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Abstract

Incentivized exploration in multi-armed bandits (MAB) has witnessed increasing
interests and many progresses in recent years, where a principal offers bonuses to
agents to do explorations on her behalf. However, almost all existing studies are
confined to temporary myopic agents. In this work, we break this barrier and study
incentivized exploration with multiple and long-term strategic agents, who have
more complicated behaviors that often appear in real-world applications. An im-
portant observation of this work is that strategic agents’ intrinsic needs of learning
benefit (instead of harming) the principal’s explorations by providing “free pulls”.
Moreover, it turns out that increasing the population of agents significantly lowers
the principal’s burden of incentivizing. The key and somewhat surprising insight
revealed from our results is that when there are sufficiently many learning agents
involved, the exploration process of the principal can be (almost) free. Our main
results are built upon three novel components which may be of independent interest:
(1) a simple yet provably effective incentive-provision strategy; (2) a carefully
crafted best arm identification algorithm for rewards aggregated under unequal
confidences; (3) a high-probability finite-time lower bound of UCB algorithms.
Experimental results are provided to complement the theoretical analysis.

1 Introduction

Multi-armed bandits (MAB) is a simple yet powerful model for sequential decision making with an
exploration-exploitation tradeoff (Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020).
In standard MAB settings, one principal, who has a long-term system-level objective, takes charge of
selecting and playing arms. However, such assumption does not always hold in reality. It is often
the case that arm pulls are performed by multiple different agents whose individual goals are not
aligned with the system, and the principal can only observe agents’ actions. One typical example
is the individual buyers (agents) and the online shopping platform (the principal). Such scenarios
complicate decision making and introduce significant difficulties to optimize the system performance.

Incentivized exploration has been proposed to address this problem (Frazier et al., 2014; Mansour
et al., 2015). Specifically, bonuses can be offered by the principal to incentivize agents to perform
specific actions, e.g., to explore their originally underrated arms. This framework provides an
opportunity to reconcile different interests between the principal and agents. As a concrete example,
the online shopping platform can offer discounts on certain items so that individual buyers would buy
them and provide feedbacks, which can be used to optimize future strategies of the platform.
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While incentivized exploration has been investigated in the existing literature, we recognize two major
limitations. First, almost all of the existing works assume the participating agents to be myopic, i.e.,
they always choose the empirically best arm. Second, it is always assumed that at each time slot, one
new agent participates in the system, i.e., agents never stay or return. In other words, prior research
mainly considers how to incentivize one single temporary myopic agent. These two assumptions
largely limit the applicability of incentivized exploration.

In this work, we extend the study of incentivized exploration beyond the aforementioned barriers,
and investigate situations with multiple long-term strategic agents. In particular, we focus on the
scenarios (see Section 3.1) where the principal wants to identify the (overall) best arm whereas the
heterogeneously involved agents only care about their different individual cumulative rewards. For
such scenarios, the “Observe-then-Incentivize” (OTI) mechanism is proposed and several interesting
observations are obtained. First, we find that strategic agents’ intrinsic needs of learning can actually
benefit principal’s exploration by providing “free pulls”. In other words, as opposed to myopic
agents, the self interests of strategic agents can be exploited by the principal. Second, it turns out
that increasing the number of participating agents can significantly mitigate the principal’s burden on
incentivizing, which highlights the importance of increasing the population of agents. A crux of our
findings is the following intriguing conceptual message: when there are sufficiently many learning
agents involved, the exploration process of the principal could be (almost) free.

Behind these findings, three novel technical components play critical roles in the design and analysis
of OTI, all of which may have independent values.

• First, a simple yet provably effective incentive-provision strategy is developed, which can efficiently
regulate strategic agents’ behaviors and serves as the foundation of the algorithm analysis.

• Second, a best arm identification algorithm is carefully crafted to tackle the varying amounts of
local information from heterogeneous agents. This setting itself is novel in best arm identification.

• A high-probability finite-time lower bound of UCB algorithms (Auer et al., 2002) is proved, which
contributes to a better understanding of the celebrated UCB.

These insights and techniques are unique in incentivizing multiple long-term strategic agents, which
may find applications in related problems, and encourage future research in this direction.

2 Related Works

Incentivized exploration. Since proposed by Frazier et al. (2014); Kremer et al. (2014), many
progresses have been made in incentivized exploration in MAB. Especially, there exist two lines
of studies. The first one (Kremer et al., 2014; Mansour et al., 2015, 2016; Immorlica et al., 2020;
Sellke and Slivkins, 2020) assumes the principal can observe the full history while the agents cannot,
and the principal leverage such information advantage to perform incentivizing. The second line,
which our setting follows, considers a publicly available history while the incentives are done through
compensations. This idea is first introduced by Frazier et al. (2014) and generalized by Han et al.
(2015), both on Bayesian settings. The non-Bayesian case, as adopted in this work, is first studied by
Wang and Huang (2018), and recently extended by Liu et al. (2020); Wang et al. (2021).

