i ∈ Xq. Now,
since

Uπµ̂t1 (pηq−1
−1)t2 ≤ ηq−1 and Uπµ̂t1 (pηq)t2 ≥ ηq =

ηq−1

2
, (105)

we must have that for all i ∈ Xq such that Xq 6= φ,
max
i∈Xq

Uit2 ≤ 2 min
i∈Xq

Uit2 , (106)

which proves the lemma. Note that each binary search step in Procedure 8 requires O(log n) queries,
and may require an additional O(log n) queries if X ′q 6= φ. Similarly the time-complexity of each
binary step is O(log n) as well. Since we are making at most 3 log n binary search steps, we get the
desired query and time-complexity results.

Lemma 11 implies the following corollary.
Corollary 8. Consider the setting of Lemma 11. Then,∑

i∈[n]

∣∣∣Ûit2 − Uit2

∣∣∣ ≤ ∑
i∈[n]

Uit2 +
maxi∈[n] Uit2

n2
. (107)

Proof. Recall that V , {1, 2, . . . , 3 log n}. Then, note that∑
i∈[n]

∣∣∣Ûit2 − Uit2

∣∣∣ =
∑
i∈P1

∣∣∣Ûit2 − Uit2

∣∣∣+
∑
i∈P2

∣∣∣Ûit2 − Uit2

∣∣∣+
∑
q∈V

∑
i∈Xq :|Xq|6=φ

∣∣∣Ûit2 − Uit2

∣∣∣ .
(108)

Next, we bound each of the terms on the r.h.s. of the above inequality. We have,∑
i∈P2

∣∣∣Ûit2 − Uit2

∣∣∣ = 0, (109)

∑
i∈P1

∣∣∣Ûit2 − Uit2

∣∣∣ ≤ |P2|maxi∈[n] Uit2
n3

≤
maxi∈[n] Uit2

n2
. (110)

Finally, for each q ∈ V such that Xq 6= φ, recall that Ûit2 = minj∈Xq Uit2 , for all i ∈ Xq, and
therefore,

max
i∈Xq

Uit2 ≤ 2 min
i∈Xq

Uit2 =⇒
∣∣∣Ûit2 − Uit2

∣∣∣ ≤ maxi∈Xq Uit2
2

≤
∑
i∈Xq Uit2

|Xq|
, ∀i ∈ Xq.

Thus, ∑
q∈V

∑
i∈Xq

∣∣∣Ûit2 − Uit2

∣∣∣ ≤ ∑
i∈[n]

Uit2 ,

which proves the desired result.

It is left to estimate the center of the smaller cluster among the two. This is done in Steps 7-13 of
Procedure 5. Specifically, for each q ∈ V , we randomly sample with replacement r elements from Xq
where Xq 6= φ. We denote this sampled multi-set by Yq, and query Uit2 , for each i ∈ Yq. We also
sample r elements from P1, and denote this sampled multi-set by Q, and query Uit2 for each i ∈ Q.
Note that we have already queried Uit2 for every i ∈ P2 in Step 19 of Procedure 7. Subsequently, we
propose the following estimate for the center of the smaller cluster,

µ̂t2 =

∑
q∈V:Xq 6=φ

|Xq|
r

∑
i∈Yq U

α
it2
xi +

∑
i∈P2

Uαit2xi +
∑
i∈Q

|P1|
r Uαit2xi∑

q∈V:Xq 6=φ
|Xq|
r

∑
i∈Yq U

α
it2

+
∑
i∈P2

Uαit2 +
∑
i∈Q

|P1|
r Uαit2

. (111)

The following result gives guarantees on the estimation error associated with the smaller cluster
among the two.

26

Lemma 12. Let (X ,P) be a consistent center-based clustering instance, and let δ ∈ (0, 1). Then,
with probability at least 1−δ/2, the estimator in (111) satisfies

∥∥µ̂t2 − µt2∥∥2
≤ ε, if r ≥ c′R4

ε4 log 2
ηδ ,

where c′ > 0 is an absolute constant. Also, this estimate requires O (r log n) membership-oracle
queries, and a time-complexity of O (dr log n).

