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The appendix consists of (1) the details of Algorithm 1 for Bayesian posterior inference in Section
A1; (2) the proofs of Propositions 1 and 2 and Theorem 1 in Sections A2, A3, and A4, respectively;
(3) additional simulation studies to investigate the hyper-parameter sensitivity analysis, selection
criteria, and additional simulation results in Section A5.

A1 Algorithm 1 Details

Algorithm 1 One full iteration of RJMCMC posterior sampler

Step 1. Update Π,K,F using the collapsed conditional [Π,K,F|Λ, τ,y] where β̃, σ2 are integrated
out. With probabilities (pa, pb, pc, pd) summing up to 1, perform one of the following substeps:

1-a. (split) Propose (Π?,K?=K+1) compatible withF , and accept with probability min{1,Aa ·
Pa · La}, where Aa is the prior ratio, Pa is the proposal ratio, La is the likelihood ratio.

1-b. (merge) Propose (Π?,K?=K−1) compatible with F , and accept w.p. min{1,Ab ·Pb ·Lb}.
1-c. (change) Propose (Π?,K?=K) compatible with F , and accept w.p. min{1,Ac · Pc · Lc}.
1-d. (hyper) Update F? compatible with current Π.

Step 2. Jointly update (τ, σ2, β̃) from [τ, σ2, β̃ |Λ,Π,K,F ,y], by performing:
2-1. Update τ from [τ |Λ,Π,K,F ,y] using a Metropolis-Hastings sampler,
2-2. Update σ2 from [σ2 | τ,Λ,Π,K,F ,y] with an inverse gamma distribution,
2-3. Update β̃ from [β̃ |σ2, τ,Λ,Π,K,F ,y] with a multivariate normal distribution.

Step 3. Update Λ from [Λ | τ, σ2, β̃,Π,K,F ,y] using a slice sampler.

A1.1 Step 1 Details

Step 1 is motivated by Algorithm 1 of Luo et al. (2021). It updates parameters Π,K and F which
determine the number of cluster and its shape. Note that step 1-d does not directly update (Π,K) but
updates the underlying MSF F which allows the sampler to explore different candidates of (Π,K).
Here the values of pa, pb, pc depend on K, and pd is chosen to be small enough such as 0.05 to give
the sampler enough time to explore (Π,K) compatible with current F .

Proposal probabilities for each move (pa, pb, pc, pd) depend on the current number of cluster K.
When nc<K<p, we set (pa, pb, pc, pd)=(0.425, 0.425, 0.1, 0.05). For the boundary cases when
K=nc and K=p, we set (pa, pb, pc, pd)=(0.95, 0, 0, 0.05) and (pa, pb, pc, pd)=(0, 0.95, 0, 0.05)
respectively.

By proposition 1, there are two types of edges in F = (V,EF ) that determine Π: a set of cut edges
(between-cluster edge) EC and a set of within-cluster edges EF \EC . For step 1-a (split) with
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K? = K + 1, we propose a new Π? by randomly choosing one edge from the within-cluster edge set
EF \EC with equal probability and switch it to a cut-edge. For step 1-b (merge) withK? = K−1, we
propose a new Π? by randomly choosing one edge from the cut edge set EC with equal probability
and switch it to a within-cluster edge. For step 1-c (change), Π? is proposed by successively
performing split and merge steps. Care is needed regarding local shrinkage parameters {λk}Kk=1,
since a birth/death of new cluster accompanies adding/deleting a local shrinkage parameter λ?. For
step 1-a (split), let λold be a local shrinkage parameter of the splitting cluster Cold. By selecting a
new cut-edge, we divide Cold = Cnew1 ∪ Cnew2 such that |Cnew1 | ≥ |Cnew2 | (if two cluster sizes are the
same, then based on a proposed cut-edge (i, j) with i < j, Cnew1 is the cluster that includes i). Then
the local parameter of the bigger cluster Cnew1 is inherited from the original cluster λnew1 = λold, and
the local parameter of the smaller cluster is drawn from its prior λnew2 = λ? ∼ C+(0, 1). Similarly,
for step 1-b (merge), we can define Cnew = Cold1 ∪Cold2 such that |Cold1 | ≥ |Cold2 | and let λnew = λold1 .
This type of proposal makes step 1 satisfy detailed balance condition (Green, 1995).

The collapsed conditional [Π,K,F|Λ, τ,y] (where β̃ and σ2 are integrated out) is proportional to

[Π,K,F|Λ, τ,y] ∝
∫∫
N (y|X̃β̃, σ2In)N (β̃|0, σ2τ2Λ)σ−2dβ̃dσ2

(
p− nc
K − nc

)−1

(1− c)K

(A1)

∝
∫
N (y|0, σ2(In + τ2X̃ΛX̃>))× σ−2dσ2 ×

(
p− nc
K − nc

)−1

(1− c)K (A2)

∝ |Σ|−1/2(y>Σ−1y/2)−n/2 ×
(
p− nc
K − nc

)−1

(1− c)K (A3)

where Σ = In + τ2X̃ΛX̃>. Note that X̃ = XΦ> is a function of Π since Π determines Φ.
Line (A3) can be decomposed into a likelihood part |Σ|−1/2(y>Σ−1y/2)−n/2 and a prior part(
p−nc
K−nc

)−1
(1 − c)K . Then the split step proposal (Π?,K? = K + 1) is accepted with probability

min{1,Aa · Pa · La} where

(prior ratio) Aa =

(
p−nc

K+1−nc

)−1
(1− c)K+1C+(λ?|0, 1)(

p−nc
K−nc

)−1
(1− c)K

=
K + 1− nc
p−K

(1− c)C+(λ?|0, 1)

(proposal ratio) Pa =
pb
pa

1
K+1−nc

1
(p−nc)−(K−nc)C

+(λ?|0, 1)
=
pb
pa

p−K
(K + 1− nc)C+(λ?|0, 1)

(likelihood ratio) La =
|Σ?|−1/2(y>Σ?−1y)−n/2

|Σ|−1/2(y>Σ−1y)−n/2
.