However, the aforementioned works mainly consider that one new myopic agent enters the system at
each time slot and leaves afterward. The only exception is Mansour et al. (2016), where multiple
but still temporary and myopic agents are considered. This work differs from them in considering
multiple long-term strategic agents. In addition, another notable difference is that almost all prior
works focus on regret minimization for the principal, instead of best arm identification.

One important related work is Chen et al. (2018), which studies temporary myopic agents with het-
erogeneous preferences. Free explorations are also observed there because heterogeneous preferences
result in agents exploiting all arms. However, the “free pulls” of OTI is provided by strategic agents’
intrinsic needs for explorations, which is fundamentally different. Regardless of the differences, both
results show the value of further investigating agents’ behaviors in incentivized exploration.

Federated MAB. This work is related to and can potentially contribute to the studies of federated
MAB (FMAB) (Shi and Shen, 2021; Shi et al., 2021; Zhu et al., 2021), which considers a similar
framework of multiple heterogeneous agents and a global principal. These studies assume agents
would unconditionally give up learning their own local ones and naively follow global instructions.
which seldom holds in practice and makes those approaches unrobust. However, the proposed

2



incentivizing exploration scheme achieves the “best” of both worlds, i.e., agents learn local models
with additional compensations and the principal learn the global model via a small amount of cost.

3 Incentivized Exploration from Decentralized Learning Agents

3.1 Motivation

Consider the following scenario: one company (the principal) can manufacture several products, and
it would like to identify one product that best suits the market. A natural strategy is to perform a
market survey by having a group of users to try these products for some time and observing their
feedbacks. However, different users have different preferences over these products and they are also
learning in this process. Once they identify their preferred products, there is little incentive for them
to explore others, which limits the information gathering by the company. Such a scenario is common
in real life. For example, telecommunications companies such as AT&T (the principal) try to find the
optimal channel to serve the clients (agents) of an area through a period of trials; content-providing
websites such as YouTube (the principal) test the proposed features with prospective users (agents).

The idea of incentivized exploration fits in these practical scenarios perfectly since it can be utilized
to provide extra bonuses for users to try different products. However, the principal now faces the
problem of how to incentivize multiple long-term strategic agents simultaneously, which has not
been investigated in the prior research to the best of our knowledge. In addition, similar settings of
applications are also considered in the recently proposed federated MAB (FMAB) (Shi and Shen,
2021; Zhu et al., 2021). However, current FMAB studies only consider naive users who always follow
the principal’s instructions, and cannot be applied to strategic users that have individual learning
abilities and objectives.

3.2 Agents and the Principal

Following the motivation example in Section 3.1, we consider a total of M available decentralized
agents, each of which interacts with a local bandit environment equipped with the same set of K
arms (referred to as local arms) but with agent-dependent arm utilities. Namely, at time step t, a
reward Xk,m(t) ∈ [0, 1] is associated with agent m’s action of pulling arm k, which is sampled
independently from an unknown distribution whose expectation is µk,m := E[Xk,m(t)]. In general,
µk,m 6= µk,n for m 6= n. These agents are (naturally) assumed to be decentralized and self-interested,
i.e., their goal is to collect as much (of their own) reward as possible during a certain time horizon.

Besides these heterogeneous agents, there is also a principal. The principal faces a global bandit
game, which also has the same set of K arms (referred to as global arms for distinction). The
expected rewards of global arm k are the exact average of corresponding local arms, i.e., µk :=
1
M

∑
m∈[M ] µk,m. The principal’s goal is to identify the optimal global arm with a certain confidence

1− δ within a time horizon T , where δ ∈ (0, 1) is a pre-fixed constant of the failure probability.

Without loss of generality, each local bandit game is assumed to have one unique optimal local arm,
which is denoted as k∗,m := arg maxk∈[K] µk,m for agent m and its expected reward is µ∗,m :=
µk∗,m,m. Correspondingly, the sub-optimal gap for arm k 6= k∗,m is defined as ∆k,m := µ∗,m−µk,m
and for arm k∗,m, we denote ∆k∗,m,m = ∆min,m := mink 6=k∗,m ∆k. Similarly, we also assume there
is one unique optimal global arm k∗ := arg maxk∈[K] µk in the global bandit game, whose expected
reward is µ∗ := µk∗ . The global sub-optimal gap for arm k 6= k∗ is defined as ∆k := µ∗ − µk and
for arm k∗, we denote ∆k∗ = ∆min := mink 6=k∗ ∆k. In addition, the time horizon T is assumed to
be known to the principal but not to agents, as it is often the principal who determines such a horizon.