Proof of Lemma 12. First, note that [n] = ∪q:Xq 6=φXq ∪ P1 ∪ P2. Therefore,

µt2 =

∑
q:Xq 6=φ λq +

∑
i∈P2

Uαit2xi + ρ∑
q:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B
, (112)

where λq ,
∑
i∈Xq U

α
it2
xi, ρ ,

∑
i∈P1

Uαit2xi, Yq ,
∑
i∈Xq U

α
it2

, and B ,
∑
i∈P1

Uαit2 . Similarly,
using (111), we have

µ̂t2 =

∑
q∈V:Xq 6=φ λ̄q +

∑
i∈P2

Uαit2xi + ρ̄∑
q∈V:Xq 6=φ Ȳq +

∑
i∈P2

Uαit2 + B̄
, (113)

where λ̄q , |Xq|
r

∑
i∈Yq U

α
it2
xi, ρ̄ ,

∑
i∈Q

|P1|
r Uαit2xi, Ȳq , |Xq|

r

∑
i∈Yq U

α
it2

, and B̄ ,∑
i∈Q

|P1|
r Uαit2 . Notice that for each q ∈ V , the random variable λ̄q can be written as a sum

of r i.i.d. random variables λ̄q,ip , |Xq|Uαipt2xip , where ip is sampled uniformly over [n]. Similarly,
Ȳq written as a sum of r i.i.d random variables Ȳq,ip , |Xq|Uαipt2 , where again ip is sampled
uniformly over [n]. Finally, both ρ̄ and B̄ can also be written as a sum of r i.i.d random variables
ρ̄ip , |P1|Uαipt2xip and B̄ip , |P1|Uαipt2 , respectively, where ip is sampled uniformly over [n].
Thus, it is evident that Eλ̄q,ip =

∑
i∈Xq U

α
it2
xi and EȲq,ip =

∑
i∈Xq U

α
it2

, for all p ∈ [r]. Similarly,
Eρ̄ip =

∑
i∈P1

Uαit2xi and EB̄ip =
∑
i∈P1

Uαit2 , for all p ∈ [r]. Next, we note that

µ̂t2 = µt2 +
∑
q∈V

λ̄q − λq∑
q∈V:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B
+

ρ̄− ρ∑
q∈V:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B

+ µ̂t2 ·
∑
q∈V:Xq 6=φ Yq −

∑
q∈V:Xq 6=φ Ȳq + B− B̄∑

q∈V:Xq 6=φ Yq +
∑
i∈P2

Uαit2 + B
. (114)

Therefore, using the triangle inequality and the fact that
∥∥µ̂t2∥∥2

≤ R, we get∥∥µ̂t2 − µt2∥∥2
≤
∑
q∈V

∥∥∥∥∥ λ̄q − λq∑
q∈Q:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B

∥∥∥∥∥
2

+

∥∥∥∥∥ ρ̄− ρ∑
q∈V:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B

∥∥∥∥∥
2

+ R
∑
q∈V

∥∥∥∥∥ Ȳq − Ȳq∑
q∈V:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B

∥∥∥∥∥
2

+ R

∥∥∥∥∥ B̄− B∑
q∈V:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B

∥∥∥∥∥
2

.

(115)
Now, for any i ∈ Yq , we have by definition,

Uαit2 ≤
(

2Uπµ̂t1 (pηq)t2

)α
, (116)

and for any i ∈ P1,

Uαit2 ≤
maxj∈[n] U

α
jt2

n3
. (117)

Next, using Lemmas 3 and 4, we have for all q ∈ V , with probability at least 1− δ,∥∥λ̄q − λq∥∥2
≤ R|Xq|(2Uπµ̂t1 (pηq)t2)α

(
c

r
log

2

ηδ

)1/4

, (118)

∣∣Ȳq − Yq
∣∣ ≤ |Xq|(2Uπµ̂t1 (pηq)t2)α

√
c

2r
log

2

ηδ
, (119)

‖ρ̄− ρ‖2 ≤
R|P1|maxj∈[n] U

α
jt2

n3

(
c

r
log

2

ηδ

)1/4

, (120)

∣∣B̄− B
∣∣ ≤ |P1|maxj∈[n] U

α
jt2

n3

√
c

r
log

2

ηδ
, (121)