Similarly, the merge step proposal (Π?,K? = K−1) is accepted with probability min{1,Ab·Pb·Lb}:

(prior ratio) Ab =

(
p−nc

K−1−nc

)−1
(1− c)K−1(

p−nc
K−nc

)−1
(1− c)KC+(λold2 |0, 1)

=
p−K + 1

K − nc
1

(1− c)C+(λold2 |0, 1)

(proposal ratio) Pb =
pa
pb

1
(p−nc)−(K−1−nc)C

+(λold2 |0, 1)

1
K−nc

=
pa
pb

(K − nc)C+(λold2 |0, 1)

p−K + 1

(likelihood ratio) Lb =
|Σ?|−1/2(y>Σ?−1y)−n/2

|Σ|−1/2(y>Σ−1y)−n/2
,

and the change step proposal (Π?,K? = K) is accepted with probability min{1,Ac · Pc · Lc}:

Ac · Pc · Lc =
|Σ?|−1/2(y>Σ?−1y)−n/2

|Σ|−1/2(y>Σ−1y)−n/2

For step 1-d (hyper), conditioning on the current partition, Π divides the edge set E of G into the
between-cluster edge set Eb and within-cluster edge set Ew. We sample F by sampling Wij

iid∼
Unif(0, 1/2) for (i, j) ∈ Ew, Wij

iid∼ Unif(1/2, 1) for (i, j) ∈ Eb, and letting F = MSF(G,W ).
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To see this is a correct sampler, note that p(W ) ∝ 1 is symmetric and F = MSF (G,W ) depends
only through the order of random edge weights {Wij}(i,j)∈E ; see Luo et al. (2021) for detailed
discussion.

As briefly discussed in Section 3.1, we apply several computational strategies to efficiently calculate
L. Plus, if X = In, we can marginalize out Λ when calculating L to improve MCMC mixing and
avoid local parameter proposals λ?; see Section A1.3.

A1.2 Step 2 and Step 3 Details

Steps 2 and 3 follow a similar procedure of Johndrow et al. (2020) as detailed below.

(2-1) propose log(τ?) ∼ N (log(τ), s), accept τ? w.p. |Σ
?|−1/2(y>Σ?−1y)−n/2

|Σ|−1/2(y>Σ−1y)−n/2
1+τ2/τ2

0

1+τ?2/τ2
0

τ?

τ ,

(2-2) sample σ2|τ,Λ,Π,y ∼ InvGamma
(
n
2 ,

1
2y
>Σ−1y

)
,

(2-3) sample β̃|σ2, τ,Λ,Π,y ∼ NK
(

(τ−2Λ−1 + X̃>X̃)−1X̃>y, σ2(τ−2Λ−1 + X̃>X̃)−1
)

,

(3) sample λk
ind∼ p(λk|τ, σ2, β̃) ∝ 1

1+λ2
k
× 1

στλk
exp

(
− β̃2

k

2σ2τ2λ2
k

)
, k = 1, · · · ,K.

In step (2-1), the Metropolis-Hastings proposal variance s is adjusted every 1000th iteration to
maintain acceptance ratio close to 0.35 (Haario et al., 2001). In step (2-3), Rue (2001)’s algorithm is
used and we’ll explain its benefits in the next subsection. In step (3), we use slice sampler (Neal, 2003;
Polson et al., 2014) by reparametrizing ηk := 1/λ2

k and introducing auxiliary variables {uk}Kk=1.

Specifically, first sample uk
ind∼ Unif(0, 1/(1 + ηk)) and then sample ηk

ind∼ Exp(2σ2τ2/β̃2
k)1(0 <

ηk < 1/uk − 1), k = 1, . . . ,K where Exp(θ)1(0 < η < a) is a truncated exponential distribution
with parameter θ (mean before truncation) and support (0, a).

A1.3 Computational Strategies

When calculating the likelihood, we utilize Sherman-Woodbury-Morrison forumla, matrix determi-
nant lemma and Cholesky decomposition for the efficient calculation of y>Σ−1y and |Σ|. If we let
R be a K ×K right triangular Cholesky factor such that R>R = τ−2Λ−1 + X̃>X̃, then

y>Σ−1y = y>y − yX̃(τ−2Λ−1 + X̃>X̃)−1X̃>y

= y>y − y>X̃(R>R)−1X̃>y (A4)

|Σ| = |τ−2Λ−1 + X̃>X̃| · |τ2Λ| = |R|2 ·
K∏
k=1

(λ2
kτ

2) (A5)

It is evident to see the computational benefits of using Cholesky factor R. First in (A4), y>y is
a constant and y>X̃(R>R)−1X̃>y = ‖v‖22 where v is obtained by solving R>v = X̃>y using
only forward substitution. In (A5), |R| is simply a product of its diagonal elements. Next in step
(2-3), using Rue (2001)’s algorithm we draw β̃ by back substitution σ−1Rβ̃ = (σ−1v + z) where
z ∼ NK(0, IK).

During the MCMC, the Cholesky factor R should be updated whenever a change of X̃, τ or Λ takes
place. For instance, in step 1 we have a new X̃? = XΦ?> which leads to R?>R? = τ−2Λ−1 +
X̃?>X̃? where a row and column are added/deleted in step 1-a/1-b respectively. A naive calculation
of R requiresO(nK2) (assumingK < n), but we avoid this by directly updating R from its previous
value. Specifically, in step (1), X̃ (and Λ) changes, and we use the rank-1 update/downdate of
Cholesky factor (Golub and Van Loan, 2013, Sec. 6.5.4), (Osborne, 2010, Appendix B) which reduces
the cost to O(K2). In steps (2-1) and (3), the diagonal part of τ−2Λ−1 + X̃>X̃ changes, and we
propose a tailored updating algorithm, Cholesky diagonal update, and presented it in Algorithm 2. It
involves about (2/3)K3 FLOPs when R isK×K. Thus, we can directly update R with the diagonal
modification vector v=(τ?−2−τ−2)diag(Λ)−1 for step (2-1) and v=τ−2(diag(Λ?)−1−diag(Λ)−1)
for step 3. Combined with forward/backward substitution and Rue (2001)’s algorithm described
above, these Cholesky updating strategies speed up the algorithm significantly, especially when K is
small.
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Algorithm 2 Cholesky diagonal update
Input: Right triangular Cholesky factor chol(A) = R ∈ Rn×n, diagonal part modification vector
v ∈ Rn. HereA andA+ diag(v) are both assumed to be positive definite.
Output: Right triangular Cholesky factor U = chol(A+ diag(v)).