3.3 Interaction and Observation Model

While the agents can directly pull their local arms and observe rewards, the principal cannot interact
with the global game. Instead, she can only observe local actions and rewards. In other words,
with agent m pulling arm k at time t and getting reward Xk,m(t), the principal can also observe the
action k and the reward Xk,m(t), which may be used to estimate expected rewards of global arms.
It is helpful to interpret the global game as a virtual global characterization of all the local games
(although it does not necessarily align with any specific one), which results in the challenge that it
cannot be directly interacted with but can only be inferred indirectly.
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This indirect information gathering introduces significant difficulties for the principal. In particular, it
is challenging to obtain sufficient local information from self-interested agents to aggregate precise
global information. For example, an arm k can be exactly, or very close to, the optimal one in the
global model, but also be highly sub-optimal on agentm’s local model. Thus, the principal needs large
amount of local explorations on arm k to estimate it, which contradicts with agent m’s willingness as
arm k may not provide high local rewards. Thus, the task of best (global) arm identification is likely
to fail only with this passive gathering of information, which is numerically verified in Section 6.

3.4 Incentivized Exploration

Figure 1: Incentivized exploration of the prin-
cipal and agent m. The agent performs ac-
tions and gets both rewards and incentives.
The principal pays the incentives and observes
local actions and rewards.

To address these challenges, we resort to the
paradigm of incentivized exploration, which provides
a means for the principal to influence local actions.
At time step t, the principal can provide extra bonuses
for agents to explore arms, which will be announced
to the agents before their decision making. Specif-
ically, at time t, the bonus on arm k for agent m is
denoted as Ik,m(t) ≥ 0. If agent m chooses arm
k, she has an observation of Xk,m(t) but obtains a
reward X ′k,m(t) = Xk,m(t) + Ik,m(t). Intuitively, if
the principal wants to incentivize agentm to explore a
certain arm k against the agent’s original willingness,
she should give a high bonus, i.e., Ik,m(t) > 0; other-
wise, she should spare no bonus, i.e., Ik,m(t) = 0. In
this way, the principal can leverage the extra bonuses
to have agents gather her desired local information.
The interaction model with incentivized exploration
between the principal and one agent (among overall
M agents) is illustrated in Fig 1.

Under the basic framework, we now formally define the learning objectives of agents and the principal.

Agents’ Objectives. First, the self-interested agents want to collect as many rewards as possible,
but note that the rewards now consist of two parts: the original rewards generated by pulled arms and
additional bonuses from principal’s incentives. Thus, the cumulative rewards of agent m is defined as

Rm(T ) :=
∑T

t=1

(
Xπm(t),m(t) + Iπm(t),m(t)

)
where πm(t) denotes the arm pulled by agent m at time t. We remark that such rational learning
agents differ fundamentally from myopic ones assumed in most research of incentivized exploration.

Principal’ Objectives. On the principal’s side, her first goal is to identify the best global arm with a
confidence higher than 1− δ. Rigorously, this goal can be stated as

P
[
k̂∗(T ) = k∗

]
≥ 1− δ,

where k̂∗(T ) denotes the identified arm at horizon T .

Given that the identification is correct, the principal also aims at spending as few cumulative incentives
as possible, which is defined as

C(T ) :=
∑T

t=1

∑
m∈[M ]

Iπm(t),m(t).

Note that best arm identification is the principal’s major task whereas minimizing cost C(T ) is only
meaningful given k∗(T ) = k∗ is achieved. Though not central, our mechanism will also satisfy other
desirable properties such as storage efficiency.

In this work, we adopt the perspective of the principal, and try to optimize the principal’s performance
w.r.t. her learning objectives specified above. In other words, agents are ignorant of principal’s goals
and only focus on their individual rewards, and we only incorporate their “selfishness” to design an
effective and efficient strategy for the principal. Such choice is natural in common applications where
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the behaviors of principal (e.g., company, commercial platform) can be designed, while agents (e.g.,
users, customers) normally perform their own decision making which cannot be specified.

Remark. Note that agents and the principal actually represent two kinds of bandit learning objectives.
Namely, the agents target regret minimization (Auer et al., 2002; Garivier and Cappé, 2011) (although
we here use the equivalent notation of cumulative rewards instead of regret), while the principal aims
at best arm identification (Audibert et al., 2010; Jamieson et al., 2014; Garivier and Kaufmann, 2016).
This formulation is reasonable as agents often care more about their own cumulative benefits while
the principal aims at the final result, which can then be used in the future. However, as noted in
Bubeck et al. (2011), even with the same game instance, these two objectives do not necessarily align
with each other, not to mention the additional global-local heterogeneity considered in our model.

4 A Mechanism for Incentivizing Exploration

In this section, the “Observe-then-Incentivize” (OTI) algorithm is proposed, which can effectively
solve the best arm identification problem on the global model while using a small amount of incentives
and maintaining efficient storage. As indicated by the name, the key idea of OTI is “Observe-then-
Incentivize”, which comes from its two phases: the observing phase and the incentivizing phase.