27

for some c > 0. Substituting the above results in (115), we get∥∥µ̂t2 − µt2∥∥2
≤ 2R

(
c

r
log

2

ηδ

)1/4

·

∑
q∈V:Xq 6=φ |Xq|(2Uπµ̂t1 (pηq)t1)α∑
q∈V:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B

+ 2R

(
c

r
log

2

ηδ

)1/4

·
|P1|maxj∈[n] U

α
jt1

n3∑
q∈V:Xq 6=φ Yq +

∑
i∈P2

Uαit2 + B
. (122)

Noting to the facts that ∑
q∈V:Xq 6=φ

Yq =
∑

i∈Xq :Xq 6=φ

Uαit2 ≥ |Xq|(Uπµ̂t1 (pηq)t1)α (123)

and ∑
q∈V:Xq 6=φ

Yq +
∑
i∈P2

Uαit2 + B =
∑
i∈[n]

Uαit2

∑
i∈[n]

Uαit1 ≥ max
i∈[n]

Uαit1 , (124)

and finally that |P1| ≤ n, we obtain∥∥µ̂t2 − µt2∥∥2
≤ 2α+1R

(
c

r
log

2

ηδ

)1/4

. (125)

Therefore, for any ε > 0, with r ≥ cR4

ε4 log 2
ηδ , we obtain

∥∥µ̂t2 − µt2∥∥2
≤ ε, which proves the

lemma.

E.2 Proof of Theorem 3

First, Corollary 4 implies that a query complexity of O
(

R4

ε4 log 1
δ

)
, and time-complexity of

O
(
dR4

ε4 log 1
δ

)
, suffice to approximate the center of the first cluster t1 with probability at least

1 − δ/2. Then, Lemma 11 allows us to estimate Uit2 for all i ∈ [n] using a query complexity of
O(log2 n) and time-complexity of O(log2 n). Also, Lemma 12 shows that a query complexity of
O
(

R4 logn
ε4 log 1

ηδ

)
, and time-complexity of O

(
dR4 logn

ε4 log 1
ηδ

)
, suffice to approximate µ̂t2 up to

an error of ε. Finally, we can use Lemma 7 to approximate Uij up to an error of η using query
complexity of O(log n/η), and a time-complexity of O(n log n + log n/η), for all i ∈ [n] and
j ∈ {1, 2}.

F Experiments

Synthetic Datasets: We conduct in-depth simulations of the proposed techniques over the following
synthetic dataset. Specifically, we generate the dataset X by choosing k = 4 centers with dimension
d = 10, such that µ1 is significantly separated from the other centers; the distance from each
coordinate of µ1 to the coordinates of the other means is at least 1000. Subsequently, for each
i ∈ {1, 2, 3, 4} we randomly generate Li vectors from a spherical Gaussian distribution, with mean
µi, and a standard deviation of 20 per coordinate. We then run the Fuzzy C-means algorithm2, and
obtain a target solution P to be used by the oracle for responses. In order to understand the effect of
β, we fix L1 = 5000, and vary L2, L3, L4 ∈ 5000 · ζ, where ζ ∈ {1, 2, . . . , 24}. It can be checked
that β = 4/(1 + 3ζ). We run Algorithms 1 and 4. For the two-phase algorithm we take α = 2,
m = ν, and η = 0.1, and α = 2, m = ν/2.5, η1 = 0.1, and η2 = 0.1, for the sequential algorithm,
where ν ∈ {2000, 6000}. Setting the parameters in this way keeps the same query complexity for
both algorithms, so as to keep a fair comparison. We run each algorithm 20 times. For each algorithm,
we evaluate the maximal error in estimating the centers. The results are shown in Fig. 1. Specifically,
Fig. 1a presents the estimation error as a function of β. It can be seen that for small β’s, the sequential
algorithm is significantly better compared to the two-phase algorithm, whereas for larger β’s, they
are comparable. Then, for β = 0.25, 0.1, Fig. 1b shows the estimation error as a function of the
number of queries. Finally, to understand the effect of the number of clusters, we generate k clusters

2https://github.com/omadson/fuzzy-c-means

28

(a) Comparison of two-phase algo-
rithm and the sequential algorithm
(see Algorithm 1 and 4. The error
in recovery of means is plotted with
varying β.