1: Initialize U ∈ Rn×n with zero elements.
2: w← colSums(R ◦R) + v where ◦ indicates elementwise product.
3: for i in 1 to n do
4: U [i, i]←

√
w[i]−

∑i−1
k=1 U [k, i]2

5: s←
∑i−1
k=1(R[k, i]R[k, (i+ 1) : n]− U [k, i]U [k, (i+ 1) : n])

6: U [i, (i+ 1) : n]← (R[i, i]R[i, (i+ 1) : n] + s)/U [i, i]
7: end for
8: return U = chol(A+ diag(v))

In addition, if X = In we can marginalize out Λ instead of σ2 in step 1 which leads to improved
mixing of MCMC chain and avoiding λ? proposal procedure, that is, we can write a new likelihood
ratio L′ as

L′ =

∫
· · ·
∫
p(y|Π?,K?,Λ?, τ, σ2)

∏K?

k=1 p(λk)dλk∫
· · ·
∫
p(y|Π,K,Λ, τ, σ2)

∏K
k=1 p(λk)dλk

, (A6)

First consider L′a, a new likelihood ratio in the split step so that K? = K+1 and cluster C0 is divided
by C0 = C1 ∪ C2. Since X = In, we note that likelihood p(y|Π,K,Λ, τ, σ2) can be factorized into
the clusterwise likelihoods

∏K
k=1 p({y}i∈Ck |Π,K,Λ, τ, σ2) so that most of the terms in L′ cancels

out except the terms corresponding to C0 in the denominator and C1, C2 in the numerator. Thus

L′a =

∫∞
0
m({yi}i∈C1 |λ1, τ) 2

π(1+λ2
1)
dλ1

∫∞
0
m({yi}i∈C2 |λ2, τ) 2

π(1+λ2
2)
dλ2∫∞

0
m({yi}i∈C0 |λ12, τ) 2

π(1+λ2
12)
dλ12

(A7)

where

m({yi}i∈C |λ, τ) =

∫ ∞
−∞

∏
i∈C

[
N
(
yi|β̃/

√
N, σ2

)]
N
(
β̃|0, σ2λ2τ2

)
dβ̃

= N
(
ȳ|0, σ2(1 + λ2τ2)/N

)
× (2πσ2)−(N−1)/2N−1/2 exp(− 1

2σ2

∑
i∈C

(yi − ȳ)2)

for a cluster C with size N = |C|. The three integral terms in (A7) can be calculated by numerical
integration. Similarly, we can calculate the likelihood ratio of the merge step Lb by inverting the
expression (A7), and the change step Lc is the product of the two. Here the product of the prior and
proposal ratios remains the same as before; i.e.,A′ · P ′ = A ·P for steps (1-a), (1-b), and (1-c). Thus
when X = In, we can update (Π,K) using collapsed conditional [Π,K|σ2, τ,y] where all local
parameters (βk, λk) are integrated out, with acceptance ratio α′ = min(1,A′ · P ′ · L′). Computation
of other parts in algorithm may also be simplified, since X = In implies X̃>X̃ = IK and thus

R = diag
(√

τ−2λ−2
1 + 1, · · · ,

√
τ−2λ−2

K + 1

)
.

A2 Proof of Proposition 1

Proof. Let Gj = (Vj , Ej), j = 1, . . . , nc be connected components of G. Then any graph partition
Π = {C1, . . . , CK} of G, where K ≥ nc, can be divided into nc disjoint subsets Π =

⋃nc
j=1 Πj such

that each Πj corresponds to a graph partition of Gj , according to the definition of contiguous graph
partitions. Note each Gj is a connected graph. By applying Proposition 2 of Luo et al. (2021) for
each Gj , there exists a spanning tree Tj = (Vj , E

T
j ) with |ETj | = |Vj | − 1, and a set of cut-edges

ECj ⊂ ETj with |ECj | = |Πj | − 1 such that Tj and ECj induces Πj . Then we can construct a
spanning forest F = (V,EF ) where EF =

⋃nc
j=1E

T
j and a set of cut-edges EC =

⋃nc
j=1E

C
j with

|EC | =
∑nc
j=1(|Πj | − 1) = K − nc which completes the proof.
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A3 Proof of Proposition 2 and Median Variance Matching Criterion

First we present the proof of Proposition 2.

Proof. Here σ2, τ1, τ2 are assumed to be fixed. If µ1|λ1 ∼ N (0, λ2
1τ

2
1σ

2) and µ2|λ2 ∼
N (0, λ2

2τ
2
2σ

2) independently, the conditional distribution of δ = (µ1 − µ2)/σ given λ1, λ2 is

δ|λi, λj ∼ N (0, λ2
1τ

2
1 + λ2

2τ
2
2 )

When λ ∼ C+(0, 1) independently, it is easy to see that density of V = τ2λ2 is given by fV (v|τ) =
τ/[π
√
v(v + τ2)], v > 0. Then since λ2

1τ
2
1 and λ2

2τ
2
2 are independent, the marginal distribution of

W := λ2
1τ

2
1 + λ2

2τ
2
2 can be calculated by convolution formula; i.e.,

fW (w) =

∫ ∞
−∞

fV (w − v|τ1)fV (v|τ2)dv =

∫ w

0

τ1τ2

π2
√
w − v(w − v + τ2

1 )
√
v(v + τ2

2 )
dv

=
2

π2(w + τ2
1 + τ2

2 )

τ2 tan−1( τ1
√
v√

w+τ2
1

√
w−v

)√
w + τ2

1

+
τ1 tan−1(

√
w+τ2

2

√
v

τ2
√
w−v )√

w + τ2
2


v↗w

v=0

=
1

π

τ1
√
w + τ2

1 + τ2
√
w + τ2

2√
w + τ2

1

√
w + τ2

2 (w + τ2
1 + τ2

2 )
, w ≥ 0

Therefore the marginal distribution of δ can be written as

π∆(δ|τ1, τ2) =

∫ ∞
0

N (δ|0, w)fW (w|τ1, τ2)dw

Now we explain the median variance matching criterion under the different settings of (n1, n2). The
cumulative distribution function of W is

FW (w) =
2

π

[
tan−1

(√
w + τ2

2

τ1

)
+ tan−1

(√
w + τ2

1

τ2

)]
− 1

for w ≥ 0 and 0 otherwise. By solving FW (w) = 1/2, the median is

median(W ) = τ2
1 + τ2

2 + 2τ1τ2
√

2

Since moments of W do not exist, the closed form of median gives a useful measure of ‘center’ of
W .

Following Section 3.2, consider the normal means model X = In with two clusters C1, C2 with sizes
n1, n2. Then T-LoHo induces a prior on the two cluster mean µ1 and µ2 as

µ1|λ1, τ, σ
2 ∼ N

(
0,

1

n1
λ2

1τ
2σ2

)
, µ2|λ2, τ, σ

2 ∼ N
(

0,
1

n2
λ2

2τ
2σ2

)
Thus when λ1, λ2

iid∼ C+(0, 1) are integrated out, the induced prior on δ = (µ1 − µ2)/σ is

δ ∼ π∆(δ|τ1 = τ/
√
n1, τ2 = τ/

√
n2)

We match the median of W as 1 for a fair comparison with N (0, 1). When n1 = n2 = n (balanced),
we set τ =

√
n/
√

2 + 2
√

2. When n1 : n2 = 9 : 1 (unbalanced), we set τ =
√
n1/
√

10 + 6
√

2.