4.1 The “Take-or-Ban” Incentive-Provision Protocol

Before designing detailed mechanisms, we first recognize one major challenge to incentivize forward-
looking agents is that even if we provide sufficient bonuses to compensate her reward at the current
round, the agent may not want to take it for various reasons, e.g., giving up her current choice may
lead to significant future losses, or refusing the current compensation may trick the principal to offer
more future bonuses. Therefore, it is not clearly how to regulate agents’ behaviors through incentives.
To overcome this barrier, we propose the “Take-or-Ban” incentive-provision protocol, which provably
guarantees that it is in the best interest for every agent to follow the offered incentives. This protocol
is announced to the agents at the beginning of the game, and detailed as follows.

“Take”. At time step t, bonuses Ik,m(t) offered to agent m are set as a binary value. Specifically,
Ik,m(t) = 1 if principal wants to incentivize exploration on her arm k; otherwise Ik,m(t) = 0. In
other words, if her arm k is incentivized, agent m gets reward X ′k,m(t) = 1 +Xk,m(t) by pulling it.

“Ban”. To avoid intractable agent behaviors, the following safeguard approach is adopted. Specifi-
cally, at time step s, if agent m is provided incentive for taking some action (i.e., ∃k, Ik,m(s) = 1)
but she does not pull it (i.e., πm(s) 6= k), she is marked as “banned” by the principal. The principal
stops providing bonuses for any banned agent in the future, i.e., ∀t > s, ∀k ∈ [K], Ik,m(t) = 0. In
other words, due to her failure in following the current incentive, agent m loses the chance of taking
future bonuses (bu she is still free to play the local game and get original rewards Xk,m(t)).

4.2 The Observing Phase

Interestingly, while strategic agents introduce substantial challenges to the principal’s learning
problem, their fundamental need of learning local models can be a blessing. In order to collect more
local rewards, agents naturally have to address the intrinsic “exploration-exploitation” dilemma. In
particular, to guarantee low regrets, some (but maybe limited) explorations on each arm are required
by each agent. Specifically, this argument is supported by the following asymptotic lower bound (Lai
and Robbins, 1985): with any consistent agent strategy,1 for arm k 6= k∗,m, it holds that

lim inf
Γ→∞

E[Nw
k,m(Γ)]

log(Γ)
≥ 1

KL(µk,m, µ∗,m)
, (1)

where Nw
k,m(Γ) is the number of pulls by agent m on arm k up to time Γ when there are no incentives,

and KL(µk,m, µ∗,m) is the KL-divergence between two corresponding reward distributions. In other
words, to guarantee local performance, agents would spontaneously explore all local arms.

On the principal’s side, this observation indicates that free local information can be obtained by just
letting agents directly run their own local algorithms. Thus, intuitively, it is wise not to incentivize at
the beginning of the game, but to observe and enjoy the “free rides” provided by agents’ exploration.

1A “consistent” strategy has a regret of o(Tψ) in any bandit instance, ∀ψ > 0 (Lai and Robbins, 1985).
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However, since local models are often not aligned with the global model, it may not be desirable to
fully rely on the “free rides” from local agents’ actions since they may gradually converge to their
own optimal local arms, which may not be what the principal is interested in exploring.

Algorithm 1 OTI: Principal

1: Initialization: ∀k ∈ [K], ∀m ∈ [M ], Nk,m(0) ←
0, µ̂k,m(0)← 0

2: for t = 1, 2, · · · , T
2

do . Observing Phase
3: ∀k ∈ [M ], ∀m ∈ [M ], Ik,m(t)← 0
4: ∀m ∈ [M ], observe {πm(t), Xπm(t),m(t)},

then update Nπm(t),m(t) and µ̂πm(t),m(t)
5: end for
. Incentivizing Phase:

6: Set S(T
2

)← [K] . Incentivizing Phase
7: for t = T

2
+ 1, T

2
+ 2, · · · , T do

8: ∀k ∈ [K], µ̂k(t−1)← 1
M

∑
m∈[M ] µ̂k,m(t−

1) and set CBk(t− 1) with Eqn. (2)
9: Update S(t) as specified in Eqn. (3)

10: if |S(t)| ≥ 1 then
11: k̄(t)← arg maxk∈S(t) CBk(t− 1)

12: m̄(t)← arg minm∈[M ] Nk̄(t),m(t− 1)

13: Ik̄(t),m̄(t)(t)← 1

14: Ik,m(t)← 0, ∀m 6= m̄(t), ∀k 6= k̄(t)
15: else
16: k̂∗(T )← the remaining arm in S(t)
17: end if
18: end for
Output: k̂∗(T )