(b) The error in recovery of means
using the two-phase algorithm and
sequential algorithm (see Algorithm
1 and 4 with increasing queries keep-
ing β fixed.

(c) Comparison of the two-phase
algorithm and the sequential algo-
rithm (see Algorithm 1 and 4. The
error in recovery of means is plotted
with varying number of clusters (k).

Figure 1: Testing algorithms over synthetic datasets.

(a) Iris (b) Wine (c) Breast Cancer

Figure 2: Classification accuracy of algorithms for the Iris, Wine and Breast Cancer datasets.

using a similar method as above. We take L1 = 1000, and Li = 12000, for all 2 ≤ i ≤ k. We vary
k ∈ {2, 3, . . . , 11}. For the two-phase algorithm, we take α = 2, m = ν, and η = 0.1, and α = 2,
m = ν/2.5, η1 = 0.1, and η2 = 0.1, for the sequential algorithm, where ν = {2000, 6000}. Fig. 1c
shows the estimation error as a function of k. We can clearly observe that the two-phase algorithm
performs significantly better as k increases but the sequential algorithm works better for small k.

Real-World Datasets: In our experiments, we use three well-known real-world datasets available
in scikit-learn [41]: the Iris dataset (150 elements, 4 features, and 3 classes), the Wine dataset (178
elements, 13 features, and 3 classes), and the Breast Cancer dataset (569 elements, 30 features, and
2 classes). For the Iris and Wine datasets, we run the two-phase and sequential algorithms. We
take α = 2, m = ν, and η = 0.1, for the two-phase algorithm, and α = 2, m = 2ν/3, r = m/η1,
η1 = 0.1, and η2 = 0.1, for the sequential algorithm, where ν ∈ {10, 20, . . . , 410}, keeping the
same query complexity for both algorithms. These values do not necessarily satisfy what is needed
by our theoretical results. We run both algorithms with each set of parameters 500 times to account
for the randomness. In our experiments, we use a hard cluster assignment as ground truth (or rather
the target clustering P to be used by the oracle for responses), and use our algorithms to return a
fuzzy assignment. We must point out over here that our fuzzy algorithms can be used to solve hard
clustering problems as well and therefore, it is not unreasonable to have hard clusters as the target
solution.

Subsequently, we estimate the membership weights for all elements, and for each element, we predict
the class the element belongs to as the one to which the element has the highest membership weight
(i.e., argmaxjÛij , for element i)3. Once we have classified all the data-points using our algorithms,
we can check the classification accuracy since we possess the ground-truth labels. Note that the
ground truth labels can be inconsistent with the best clustering or P?, the solution that minimizes the

3This is similar to rounding in Linear Programming

29

Figure 3: Classification accuracy as a function of the fuzzifier α and the number of queries for the
Iris dataset.

objective in the Fuzzy k-means problems (Defintion 1) but we assume that the “ground truth” labels
that are given by humans are a good proxy for the best clustering.

We then plot the classification accuracy as a function of the number of queries. Fig. 2 shows the
average classification accuracy for the above three data-sets by comparing the predicted classes and
the ground truth. For the Breast Cancer dataset, since the number of clusters is two, we additionally
compare the two-phase and sequential algorithms to Algorithm 5 with α = 2, m = 2ν/3, r = m/η1,
and η = 0.1. It turns out that for these real-world datasets, the performance of all algorithms are
comparable. It can be seen that the accuracy increases as a function of the number of queries, as
expected. Further, by using the well-known Lloyd’s style iterative Fuzzy C-means algorithm
with random initialization [21], we get an average classification accuracy (over 20 trials) of
only 31.33%, 35.96% and 14.58% on the Iris, Wine, and Breast Cancer datasets, respectively.
This experiment shows that using a few membership queries increases the accuracy of a poly-time
algorithm drastically, corroborating the results of our paper.