A4 Proof of Theorem 1

Let (β∗, β̃∗, σ∗) denote the true β, β̃ and σ respectively. Let ξ∗ = {j ∈ V : β∗j 6= 0} denote the true
active set of indices. Let Π̌ denote an arbitrary partition of V = {1, · · · , p} whose corresponding
partition of ξ∗ is determined by removing those edges with β∗i − β∗j > 0 from the subgraph of any

5



F compatible with Π̌ at vertex set ξ∗. We define g∗n = maxΠ̌ |Π̌(ξ∗)| among all possible Π̌. Let Pn
denote all unique partitions that have at most g∗n(1 + cδ) clusters and their corresponding partitions
of ξ∗ are nested in the true partition of ξ∗ for some constant cδ > 0.

Below, we consider the case when p is much larger than n and establish posterior concentration
results for the T-LoHo model as n goes to infinity. Our results rely on the following assumptions:

(A-1) The graph satisfies g∗n ≺ n/ log p, nc = o(g∗n), and log |Pn| = O(g∗n log p).
(A-2) All the covariates are uniformly bounded. There exist some fixed constant λ0 > 0, such that

λmin(X̃T X̃) ≥ nλ0 for any partition in Pn.

(A-3) maxj |β̃∗j |/σ∗ < L, where log(L) = O(log p).

(A-4) − log τ � log p, τ < p−(2+cτ )
√
g∗n log p/n, 1 − c ≥ p−cα , and

minσ2∈[σ∗2, σ∗2(1+cσε2n)] π(σ2) > 0 for some positive constants cτ , cα and cσ .
Theorem 1. (Posterior contraction) Under Assumptions (A-1) to (A-4), there exists a large
enough constant M1 > 0 and εn �

√
g∗n log p/n such that the posterior distribution satisfies

πn (‖β − β∗‖2 ≥M1σ
∗εn | y) ≤ exp(−c1nε2

n) with probability 1− exp(−c2nε2
n) for some con-

stants c1 > 0 and c2 > 0.

A4.1 Notations and Lemmas

We begin by introducing some asymptotic notations. Given two positive sequences {an} and
{bn}, an � bn means limn→∞ (an/bn) = ∞ and an � bn means 0 < lim infn→∞ (an/bn) ≤
lim supn→∞ (an/bn) <∞. We denote the `2 norm by ‖·‖. We use p to denote the dimension of β.

We also introduce the following notations. Let fθ be the likelihood function of parameter θ ∈ Θn

given y from a data generation model, whose prior is π(θ) and true parameter value is θ∗. We use
f∗ ≡ fθ∗ to denote the density function of y when θ = θ∗, m(y) to denote the marginal density
of y, Eθ,E

∗ to denote the expectations under fθ and f∗ respectively, Pr∗ to denote the probability
measure under p∗, and πn to denote the posterior distribution given y.

We let Π(β) denote the contiguous partition of {1, · · · , p} with respect to G according to β. Define
ξ1(β, σ) :=

⋃
{k:|β̃k/σ|≥εn/p} Ck such that it only includes the set of indices in {1, · · · , p} whose

corresponding |β̃/σ| is greater than εn/p, and Π1(β, σ) be the partition of ξ1(β, σ) under Π(β).
Below, we also use Π(ξ) to denote the partition of set ξ(β, σ) when there is no risk of confusion.

We now state some lemmas that will be used in the proof of Theorem 1.
Lemma 1. (Lemma 1 of Laurent and Massart (2000)) Let χ2

d be a chi-square distribution with
degree of freedom d. Then the following concentration inequalities hold for any x > 0:

Pr
(
χ2
d > d+ 2x+ 2

√
dx
)
≤ exp(−x)

and
Pr
(
χ2
d < d− 2

√
dx
)
≤ exp(−x).

Lemma 2. (Lemmas 10 and 11 of Banerjee (2021)) Let πHS(β|σ = 1, τ) denote the horseshoe prior
density on β assuming a fixed τ > 0 and σ2 = 1. Under Assumptions (A-3) and (A-4), for some
cτ > 0, we have∫ εn/p

−εn/p
πHS(β; 1, τ)dβ ≥ 1− p−(1+cτ ), − log

(
inf

β∈[−L,L]
πHS(β; 1, τ)

)
= O(log p) (A8)

Lemma 3. (Lemma A.3 of Song and Cheng (2020)) Let Bn and Cn be two subsets of the parameter
space Θn, and φn be a test function satisfying φn(Dn) ∈ [0, 1] for any data Dn. If π (Bn) ≤
bn,E

∗ {φn(Dn)} ≤ b′n, supθ∈Cn E {1− φn(Dn)} ≤ cn, and

Pr∗
(
m(Dn)

f∗(Dn)
≥ an

)
≥ 1− a′n.

Then
E∗ {πn (Cn ∪Bn | Dn)} ≤ bn + cn

an
+ a′n + b′n.
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A4.2 Proof of Theorem 1

Proof. The proof of Theorem 1 proceeds by verifying the conditions in Lemma 3 in three parts,
adapting the proof in Song and Liang (2017) originally used for a Bayesian variable selection problem.
The first part involves the construction of Bn and Cn, the second part shows the existence of testing
functions φn, and the last part proves the evidence lower bound.

Part 1 (Sieve construction): We define

Cn =

{
(β, σ) : ‖β − β∗‖ ≤M1σ

∗εn and
1− εn
1 + εn

< σ2/σ∗2 <
1 + εn
1− εn

}c
\Bn,

and

Bn =
{

(β, σ) :Π1(β, σ) has at least cδg∗n clusters
}
.

for some constant cδ > 0.

Recall K ≡ |Π(β, σ)| follows a left truncated geometric distribution. Conditional on K, the number
of clusters whose corresponding |β̃/σ| exceeds εn/p follows a Binomial (K, vn) distribution, where
vn =

∫
|x|≥εn/p πhs(x; 1, τ)dx and πhs(x) is the horseshoe prior density function for β̃/σ. From

Lemma 2, it is known that vn ≤ O(p
−(1+cτ )
n ). Following a similar proof as in Song and Liang

(2017), we can show that for any K > cδg
∗
n, Pr (Binomial (K, vn) ≥ cδg∗n) ≤ exp(−c′1nε2n) for

some constant c′1 using a sharp tail bound for binomial distributions in Theorem 1 of Zubkov and
Serov (2013). Conditional on any given spanning forest F , π (Bn | F) = Pr(Binomial (K, vn) ≥
cδg
∗
n | K ≥ cδg∗n) Pr(K ≥ cδg∗n) ≤ exp

(
−c′1nε2

n

)
. Note that c′1 does not depend on F . Therefore

there exists some constant c1 such that

π (Bn) =
∑
F
π (Bn | F)π(F) ≤ exp{−c1nε2n}. (A9)

Part 2 (Existence of testing function), Given an arbitrary partition Π(ξ) of an arbitrary set ξ with Kξ

clusters, let X̃ξ be the corresponding transformed design matrix, and Hξ be the hat matrix of X̃ξ.
Define β̂ξ = (X̃T

ξ X̃ξ)
−1X̃T

ξ y, σ̂2
ξ = yT (I−Hξ)y/(n−Kξ), and β̃

∗
ξ = Φ

(
Π(ξ)

)
β∗(ξ).