Thus, it is necessary to reserve some time be-
fore the end of the game for adaptive adjust-
ments. By putting these intuitions together, in
the design of OTI, we specify the observing
phase to last κ(T ) = T

2 time steps from the
beginning of the game.2 To summarize, in this
observing phase, the principal does not incen-
tivize at all, i.e., ∀t ∈ [0, T2 ],∀k ∈ [K],∀m ∈
[M ], Ik,m(t) = 0. Instead, she only observes
local actions and rewards. Due to our choice
of space-efficient information aggregation (spec-
ified at the end of Section 4.3), by the end of
the observing phase, the principal has the record
{Nk,m(T2 ), µ̂k,m(T2 )|∀k ∈ [K],∀m ∈ [M ]},
where Nk,m(t) is the number pulls performed
by agent m on arm k up to time t and µ̂k,m(t)
is the corresponding sample means from these
pulls. These information serve as the foundation
for the remaining T

2 time slots of the incentiviz-
ing phase.

4.3 The Incentivizing Phase

From time slot T2 + 1, the principal enters the in-
centivizing phase, where she actively leverages
incentives instead of passively observing. The
first challenge she has is how to aggregate local
information. Especially, the local sample means (i.e., µ̂k,m(t)) are from different agents and associ-
ated with different number of pulls (i.e., Nk,m(t)), which further result in their individually unequal
uncertainties. To address this challenge, a new (global) arm elimination algorithm is proposed, which
is inspired by standard arm elimination algorithms in best arm identification (Even-Dar et al., 2002;
Karnin et al., 2013) but is specifically designed to tackle the new issue of global-local heterogeneity.

Specifically, at each time step t ∈ [T2 + 1, T ], with the record {Nk,m(t − 1), µ̂k,m(t − 1)|∀k ∈
[K],∀m ∈ [M ]}, the principal estimates the expected reward of global arm k as µ̂k(t − 1) =
1
M

∑
m∈[M ] µ̂k,m(t− 1) and associates global arm k with the following confidence bound:

CBk(t− 1) =
1

M

√(∑
m∈[M ]

1

Nk,m(t− 1)

)(
log

(
KT

δ

)
+ 4M log log

(
KT

δ

))
. (2)

Note that Eqn. (2) incorporates the different number of pulls on arm k by all the local agents, i.e.,
{Nk,m(t− 1)|∀m ∈ [M ]}. It is more challenging than the standard confidence bound design in best
arm identification (Jamieson and Nowak, 2014; Gabillon et al., 2012), which only considers one
source of arm pulls. This complication can be better understood in later theoretical analysis.

With the estimation and confidence bound, arms that are sub-optimal with high probabilities can be
identified and eliminated while the other arms are left for more explorations in the future. Namely, let
the active arm set S(t) denote the arms that have not been determined to be sub-optimal up to time
step t, which is initialized as S(T2 ) = [K], the new active arm set S(t) is updated from S(t− 1) as

S(t) =

{
k ∈ S(t− 1)|µ̂k(t− 1) + CBk(t− 1) ≥ max

j∈S(t−1)
{µ̂j(t− 1)− CBj(t− 1)}

}
. (3)

To have the above-illustrated procedure effectively iterate over time, explorations are required for
the arms in set S(t). Hence, incentives play a critical role and the principal needs to decide which

2Note that although κ(T ) is chosen to be T
2

here, there are other possible choices, e.g., T
4

,
√
T , etc. Details

for the influence of this choice are provided in the supplementary material.
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arm-agent pair to incentivize. In OTI, this decision process consists of two steps. The first step is to
find the active arm with the largest confidence bound, i.e.,

k̄(t) := arg max
k∈S(t)

CBk(t− 1).

Then, the second step is to further identify the local agent who has the least pulls on arm k̄(t) i.e.,

m̄(t) := arg min
m∈[M ]

Nk̄(t),m(t− 1).

Finally, the principal would only incentive agent m̄(t) to explore the arm k̄(t), i.e.,

Ik,m(t)←
{

1 if k = k̄(t) and m = m̄(t)

0 otherwise
.

Intuitively, the arm-agent pair {k̄(t), m̄(t)} represents the largest source of uncertainties in the current
estimation of active global arms, i.e., the arm with largest confidence interval and the agent who had
the fewest pulls on it. Thus, explorations on this pair is naturally the most efficient way to increase
the confidence of estimations.

By iterating this process of eliminating and incentivizing, the principal would eventually have
sufficient information to shrink the active arm set to have only one arm left when the horizon is
sufficient, i.e., |S(t)| = 1, and this remaining arm is output as the identified optimal arm k̂∗(T ).