Accuracy as a function of α: As discussed in right after Theorem 2, the “fuzzifier" α is not subject
to an optimization. Nonetheless, if we assume the existence of a ground truth, we can compare the
clustering accuracy for different values of α. Accordingly, in Fig. 3 we test the performance of our
algorithms on the Iris dataset for a few values of α. We calculate the average accuracy over 500
trials for each set of parameters. We conclude this section by discussing the issue of comparing
our semi-supervised fuzzy approach to the semi-supervised hard objective [4]. Generally speaking,
in the absence of a ground truth, comparing both approaches is meaningless. When the ground
truth represents a disjoint clustering, then it is reasonable that following a hard approach (essentially
α = 1) will capture this ground truth better. However, the whole point of using fuzzy clustering in
the first place is when the clusters, in some sense, overlap. Indeed, the initial main motivation for
studying fuzzy clustering is that it is applicable to datasets where datapoints show affinity to multiple
labels, the clustering criteria are vague and data features are unavailable. Nonetheless, in Fig. 3
we compare the performance of both the fuzzy and hard approaches (essentially α = 1) on the Iris
dataset.

G Discussion on noisy oracle responses

In this section, we briefly discuss the effect of a noisy membership-oracle, defined as follows.

Definition 5 (Noisy Membership-Oracle). A fuzzy query asks the membership weight of an instance
xi to a cluster j and obtains in response a noisy answer Onoisy(i, j) = Uij + ζij where ζij is a zero
mean random variable with variance σ2.

To present our main result, let ρ ∈ R+ be defined as

min
j∈[k]

∑
i∈[n]

Uαij = ρn. (126)

The result below handles the situation where the oracle responses are noisy.

30

Theorem 9. G Let κ > 0, and assume that there exists an (ε1, ε2,Q)-solver for a clustering instance
(X ,P) using the membership-oracle responses Ofuzzy. Then, there exist a(

2Rα(ε2 + κ)

ρ
, ε2 + κ,

8Qσ2 log n

κ2

)
− solver,

for (X ,P) using the noisy oracle Onoisy.

Proof. Assume that algorithmAnoiseless is an (ε1, ε2,Q)-solver for a clustering instance (X ,P) using
queries to a noiseless oracle Ofuzzy. In order to handle noisy responses we propose the following
algorithm Anoisy: apply algorithm Anoiseless for T steps using noisy queries to Onoisy. We will show
that this algorithm obtains the guarantees in Theorem . To that end, in each such step, we obtain
noisy estimates for the memberships and the centers. Then, we use these local estimates to obtain a
clean final estimate for the memberships and the centers. Specifically, consider T independent and
noisy clustering instances {Pt ≡ (µt,Vt)}Tt=1, such that

Vtij = Uij + ζij and µtj =

∑n
i=1 V

α
ijxi∑n

i=1 V
α
ij

, (127)

for t ∈ [T]. Note that the randomness in the definition of the aforementioned clustering instances
lies in the realization of the independent random variables ζ1

ij , ζ
2
ij , . . . , ζ

T
ij . For each such instance

we apply one of the algorithms we developed for the noiseless oracle. Accordingly, for all t ∈ [T],
suppose we have a (ε1, ε2, Q)-solver that makes Q queries to the Pt-oracle to compute V̂tij . Then,
we know that, ∣∣∣V̂tij − Vtij

∣∣∣ ≤ ε2, (128)

for all t < [T]. Now, all we have to do is to use these local estimates to calculate our final estimates
for the underlying memberships and centers. Specifically, for T′ < T, we must have∣∣∣∣∣∣ 1

T′

T′∑
j=1

V̂tij − Uij

∣∣∣∣∣∣ ≤ ε2 +

∣∣∣∣∣∣ 1

T′

T′∑
t=1

ζtij

∣∣∣∣∣∣ . (129)

By Chebychev’s inequality, for any κ > 0, we get

Pr

∣∣∣∣∣∣ 1

T′

T′∑
t=1

ζtij

∣∣∣∣∣∣ ≥ κ
 ≤ σ2

κ2T′
. (130)

Next, we partition the T responses from the oracle into B batches of size T′ each. For batch b ∈ [B],
define the random variable Yb , 1