We define a test function

φ(y) = max
{ξ⊃ξ∗}

1{‖β̂ξ − β̃
∗
ξ‖ ≥ σ∗εn and |σ̂2

ξ/σ
∗2 − 1| ≥ εn, for some ξ and Π(ξ)

such that Π(ξ∗) is nested in Π∗(ξ∗) and Kξ ≤ (1 + cδ)g
∗
n }

for some fixed cδ > 0, where Π∗(ξ∗) is the true partition of ξ∗.

From standard linear regression results, under the true parameter (β∗, σ∗) and the restricted eigenvalue
assumption in (A-2), we have Pr(|σ̂2

ξ/σ
∗2 − 1| ≥ εn) = Pr

(
|χ2
n−Kξ/(n−Kξ)− 1| ≥ εn

)
and

Pr(‖β̂ξ − β̃
∗
ξ‖ ≥ σ∗εn) ≤ Pr

(
χ2
Kξ
≥ nλ0ε

2
n

)
. Using Lemma 1, we have Pr(‖β̂ξ − β̃

∗
ξ‖ ≥

σ∗εn and |σ̂2
ξ/σ
∗2 − 1| ≥ εn) ≤ exp(−c′21nε

2
n). From the union bound and the last part of

Assumption (A-1), we can now bound the type-I error of the test function as follows

E∗{φ(y)} ≤ Pn · exp(−c′21nε
2
n) ≤ exp(−c21nε

2
n), (A10)

for some constant c21 > 0 and large nε2
n/(g

∗
n log p).

Next we bound the type II error part sup(β,σ)∈Cn E {1− φ(y)}. We define two subsets C(1)
n and

C
(2)
n such that Cn ⊂ C(1)

n ∪ C(2)
n and analyze them separately, where

C(1)
n =

{
(β, σ) : ‖β − β∗‖ > M1σ

∗εn,
σ2

σ∗2
<

1 + εn
1− εn

}
∩Bcn

and

C(2)
n =

{
σ :

σ2

σ∗2
≤ 1− εn

1 + εn
or

σ2

σ∗2
≥ 1 + εn

1− εn

}
∩Bcn.
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For any β ∈ Cn, let F(β) be any spanning forest that can induce Π(β). Consider a set ξ̆ formed
by keeping those column indices whose |β̃/σ| > εn/p or β∗ > 0. Thus ξ̆ ⊃ ξ∗. We then form a
partition Π(ξ̆) of ξ̆ by removing those edges with β∗i − β∗j > 0 or βi − βj > 0 from the subgraph
of F(β, σ) at vertex set ξ̆. By construction and the definition of Bn, Π(ξ∗) is nested in Π∗(ξ∗) and
Kξ̆ ≤ (1 + cδ)g

∗
n.

For any (β, σ) ∈ C(1)
n , we can show that

Pr
{
‖β̂ξ̆ − β̃

∗
ξ̆‖ ≤ σ∗εn | β, σ2

}
= Pr

{
‖(X̃T

ξ̆
X̃ξ̆)

−1X̃T
ξ̆
σz + β̃ξ̆ + (X̃T

ξ̆
X̃ξ̆)

−1X̃T
ξ̆
X̃ξ̆c β̃ξ̆c − β̃

∗
ξ̆‖ ≤ σ∗εn

}
≤ Pr

{
‖(X̃T

ξ̆
X̃ξ̆)

−1X̃T
ξ̆
z‖ ≥

[
‖β̃ξ̆ − β̃

∗
ξ̆‖ − ‖(X̃T

ξ̆
X̃ξ̆)

−1X̃T
ξ̆
X̃ξ̆c β̃ξ̆c‖ − σ

∗εn

]
/σ
}

≤ Pr
{
‖(X̃T

ξ̆
X̃ξ̆)

−1X̃T
ξ̆
z‖ ≥M2εn

}
(A11)

≤ exp(−c′22nε
2
n) (A12)

where z := ε/σ following N(0, 1). The last inequality in (A12) is from Lemma 1. The
second last inequality in (A11) holds because ‖β̃ξ̆ − β̃

∗
ξ̆‖ ≥ ‖βξ̆ − β∗

ξ̆
‖ − ‖β̃ξ̆c‖ ≥

M1σ
∗εn − pn(σεn/p) ≥ M1σ

∗εn − σ∗εn
√

(1 + εn)/(1− εn), and ‖(X̃T
ξ̆
X̃ξ̆)

−1X̃T
ξ̆
X̃ξ̆c β̃ξ̆c‖ ≤√

1/(nλ0)
√
np
√
pσεn/p ≤ c′23σεn by Assumption (A-2).

For any (β, σ) ∈ C(2)
n , from linear regression results, we have

∥∥∥y − X̃ξ̆β̂ξ̆

∥∥∥2

∼ σ2χ2
n−Kξ̆

(κ), where

the noncentral parameter κ = ‖X̃ξ̆cβξ̆c/σ‖
2
2 ≤ cκnε2

n. Therefore,

Pr(β,σ)

(∣∣σ̂2
π̂(y)− σ∗2

∣∣ < σ∗2εn
)

= Pr(β,σ)


∣∣∣∣∣∣∣
∥∥∥y − X̃ξ̆β̂ξ̆

∥∥∥2

σ∗2(n−Kξ̆)
− 1

∣∣∣∣∣∣∣ < εn


≤ Pr(β,σ)


∣∣∣∣∣∣∣
∥∥∥y − X̃ξ̆β̂ξ̆

∥∥∥2

σ2
− (n−Kξ̆)

∣∣∣∣∣∣∣ > (n−Kξ̆)εn


≤ Pr

(∣∣∣χ2
n−Kξ̆

(κ)− (n−Kξ̆)
∣∣∣ > (n−Kξ̆)εn

)
≤ exp

(
−c′24nε

2
n

)
, (A13)

for some constant c′24 > 0 and large n.

Therefore,

sup
(β,σ)∈Cn

E(β,σ){1− φ(y)} ≤ max{ sup
(β,σ)∈C(1)

n

E(β,σ){1− φ(y)}, sup
(β,σ)∈C(2)

n

E(β,σ){1− φ(y)}}

≤ max
{

exp
(
−c′22nε

2
n

)
, exp

(
−c′24nε

2
n

)}
≤ exp

(
−c22nε

2
n

)
, (A14)

Part 3 (Evidence lower bound): Recall m(y) is the marginal likelihood and f∗(y) is the true
likelihood. We let ε∗ = y −Xβ∗ be the vector of error terms. Under our model,

m(y)

f∗(y)
=

∫
exp(Rn)π(β, σ2)dβdσ2,

where Rn is the log likelihood ratio − 1
2σ2 ‖Xβ∗ + ε∗ −Xβ‖2 + ‖ε∗‖2

2σ∗2 − n log σ
σ∗ .