Space-efficient Information Aggregation. While the principal can observe local actions and re-
wards, it is not storage-friendly to store all raw local data sequence {πm(τ), Xπm(τ),m(τ)|∀m ∈
[M ],∀τ ≤ t}, which requires memory space of order O(Mt) that grows linearly in t. Instead, OTI is
designed to keep track of {Nk,m(t), µ̂k,m(t)|∀k ∈ [K],∀m ∈ [M ]}. These values can be updated
iteratively and only take a constant memory space of O(KM) regardless of the horizon.

5 Theoretical Analysis

5.1 Main Results

The performance of OTI is theoretically analyzed from several different aspects. With agents
running general consistent local strategies, the following theorem establishes the success of best arm
identification and bounds the expected cumulative incentives.

Theorem 1. It is the best interest for every agent to always accept the incentivized explorations under
the “Take-or-Ban” protocol. Moreover, if the agents’ local strategy is consistent without incentives
and the horizon T is sufficiently large, the OTI algorithm satisfies that P[k̂∗(T ) = k∗] ≥ 1− δ, and
the expected cumulative incentives are bounded as

E[C(T )] = O

( ∑
k∈[K]

∑
m∈[M ]

[
log(KTδ )

M∆2
k

+
log log(KTδ )

∆2
k

−min

{
T

2
,

log(T2 )

KL(µk,m, µ∗,m)

}]+)
, (4)

where x+ := max{x, 0}.

While Theorem 1 provides a general upper bound with arbitrarily consistent local strategies, Eqn. (4)
is an upper bound on expected cumulative incentives. It does not imply a (stronger) high-probability
bound. For example, the incentives may be of order O(log2(T )) with 1/ log(T ) probability.

To better understand the performance of OTI, next we consider agents who run UCB (Auer et al.,
2002), one of the most commonly adopted MAB algorithms. Specifically, agents are assumed to run
the following α-UCB algorithm (Bubeck and Cesa-Bianchi, 2012) when there are no incentives:

πm(t)← arg max
k∈[K]

{
µ̂k,m(t− 1) +

√
α log(t)/Nk,m(t− 1)

}
,

where α is a positive constant specified in the design, and a typical choice is α = 2 (Auer et al.,
2002). In this case, we are able to achieve a stronger high-probability guarantee for incentives.
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Theorem 2. While the agents run α-UCB algorithms with α ≥ 3
2 and the horizon T is sufficiently

large, the OTI algorithm satisfies that P[k̂∗(T ) = k∗] ≥ 1− δ. Moreover, it holds that

P
[
C(T ) = O

( ∑
k∈[K]

∑
m∈[M ]

[
log(KTδ )

M∆2
k

+
log log(KTδ )

∆2
k

−
α log(T2 )

∆2
k,m

]+)]
≥ 1− 4MK

T
. (5)

In both Eqns. (4) and (5), the first two terms represent the number of pulls that the principal needs
on agent m’s arm k to determine whether it is optimal or not. They are proportional to 1/∆2

k as in
standard best arm identification algorithms (Jamieson and Nowak, 2014). In addition, the second
term is a lower-order one w.r.t. 1/δ. Taking a deeper look into these results, we see that the first term
decreases with increasing number of agents (proportional to 1/M ). This observation indicates that
increasing the population of agents actually benefits the learning of the principal. We note that the
importance of agent population has not been fully recognized in prior studies.

Furthermore, both last terms in Eqns. (4) and (5) characterize the number of spontaneous pulls that
agent m performs on arm k during the observing phase, which is the amount of “free pulls” taken by
the principal. This term is guaranteed by Eqn. (1) for general consistent local strategies, and by the
to-be presented Lemma 4 for UCB. In other words, the learning behavior of strategic agents benefits
the exploration of the principal. This observation is interesting since as opposed to most prior studies
of myopic agents, the principal can leverage the natural behavior of strategic agents.

Both of the aforementioned observations lead to our key result, that if there are enough amount of
agents, i.e., M is large, the last term dominates the first two terms, which means no incentives are
needed. Correspondingly, a somewhat surprising result emerges – when there are sufficiently many
learning agents involved, the exploration process of the principal can be (almost) free.

The key parts in the proofs are illustrated in the following, which may be of independent interests.

5.2 Proof Step 1: Effectiveness of the “Take-or-Ban” Incentive-Provision Strategy

In prior works with myopic agents, it is obvious that with sufficient instantaneous bonuses, they
would pull the incentivized arms. However, this work deals with strategic agents with long-term
goals. As stated in Section 4.1, these strategic agents have much more complicated behaviors, e.g.,
they may occasionally (instead of always) follow incentives, or they may refuse incentives first but
accept later, which requires a more careful agent behavior analysis. Fortunately, our “Take-or-Ban”
protocol guarantees that agents will always follow the incentives, as stated in the following lemma.
Lemma 1. Under the “Take-or-Ban” incentive-provision protocol, following incentives, whenever
offered, is optimal w.r.t. the expected cumulative rewards (compared to not following) for every agent.