[∣∣ 1
T′

∑
t∈Batch b ζ

t
ij

∣∣ ≥ κ]. Clearly, Pr(Yb = 1) ≤ σ2

κ2T′ and
further, Y1,Y2, . . . ,YB are independent random variables. Therefore, Chernoff bound implies that

Pr

(
B∑
b=1

Yb ≥ B/2

)
≤ exp

[
−2B

(
1

2
− σ2

κ2T′

)2
]
. (131)

Our final membership estimate is evaluated as follows:

Ûij , median

(
1

T′

∑
t∈Batch 1

Vtij ,
1

T′

∑
t∈Batch 2

Vtij , . . . ,
1

T′

∑
t∈Batch B

Vtij

)
, (132)

namely, Ûij is the median of the mean of V̂tij in each batch. Therefore, for B = 6 log n and
T′ = 4σ2/κ2 (hence T = 8σ2 log n/κ2), we must have that

Pr
(∣∣∣Ûij − Uij

∣∣∣ ≥ ε2 + κ
)
≤ 2

n3
. (133)

Therefore, by taking a union bound over all i ∈ [n], j ∈ [k], we can compute Ûij , an estimate of Uij ,
such that ∣∣∣Ûij − Uij

∣∣∣ ≤ ε2 + κ, (134)

31

for all i ∈ [n], j ∈ [k] with probability at least 1− 1/n. Finally, we estimate the means µj’s using
the already computed Ûij’s as follows. Note that,

µ̂j =

∑
i Û

α
ijxi∑

i Û
α
ij

,
λ̂x

Ŷ
, (135)

and

µj =

∑
i∈[n] U

α
ijxi∑

i∈[n] U
α
ij

,
λx
Y
. (136)

Therefore, we get∥∥µ̂j − µj∥∥2
≤

∥∥∥∥∥ λ̂x − λxY

∥∥∥∥∥
2

+

∥∥∥∥∥ λ̂xŶ Y − Ŷ

Y

∥∥∥∥∥
2

≤

∥∥∥∥∥ λ̂x − λxY

∥∥∥∥∥
2

+ R

∣∣∣∣∣ Ŷ − Y

Y

∣∣∣∣∣ . (137)

Using (134) it is evident that ∣∣∣Ŷ − Y
∣∣∣ ≤ αn(ε2 + κ)(1 + o(1)), (138)∥∥∥λ̂x − λx∥∥∥

2
≤ Rαn(ε2 + κ)(1 + o(1)). (139)

Combining (137)–(139) together with (126), we finally obtain that∥∥µ̂j − µj∥∥2
≤ 2Rα(ε2 + κ)

ρ
, (140)

for all j ∈ [k], which concludes the proof.

H Membership queries from similarity queries

Recall that X ⊂ Rd, |X | = n is the set of points provided as input along with their correspond-
ing d-dimensional vector assignments denoted by {xi}ni=1. Recall that the membership-oracle
Ofuzzy(i, j) = Uij returns the membership weight of the instance xi to a cluster j. However, such
oracle queries are often impractical in real-world settings since it requires knowledge of the relevant
clusters. Instead, a popular query model that takes a few elements (two or three) as input and is
easy to implement in practice is the following similarity query "How similar are these elements?"
[4] showed that for the hard clustering setting, a membership query can be simulated by k pairwise
similarity queries since a pairwise similarity query reveals whether two items belong to the same
cluster or not in the hard clustering setting. In the fuzzy problem we model the oracle response to the
similarity query by the inner product of their membership weight vectors. More formally, we have
Definition 6 (Restatement of Definition 3). A fuzzy pairwise similarity query asks the similarity of
two distinct instances xi and xj i.e., Osim(i, j) = 〈Ui,Uj〉. A fuzzy triplet similarity query asks the
similarity of three distinct instances xp,xq,xr i.e. Otriplet(p, q, r) =

∑
t∈[k] UptUqtUrt.