In Part 3, we seek to prove

Pr∗{m(y)

f∗(y)
≥ exp(−c31nε

2
n)} ≥ 1− exp(−c32nε

2
n), (A15)
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for some constants c31 and c32.

We will first show that (A15) holds under the eventE1 = {‖ε∗/σ∗‖2 ≤ (1+c′31)n and ‖ε∗TX‖∞ ≤
c′31nεn} and then show that E1 holds with a large probability.

To prove (A15), rewrite

Rn = − ‖Xβ
∗ −Xβ‖2

2σ2︸ ︷︷ ︸
I

− (Xβ∗ −Xβ)
>
ε∗

σ2︸ ︷︷ ︸
II

+ ‖ε∗‖2
(

1

2σ∗2
− 1

2σ2

)
︸ ︷︷ ︸

>0

−n
2

log
σ2

σ∗2︸ ︷︷ ︸
>−δ′31nε

2
n/2

(A16)

Under the event of E1, when H2 :=
{
σ2 ∈ [σ∗2, σ∗2(1 + δ′31ε

2
n)] and ‖(β∗ − β)/σ‖1 < 2δ′32εn

}
holds for some constants δ′31 and δ′32, we can show that I ≥ O(−nε2

n) and II ≥ O(−nε2
n) using

inequality between `1 and `2 norms and Hölder inequality. Thus, H1 := {Rn ≥ −c′32nε
2
n} is a

super-set of H2 for some constant c′32.

Let π(σ2) denote the prior density function for σ2. By Assumption (A-4), for some constant cσ > 0,

Pr
{
σ2 ∈ [σ∗2, σ∗2(1 + δ′31ε

2
n)]
}

≥ δ′31σ
∗2ε2

n · min
σ2∈[σ∗2, σ∗2(1+δ′31ε

2
n)]
π(σ2)

≥ exp(−c′σnε2
n). (A17)

Let Π̃ denote an arbitrary partition of {1, . . . , p} whose corresponding partition of ξ∗ is determined by
removing those edges with β∗i −β∗j > 0 from the subgraph of anyF compatible with Π̃ at vertex set ξ∗.
Also let K̃, β̃ and β̃∗ denote its number of clusters, the transformed coefficients and true coefficients,
respectively. We now analyze the prior of β̃. Without loss of generality, assume the first k̃1 clusters of
Π̃ have nonzero β∗. We write ‖(β∗−β)/σ‖1 =

∑k̃1

j=1

√
|Cj |·|β̃j−β̃∗j |/σ+

∑K̃
j=k̃1+1

√
|Cj |·|β̃j |/σ.

Therefore,

{‖(β∗ − β)/σ‖1 < 2δ′32εn} ⊃
{
|β̃j/σ| ≤ δ′32εn/

√
K̃p, for all j = k̃1 + 1, · · · , K̃

}
∩{

β̃j/σ ∈
[
β̃∗j /σ − δ′32εn/

√
k̃1|ξ∗|, β̃∗j /σ + δ′32εn/

√
k̃1|ξ∗|

]
for all j = 1, · · · , k̃1

}
from the in-

equality between l1 and l2 norms.

Note that k̃1 ≤ g∗n and K̃ ≤ p. Conditional on σ2 ∈ [σ∗2, σ∗2(1 + δ′31ε
2
n)] and Π̃, we have

Pr

{
|β̃j/σ| ≤ δ′32εn/

√
K̃p, for all j = k̃1 + 1, · · · , K̃

}
≥ (1− p−1−chs)

√
K̃p → 1 (A18)

and

Pr

{
β̃j/σ ∈ [β̃∗j /σ − δ′32εn/

√
k̃1|ξ∗|, β̃∗j /σ + δ′32εn/

√
k̃1|ξ∗|] for all j = 1, · · · , k̃1

}

≥

[
2δ′32εn

(
inf

β̃/σ∈[−L,L]
πHS(β; 1, τ)

)
/

√
k̃1|ξ∗|

]k̃1

≥ exp(−c′βnε2
n) (A19)

from Lemma 2 and Assumption (A-1). Combining (A17), (A18) and (A19), we can show that
Pr(H2|Π̃) ≥ exp

(
−c′33nε

2
n

)
.

Also notice Pr(Π̃ | F) =
∑
K̃≥k̃1+nc−n∗c

Pr(k = K̃)
( p−nc−k̃1+n∗c
K̃−nc−k̃1+n∗c

)( p−nc
K̃−nc

)−1
, where n∗c is the

number of components in the original graph on ξ∗. By Assumption (A-1),

log Pr(k = k̃1 + nc − n∗c) ≥ log
(1− c)2g∗n∑pn
k=1(1− c)k

= (2g∗n − 1) log (1− c) + log c− log{1− (1− c)p}
≥ −2cαg

∗
n log p. (A20)
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In addition,

−log

(
p− nc
k̃1 − n∗c

)
≥ −g∗n log p. (A21)

Therefore, Pr(H2|F) ≥ Pr(H2 | Π̃) Pr(Π̃ | F) ≥ exp
(
−c′34nε

2
n

)
. Since c′34 does not depend on

the choice of F , we have Pr(H2) ≥ exp
(
−c′34nε

2
n

)
.

Recall under E1, H2 holds and thus Rn ≥ c′32nε
2
n since H1 ⊃ H2. It follows that,

m(y)

f∗(y)
≥ Pr(H2) exp(Rn)

≥ exp(−c′32nε
2
n) Pr(H2) ≥ exp(−c31nε

2
n). (A22)

Finally, from Lemma 1 and the tail bound for maximum of sub-Gaussian random variables, we can
prove that Pr(E1) ≥ 1− exp{−c32nε

2
n}. Combining with (A22), we proved (A15).