Note that the above lemma does not rely on agent’s learning algorithm and holds for all possible ones.
Thus regardless of local agents’ original intentions, as long as they are self-interested and rational,
they should always follow the incentives, i.e., pull the arm which has extra bonus offered. This design
provides a clean characterization of agent behaviors for our analysis of OTI next.

Remark. The “Take-or-Ban” protocol is designed for theoretical rigor. For practical applications,
the design OTI algorithm can be implemented with relaxed protocols; it is just that the rigorous
theoretical incentive guarantee may not hold for some rational users with sophisticated strategies.

5.3 Proof Step 2: Effectiveness of Best Arm Identification

Some key lemmas are presented to demonstrate the effectiveness and efficiency of the designed best
arm identification algorithm. Inspired by proof techniques in combinatorial MAB (CMAB) literature
(Combes et al., 2015), the confidence bound design in Eqn. (2) is validated in the following lemma.
Lemma 2. DenoteH :=

{
∀t ∈ [T2 + 1, T ],∀k ∈ [K], |µ̂k(t− 1)− µk| ≤ CBk(t− 1)

}
. When the

horizon T is sufficiently large, it holds that P(H) ≥ 1− δ.

Conditioned on eventH, the required number of local pulls is characterized in the following lemma.
Lemma 3. When eventH happens, ∀t ∈ [T2 + 1, T ], we have k∗ ∈ S(t), i.e., the optimal global arm
would not be eliminated. Moreover, it suffices to eliminate arm k 6= k∗ at time t, i.e., k /∈ S(t), when

∀m ∈ [M ], Nk,m(t− 1), Nk∗,m(t− 1) ≥ 16 log(KT/δ)

M∆2
k

+
64 log log(KT/δ)

∆2
k

.
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(a) With or w/o incentives. (b) Incentives assignment. (c) Incentives v.s. δ (d) Incentives v.s. M

Figure 2: Experimental results. (a)-(c) are performed under a 2-agents-3-arms example while (d)
is evaluated with random instances with 30 arms and varying number of agents. (a) reports the
identification accuracy with and w/o incentives, (b) the assignment of incentives, (c) the logarithmic
dependence on δ, and (d) the diminishing effect of cumulative incentives with M increasing.

With the decision process in Section 4.3 and the lower bound in Eqn. (1), Theorem 1 can be proved.

5.4 Proof Step 3: A Finite-time Lower Bound of UCB

An important ingredient to prove Theorem 2 is a finite-time high-probability lower bound for α-UCB:

Lemma 4. When Λ satisfies Λ
log2(Λ)

> 4K(α−3/2)2

∆4
min,m

, the α-UCB algorithm with α ≥ 3
2 satisfies that

P
[
∀k ∈ [K], Nw

k,m(Λ) ≥
(
√
α−
√

1.5)2 log(Λ
2 )

4∆2
k,m

]
≥ 1− 2K

Λ
. (6)

We note that Eqn. (6) is valuable along multiple lines. First, it is a finite-time bound as opposed to
the asymptotic one in Eqn. (1). Second, while Eqn. (1) holds in expectation, Eqn. (6) is a stronger
high-probability bound, and implies a bound of the same order for expectation. We believe that
this result itself may contribute to the understanding of UCB. Specifically, this lemma characterizes
UCB’s conservativeness, i.e., it would (nearly) always explore every arm at least logarithmic times.

6 Experiments

Numerical experiments have been carried out to evaluate OTI. All the results are averaged over 100
runs of horizon T = 105 and the agents perform the α-UCB algorithm specified in Section 5.1 with
α = 2. More experimental details can be found in the supplementary material.

First, with a toy example of M = 2 agents and K = 3 arms, the ineffectiveness of not in-
centivizing is illustrated. Specifically, agent 1’s expected rewards for the three arms are set as
[0.89, 0.47, 0.01] while agent 2’s as [0.01, 0.47, 0.89], which results in a global instance with ex-
pected rewards [0.45, 0.47, 0.45].3 Note that the optimal global arm is arm 2, while the local optimal
arm is arm 1 (resp. 3) for agent 1 (resp. 2), which raises the global-local conflicts. Without incentives,
the principal can only output the arm with the largest aggregated global mean at the end of the horizon.
As shown in Fig. 2(a), such a “purely passive” principal does not perform the identification well.
Especially, she only outputs the correct arm (i.e., arm 2) with 53% accuracy. To make things worse,
the principal has no control of this result, which may be even lower in other instances.