Now, we show that fuzzy pairwise similarity queries can often be used to simulate Ofuzzy(i, j). Note
that if we possess the membership weight vectors of k elements that are linearly independent, then,
for a new element, responses to fuzzy pairwise similarity queries with the aforementioned k elements
reveals all the membership weights of the new element. Now, the question becomes “How can we
obtain the membership weights of the k elements in the first place?". Suppose we sub-sample a set of
elements Y ⊆ X such that |Y| = m > k and we make all fuzzy pairwise similarity queries among
the elements present in Y . Let us denote by V the membership weight matrix U constrained to the
rows corresponding to the elements in Y . Clearly, the fuzzy pairwise similarity queries between all
pairs of elements in Y reveals VVT , the gram matrix of V. If we can recover V uniquely from VVT ,
and V is full rank, then we are done. If we assume almost any continuous distribution according to
which the membership weight vectors are generated, then with probability 1, the matrix V is full rank.
On the other hand, the question of uniquely recovering V from VVT is trickier. In general it is not
possible to recover V uniquely from VVT since VR, for any orthonormal matrix R, also has the gram
matrix VVT . However, recall that in our case, the entries of V are non-negative and furthermore, the
rows of V add up-to 1 leading to additional constraints. This leads to the problem

32

Find M such that MMT = VVT subject to M ∈ Rm×k≥0 ,
∑
j∈[k]

Mij = 1 ∀ i ∈ [m].

As a matter of fact, this is a relatively well-studied problem known as the Symmetric Non-Negative
matrix factorization or SNMF. We will say that the solution to the SNMF problem is unique if VP
is the only solution to the problem for any permutation matrix P. Below, we state the following
sufficient condition that guarantees the uniqueness of the solution to the SNMF problem.
Lemma 13 (Lemma 4 in [26]). If rank(V) = k, then the solution to the SNMF problem is unique
if and only if the non- negative orthant is the only self-dual simplicial cone A with k extreme rays
that satisfies cone(VT) ⊆ A = A? where A? is the dual cone of A, defined as A? = {y | xTy ≥
0 ∀x ∈ A}.

More recently, Lemma 13 was used in [34] to show the following result that is directly applicable to
our setting:
Lemma 14. If V contains any permutation matrix of dimensions k × k, then the solution of the
SNMF problem is unique.

Suppose we have the guarantee that for each cluster j ∈ [k], there exists a set Zj of at least ρn
elements belonging purely to the jth cluster i.e. Uij = 1 for all i ∈ Zj . Then, for m ≥ ρ−1 log(nk),
the matrix V will contain a permutation matrix with probability at least 1− n−1. As a results, this
will lead to an overhead of O(m2) = O(ρ−2 log2(nk)) queries.

If it is possible to make more complex similarity queries such as the fuzzy triplet similarity query, we
can significantly generalize and improve the previous guarantees. Before proceeding further, let us
provide some background on tensors beginning with the following definition:
Definition 7 (Kruskal rank). The Kruskal rank of a matrixA is defined as the maximum number r
such that any r columns ofA are linearly independent.

Consider a tensor A of order w ∈ N for w > 2 on Rn, denoted by A ∈ Rn ⊗ Rn ⊗ · · · ⊗
Rn (w times). Let Ai1,i2,...,iw where i1, i2, . . . , iw ∈ {0, 1, . . . , n − 1}, denote the element in A
whose location along the jth dimension is ij + 1, i.e., there are ij elements along the jth dimension
before Ai1,i2,...,iw . Notice that this indexing protocol uniquely determines the element within the
tensor. For a detailed review of tensors, we defer the reader to [29]. In this work, we are interested
in low-rank decomposition of tensors. A tensor A can be described as a rank-1 tensor if it can be
expressed as4

A = z ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
w times

for some z ∈ Rn, i.e., Ai1,i2,...,iw =
∏w
j=1 zij . For a given tensor A, we are concerned with the

problem of uniquely decomposingA into a sum ofR rank-1 tensors. A tensorA that can be expressed
in this form is denoted as a rank-R tensor, and such a decomposition is also known as the Canonical
Polyadic (CP) decomposition. Below, we state a result due to [45] describing the sufficient conditions
for the unique CP decomposition of a rank-R tensor A.
Lemma 15 (Unique CP decomposition [45]). Suppose A is the sum of R rank-1 tensors, i.e.,

A =

R∑
r=1

zr ⊗ zr ⊗ · · · ⊗ zr︸ ︷︷ ︸
w times

,

and further, the Kruskal rank of the n×R matrix whose columns are formed by z1, z2, . . . ,zR is J .
Then, if wJ ≥ 2R+ (w − 1), then the CP decomposition is unique and we can recover the vectors
z1, z2, . . . ,zR up to permutations.