Combining three parts: Finally, we use the results of (A9) from Part 1, (A10) and (A14) from Part
2, (A15) from Part 3 and apply Lemma 3 to obtain

E∗ {πn (‖β − β∗‖2 ≥M1σ
∗εn | y)}

≤ E∗ {πn (Cn ∪Bn | y)} ≤ exp(−cenε2
n)

for some constant ce > 0. The result in Theorem 1 then follows from Markov inequality and
Borel-Cantelli lemma, which completes the proof of Theorem 1.
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A5 Hyperparameter Selection and Computational Efficiency Analysis

A5.1 Hyperparameter Sensitivity Analysis

First we present additional simulation study results in Section 4.1 with different sets of hyperpa-
rameters. For T-LoHo, 6 choices of (τ0, c) ∈ {0.1, 1} × {0.1, 0.5, 0.9} are considered. Note that
we used posterior median estimate for β̂TLoHo, because T-LoHo gives multimodal posterior dis-
tribution near the cluster boundary where using posterior mean can lead to misleading summary.
For soft-thresholded GP (STGP) (Kang et al., 2018), we used 15× 15 equally spaced grid of knots
with bandwidth set to the minimum distance between knots and same prior specification of section
4.1 therein. We used posterior mean to get β̂STGP , where β̂STGPj = 0 if posterior probability of a
nonzero β̂STGPj is less than 1/2. We ran total 50,000 MCMC iterations with 10,000 burn-in and 10
thin-in rate to collect 4,000 posterior samples for both T-LoHo and STGP. For sparse Fused lasso (FL)
(Tibshirani et al., 2011), we used path algorithm (Arnold and Tibshirani, 2020) to get FL estimate

β̂FL = argminβ
{

0.5‖y −Xβ‖22 + λFL
∑

(j,l)∈E |βj − βl|+ γFL · λFL
∑p
j=1 |βj |

}
(A23)

where we considered 3 candidates of γFL ∈ {0.2, 1, 5} and selected λFL among 2000 number of
steps using Bayesian information criteria. For graph octagonal shrinkage and clustering algorithm
for regression (GOSCAR) (Yang et al., 2012), λ1 (`1 regularizaton parameter) and λ2 (pairwise `∞
regularization parameter) are both set as 0.8 max{|βi|}/|E| from the true value of max{|βi|}. For
Bayesian graph Laplacian (Liu et al., 2014), we used EM algorithm of Chakraborty and Lozano
(2019) with same prior specification of Section 2.6 therein.

We report mean squared prediction error (MSPE) 1
ntest
||Xtestβ̂ − Xtestβ||2 based on a test set

with size ntest = 1000 and Rand index (RI) (Rand, 1971) which measures the clustering accuracy.
Table A1 shows comparison results with different levels of dependencies and SNR. Based on 100
replicated simulations, average MSPE and RI values are reported under 6 different settings of (τ0, c)
for T-LoHo, one STGP, and 3 different settings of γFL for FL. In Section 4.1, we report T-LoHo
result with (τ0, c) = (1, 0.5) and FL result with γFL = 0.2.

Table A1: Performance comparison based on average MSPE and RI over 100 replicated simulations.
Standard error is given in parentheses. RI= 1 indicates exact recovery of the true cluster.
ϑ, SNR T-LoHo with different (τ0, c) settings

(0.1, 0.1) (0.1, 0.5) (0.1, 0.9) (1, 0.1) (1, 0.5) (1, 0.9)

M
SP

E

0, 2 57.1(2.6) 75.1(3.9) 101.2(4.4) 52.1(2.2) 68.5(3.0) 96.3(43.3)
0, 4 27.6(1.4) 30.8(1.6) 46.5(4.1) 27.1(1.1) 24.4(2.0) 27.3(2.0)
3, 2 220.1(10.8) 241.3(11.2) 291.5(13.1) 235.2(10.8) 250.9(11.2) 296.3(14.0)
3, 4 55.5(2.2) 60.4(2.6) 66.6(3.3) 58.4(2.7) 59.7(2.3) 70.3(3.1)

R
I

0, 2 0.43(0.007) 0.85(0.009) 0.81(0.009) 0.58(0.018) 0.88(0.005) 0.82(0.009)
0, 4 0.49(0.010) 0.95(0.003) 0.91(0.008) 0.70(0.022) 0.95(0.002) 0.95(0.005)
3, 2 0.44(0.009) 0.88(0.004) 0.86(0.005) 0.71(0.020) 0.87(0.004) 0.86(0.005)
3, 4 0.52(0.013) 0.94(0.002) 0.94(0.002) 0.89(0.013) 0.95(0.002) 0.94(0.002)

ϑ, SNR STGP FL with different γFL settings GOSCAR BGL
γFL = 0.2 γFL = 1 γFL = 5

M
SP

E

0, 2 93.4(1.7) 85.0(2.0) 131.3(1.7) 182.5(1.9) 138.2(0.6) 136.2(0.6)
0, 4 86.3(1.6) 55.8(1.4) 105.8(1.6) 165.3(1.4) 133.6(0.6) 132.3(0.6)
3, 2 277.8(5.3) 340.6(12.9) 353.6(10.6) 674.0(13.1) 532.3(8.5) 483.2(6.0)
3, 4 163.9(2.2) 115.7(3.6) 128.5(4.2) 221.9(7.3) 335.0(4.8) 213.4(2.7)

R
I

0, 2 0.72(0.009) 0.47(0.012) 0.66(0.004) 0.66(0.002) 0.28(0.000) 0.29(0.000)
0, 4 0.72(0.010) 0.46(0.007) 0.69(0.004) 0.66(0.002) 0.28(0.000) 0.29(0.000)
3, 2 0.79(0.004) 0.58(0.012) 0.78(0.007) 0.65(0.006) 0.28(0.000) 0.29(0.000)
3, 4 0.80(0.003) 0.57(0.011) 0.82(0.007) 0.85(0.003) 0.28(0.000) 0.29(0.000)
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Figure A1: T-LoHo posterior median estimate of β when (ϑ,SNR) = (0,4) with different choice of
hyperparameters (τ0, c) ∈ {(0.1, 0.1), (1, 0.1), (0.1, 0.5), (1, 0.5)}. Black boundaries illustrates the
point estimate of cluster obtained from MCMC samples, based on Dahl’s method Dahl (2006).
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Figure A2: Posterior distribution of βj at two different locations, (a) and (b) as displayed in bottom
panel of fig.A1. Red line is when τ0 = 0.1, blue is when τ0 = 1. Dashed line denotes the true value.
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Selection and sensitivity analysis of τ0 Hyperparameter τ0 > 0 controls the scale of the global
shrinkage parameter, τ ∼ C+(0, τ0). As τ0 approaches to 0, posterior distribution of β more
concentrates at 0 for zero coefficients as we can see in the left panel of fig.A2. However at the same
time, a too small τ0 can introduce a stronger bias towards zero for nonzero signals as shown in the
right panel of fig.A2 (although this bias may disappear as the magnitude of signal increases). Thus,
there is a trade-off between shrinkage and bias when selecting τ0. In practice, if β is assumed to be
very sparse (i.e. contains many zeros) then a small τ0 is preferred because the benefit of shrinking
surpasses the loss due to bias. Under the formulation of T-LoHo, it is desirable to use a small τ0 if the
clusterwise parameter β̃ is assumed to be very sparse. Recently, Piironen and Vehtari (2017) proposed
to select τ0 based on the prior guess for the number of relevant variables. Following their approach,
we suggest τ0 = p0/(K0 − p0) where p0 is a prior guess for the number of nonzero clusters, K0 is a
prior guess for the total number of clusters. In our simulation setting, τ∗0 = 2/(3− 2) = 2 would be
an appropriate choice of τ0 if true is known.