As opposed to the poor performance without incentives, Fig. 2(a) demonstrates that with incentives,
OTI (using δ = 0.01) can always identify the optimal global arm. Correspondingly, Fig. 2(b) presents
the amount of incentives spent on each agent-arm pair. It can be observed that the principal never
assigns incentives on the optimal arm of each agent, i.e., arm 1 (resp. 3) for agent 1 (resp. 2), which is
intuitive since agents converge to these arms quickly and the “free pulls” on them is already sufficient.
Furthermore, most of incentives are on arm 2, which is because it is sub-optimal for both agents and
lacks natural explorations. Moreover, OTI is tested with varying δ under the same 2-agents-3-arms
instance. Fig. 2(c) illustrates that the cumulative incentives of OTI are (nearly) proportional to
log(1/δ), which verifies the logarithmic dependence on 1/δ in Eqns. (4) and (5) when M is small.

At last, Fig 2(d) reports the dependence of cumulative incentives on the number of agents. Under
different M , random local instances with 30 arms are generated to compose global instances with

3Although being a toy example, the seemingly simple instance is actually hard in terms of a small global
sub-optimality gap (∆min = 0.02), large global-local divergences and a small number of involving agents.
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∆min ∈ [4.5, 5.5]× 10−3. As shown in Fig 2(d), the cumulative incentives (with δ = 0.01) gradually
diminish as M increases. When more than 120 agents are involved, the principal spends no incentive
but can still learn the optimal global arm, which verifies our theoretical finding that with sufficiently
many learning agents involved, the exploration process of the principal can be (almost) free.

7 Discussions and Future Works

While progresses have been made in this work, some problems are worth future investigations.

Personalized Tasks. This work focuses on identifying one common optimal global arm among the
entire group of agents. This objective is well-motivated (Zhu et al., 2021) as only one arm can be
selected for the collective interest in many applications. For example, due to the budget constraint,
many companies must choose one out of multiple potential products for R&D. However, we note that
it is also an interesting direction to use global information for personalized tasks, e.g., recommend
items to the customer based on both her own favor and the overall popularity. The idea of FMAB
with personalization in Shi et al. (2021) is one potential direction, where weighted sums with the
global and local model are set as the learning objectives.

Agent Sampling. The principal in this work targets at learning the optimal global arm among the
involved group of agents, which is reasonable for many use cases. For example, cellular communi-
cation operators typically can access data from all users to find the optimal channel. Moreover, to
provide products to its chain stores, the company can easily perform a market survey with all of them.
Nevertheless, in some applications, the principal only has access to the feedback from a sampled
population but nevertheless would like to learn the best arm for the underlying entire population.
We believe our findings is an important step towards this more challenging setting, where certain
probably approximately correct (PAC) learning style of analysis may be needed since one may have
to bound the mismatch between the best arm for the involved group and that for the whole population
as the number of involved agents grows.

Incentive-Provision Protocol. As mentioned in Section 5.2, “Take-or-Ban” is for the purpose of
rigorous theoretical analysis. Without this scheme, it is very challenging to rule out the possibility that
some rational users may employ sophisticated strategies to intentionally reject an earlier incentive in
order to induce higher future incentives. We note that it is intriguing to develop other agent regulation
protocols or even directly analyze agents’ behaviors without regulation. However, in reality, when
facing less sophisticated users, we expect the insight revealed from our theoretical analysis still to be
useful for less restrictive protocols, such as banning an agent for a few rounds or after a few (instead
of one) refuses of the incentives (see the supplementary material for some experimental illustrations).

Other Extensions. In Section 5, a high-probability upper bounds of C(T ) is established for the
agents who run α-UCB. It is conceivable to extend the proof to other optimism-based algorithms, e.g.,
KL-UCB (Garivier and Cappé, 2011). However, it would be interesting to provide similar guarantees
with agents running Thompson Sampling (Agrawal and Goyal, 2012) or ε-greedy (Auer et al., 2002).
Furthermore, it is worth exploring how to extend the study to other bandit types.

8 Conclusions

In this work, we studied incentivized exploration with multiple long-term strategic agents. Motivated
by practical applications, the formulated problem involves multiple heterogeneous agents aiming
at collecting high cumulative local rewards and one principal trying to identify the optimal global
arm but lacking direct accesses to the global model. The OTI algorithm was designed for the
principal to intelligently leverage incentives to have local agents explore information on her behalf.
Three key novel components played critical roles in the design and analysis of OTI: (1) a provably
effective “Take-or-Ban” incentive-provision strategy to guarantee agents’ behaviors; (2) a specifically
designed best arm identification algorithm to aggregate local information of varying amounts provided
by heterogeneous agents; (3) a high-probability lower-bound for UCB algorithms that proved its
conservativeness. The regret analysis of OTI showed that the learning behaviors of strategic agents
can provide “free pulls” to benefit the principal’s exploration. Moreover, we observed that increasing
the population of agents can also contribute to lower the burden of principal. At last, the key and
somewhat surprising result was revealed that with sufficiently many learning agents involved, the
exploration process of the principal can be (almost) free.
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