Notice that for the special case of w = 3, the underlying vectors z1, z2, . . . ,zR can be recovered
uniquely if they are linearly independent. Now, we are ready to show that k fuzzy triplet similarity

4In this work, we focus on the special case of rank-1 tensors where every component is identical. In general,
rank-1 tensors can be described as A = z1 ⊗ z2 ⊗ · · · ⊗ zw for z1, . . .zw ∈ Rn.

33

Algorithm 9 JENNRICH’S ALGORITHM(A)

Input: A symmetric rank-R tensor A ∈ Rn ⊗ Rn ⊗ Rn of order 3.
1: Choose a, b ∈ Rn uniformly at random such that it satisfies ‖a‖2 = ‖b‖2 = 1.
2: Compute T (1) ,

∑
i∈[n] aiA·,·,i,T

(2) ,
∑
i∈[n] biA·,·,i.

3: if rank(T 1) < R then
4: Return Error
5: end if
6: Solve the general eigenvalue problem T (1)v = λvT

(2)v.
7: Return the eigen-vectors v corresponding to the non-zero eigen-values.

queries can be used to recover the memberships weights of k elements uniquely. As before, we can
sub-sample a set of elements Y ⊆ X such that |Y| = k and we make all possible

(
k
3

)
fuzzy triplet

similarity queries among the elements present in Y . Again, let us denote by V the membership weight
matrix U constrained to the rows corresponding to the elements in Y . Let us denote by v1,v2, . . . ,vk

the k columns of the matrix V. Notice that the responses to all the fuzzy triplet similarity queries
reveals the following symmetric tensor

k∑
r=1

vr ⊗ vr ⊗ vr.

Suppose the matrix V is full rank. This will happen with probability 1 if the membership weights
are assumed to be generated according to any continuous distributions. Algorithmically, Jennrich’s
algorithm (see Section 3.3, [39]) can be used to efficiently recover the unique CP decomposition of a
third order low rank tensor whose underlying vectors are full rank. We have provided the algorithm
(see, Algorithm 9) for the sake of completeness.

I Conclusion and outlook

In this paper, we studied the fuzzy k-means problem, and proposed a semi-supervised active clus-
tering framework, where the learner is allowed to interact with a membership-oracle, asking for
the memberships of a certain set of chosen items. We studied both the query and computational
complexities of clustering in this framework. In particular, we provided two probabilistic algorithms
(two-phase and sequential) for fuzzy clustering that ask O(poly(k) log n) membership queries and
run with polynomial-time-complexity. The main difference between these two algorithms is the
dependency of their query complexities on the size of the smallest cluster β. The sequential algorithm
exhibits more graceful dependency on β. Finally, for k = 2 we were able to remove completely the
dependency on β (see, Appendix E). We hope our work has opened more doors than it closes. Apart
from tightening the obtained query complexities, there are several exciting directions for future work:

• It is important to understand completely the dependency of the query complexity on β.
Indeed, we showed that for k = 2 there exists an algorithm whose query complexity is
independent of β, but what happens for k > 2?

• It would be interesting to understand to what extent the algorithms and analysis in this paper,
can be applied to other clustering problems which depend on different metrics other than
the Euclidean one.

• Our paper presents upper bounds (sufficient conditions) on the query complexity. It is
interesting and challenging to derive algorithm-independent information-theoretic lower
bounds on the query complexity.

• As mentioned in the introduction it is not known yet whether the fuzzy k-means problem lies
in NP like the hard k-means problem. Answering this question will give a solid motivation
to the semi-supervised setting considered in this paper. Furthermore, just as the information-
theoretic lower bounds, it would be interesting to derive computational lower bounds as
well.
• In this paper we focused on the simplest form of oracle responses. However, there are

many other interesting and important settings, e.g., the noisy setting (Appendix G). Another

34

interesting problem would be to consider adversarial oracles who intentionally provide
corrupted responses.

35