According to table A1, when we have an independent design (ϑ = 0), τ0 = 1 gives slightly better
results in terms of MSPE compared to τ0 = 0.1. This is because the shrinkage effect is not well
reflected in the posterior median estimate β̂, while the bias is more emphasized when τ0 gets smaller.
However when we have a dependent design (ϑ = 3), τ0 = 0.1 gives slightly better results in terms of
MSPE compared to τ0 = 1. This may be explained by the fact that dependency of X leads to many
falsely identified clusters, where the benefit of shrinking those is more emphasized.

Selection and sensitivity analysis of c Hyperparameter c controls the geometric decay rate in the
prior of K, i.e., Pr(K = k) ∝ (1− c)k. As c becomes closer to 1, it more penalizes on the cluster
generation and gives fewer clusters. Assumption (A-4) of Theorem 1 requires 1− c ≥ p−cα , which
suggests that one should not choose the value of c too close to 1 unless the number of vertices p is
very large. Indeed, we notice that when c = 0.9, the MSPE increases according to table A1.

Table A1 also shows that Rand index sharply drops down when c = 0.1, and it is even more
emphasized when τ0 = 0.1. Indeed, at the top panel of fig. A1 we can see that the cluster
estimate is highly compartmentalized. This phenomenon can be characterized with our previous
discussion in Section 3.2, where we describe clustering as a trade-off between the Bayes factor
L = p(y|M2)/p(y|M1) and the the penalization prior p(K) ∝ (1− c)K . As τ0 becomes close to
0, induced density π∆ has a sharper spike around the origin, which makes the alternative δ ∼ π∆

behave more similar to the null δ = 0. As c becomes too close to 0, the effect of penalization prior
p(K) fades out, which leads to many redundant cluster estimates. Therefore, we recommend not to
choose c too close to 0.

In summary, we suggest to use c = 0.5 as a default and not to use too small or too large c. If the
number of vertices in G is sufficiently large, Assumption (A-4) gives a more wider choice of c, and
users may choose a different value of c based on their prior belief on the model size or some model
selection criteria such as the Watanabe-Akaike information criterion (WAIC; Watanabe, 2010).

A5.2 Simulation Studies With More Clusters

We performed additional simulation studies when there are multiple clusters in the data. Two
scenarios are considered: 1) four nonzero clusters with values −2,−1, 1, 2 respectively; 2) eight
nonzero clusters with values −3,−3,−2,−1, 1, 2, 3, 3 respectively. See fig. A3 for the graphical
illustration. Similar as before, we compared the MSPE and Rand index under the setting of n = 250
and p = 900 in tables A2 and A3. The T-LoHo hyperparameters are set as (τ0, c) = (1, 0.5) and
γFL ∈ {0.2, 1, 5}. When sample size n becomes smaller, it will be more challenging to identify
clusters when the number of clusters is larger. In theorem 1, g∗n, the size of the spanning tree space
compatible with nonzero clusters, increases as the number of nonzero clusters increases. Assumption
(A-1) states that it should be upper bounded by n/ log p asymptotically, which may not hold when n
is small. Indeed, we observed that T-LoHo, FL, GOSCAR, and BGL all suffer from a much poorer
performance.
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Table A2: Performance comparison based on average MSPE and RI over 100 replicated simulations.
Standard error is given in parentheses and time is in sec. RI=1 indicates exact recovery of true cluster.
K=4 ϑ SNR T-LoHo STGP FL (0.2) FL (1) FL (5)

MSPE

0 2 85.2(3.1) 190.7(1.9) 167.3(4.4) 332.6(8.4) 485.2(4.7)
0 4 34.9(1.4) 172.3(1.4) 91.7(2.8) 197.7(7.2) 365.0(3.8)
3 2 399.0(14.0) 441.8(8.4) 566.7(21.8) 656.4(23.9) 1050.2(32.4)
3 4 206.5(7.1) 361.0(7.5) 304.6(9.4) 377.9(12.5) 649.9(18.7)

RI

0 2 0.91(0.007) 0.65(0.010) 0.83(0.008) 0.76(0.008) 0.58(0.002)
0 4 0.95(0.005) 0.63(0.008) 0.86(0.009) 0.77(0.013) 0.61(0.002)
3 2 0.88(0.004) 0.77(0.003) 0.61(0.011) 0.79(0.006) 0.78(0.003)
3 4 0.92(0.003) 0.75(0.004) 0.60(0.011) 0.80(0.006) 0.82(0.002)

Table A3: Performance comparison based on average MSPE and RI over 100 replicated simulations.
Standard error is given in parentheses and time is in sec. RI=1 indicates exact recovery of true cluster.
K=8 ϑ, SNR T-LoHo STGP FL (0.2) FL (1) FL (5)

MSPE

0, 2 427.2(9.7) 414.5(4.3) 658.0(20.1) 1282.1(23.3) 1574.7(13.9)
0, 4 251.8(6.2) 352.7(3.3) 405.0(12.4) 934.4(33.0) 1271.0(11.2)
3, 2 2285.1(61.7) 1424.9(28.8) 2258.7(71.7) 2814.4(81.4) 4747.6(146.3)
3, 4 1189.3(31.4) 978.1(20.1) 1364.8(47.2) 1723.1(57.1) 2944.4(87.3)

RI

0, 2 0.76(0.006) 0.59(0.006) 0.72(0.006) 0.54(0.008) 0.57(0.004)
0, 4 0.84(0.006) 0.61(0.005) 0.78(0.005) 0.64(0.009) 0.61(0.002)
3, 2 0.71(0.006) 0.62(0.005) 0.67(0.006) 0.74(0.003) 0.67(0.004)
3, 4 0.78(0.006) 0.64(0.004) 0.68(0.005) 0.77(0.004) 0.73(0.003)
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Figure A3: True and fitted results with four (first row), eight (second row) nonzero clusters. Here
(ϑ,SNR) = (0, 4). (a) True coefficient image β; (b) T-LoHo estimate with (τ0, c) = (1, 0.5); (c)
STGP estimate after thresholding; (d) FL estimate with γFL=0.2.

The performance of all methods deteriorates as the number of nonzero clusters increases. The results
are not surprising because, for many high-dimensional regularization methods, it is known that the
learning rate often depends on the size of the true model (the number of clusters in our case) relative
to the sample size. Except in the case when K = 8 with ϑ = 3, T-LoHo still outperforms other
baselines in terms of both MSPE and Rand index. It will be of interest to improve the performance
of T-LoHo when predictors are correlated, sparsity level is relatively low, and it has many nonzero
clusters. We left these as a future working direction.
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