
A Proof of Propositions

A.1 Proof of Proposition 1

Proposition 1 (Bingo and Tucker rank). If there are bk bingos on mode-k, it holds that

Rank(P(k)) ≤ Ik − bk.
Proof. If there is a bingo on mode-k, the m-th row of the mode-k expansion of P is a constant
multiple of the (m− 1)-th row, where m is a number determined by the bingo position. Indeed,
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′
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′
d


= exp (θ1,...,1,m,1,...,1)

is just a constant that does not depend on j. When a row is a constant multiple of another row, the
rank of the matrix is reduced by a maximum of one, which means Rank(P(k)) ≤ Ik − 1. In the
same way, if there are bk bingos, then bk rows are constant multiple of the other rows, which means
Rank(P(k)) ≤ Ik − bk. �

A.2 Proof of Proposition 2

Proposition 2 (rank-1 condition on θ). For any positive tensor P , rank(P) = 1 if and only if its all
many-body θ parameters are 0.
Proof. First, we show that rank(P) = 1 implies all many-body θ-parameters are 0. From the
assumption of rank(P) = 1, the m-th row of the mode-k expansion of P have to be a constant
multiple of the (m− 1)-th row for all m = {2, . . . , Ik} and k ∈ [d]. That is,

P(k)

m,j

P(k)
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=
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= exp
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ik+1∑
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· · ·
id∑
i′d=1

θi′1,...,i′k−1,m,i
′
k+1,...,i

′
d


can depend on only m. If any many-body parameter θi′1,...,m,...i′d is not 0 for i′1 + · · ·+ i′k−1 + i′k+1 +

· · ·+ i′d 6= d− 1, the left side of the above equation depends on indices other than m. For example, if
a many-body parameter θ2,1,...,1,m,1,...1 is not 0, the equation depends on the value of i1. Therefore,
all many-body parameters of rank-1 tensor are 0.

Next, we show that rank(P) = 1 if all many-body θ-parameters are 0. If all many-body θ-parameters
are 0, we have

Pi1,...,id = exp (θ1,1,...,1)

d∏
k=1

exp

 ik∑
i′k=2

θ
(k)
i′k

.
Then we can represent the tensor P as the outer products of d vectors s(1) ∈ RI1 , s(2) ∈
RI2 , . . . , s(d) ∈ RId , whose elements are described as

s
(k)
ik

= exp

(
θ1,...,1

d

)
exp

 ik∑
i′k=2

θ
(k)
i′k


for each k ∈ [d]. Thus, rank(P) = 1 followed by the definition of the tensor rank.

�
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A.3 Proof of Proposition 3

The following proposition is related with the second paragraph in Section 3.4. We have succeeded in
describing the rank-1 condition using η-parameter as well as on θ-parameter.

Proposition 3 (rank-1 condition as η form). For any positive dth-order tensor P ∈ RI1×···×Id>0 ,
rank(P) = 1 if and only if its all many-body η parameters are factorizable as

ηi1,...,id =

d∏
k=1

η
(k)
ik
. (14)

Proof. First, we show that all many-body η-parameters are factorizable if rank(P) = 1. Since we
can decompose a rank-1 tensor as a product of normalized independent distributions s(k) ∈ RIk as
shown in Section 3.4, we can decompose many-body η parameters of P as follows:
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where we use the normalization condition
Ik∑
i′k=1

s
(k)
i′k

= 1

for each k ∈ [d].

Next, we show the opposite direction. If all many-body η-parameters are factorizable, it follows that
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Thus, rank(P) = 1 holds by the definition of the tensor rank. �

A.4 Proof of Proposition 4

The following proposition is related to the second paragraph in Section 3.4. The factorizability
of η-parameter of rank-1 tensor and bingo rule reproduces the closed formula of the best rank-1
approximation minimizing KL divergence [3].

Proposition 4 (m-projection onto factorizable subspace). For any positive tensor P ∈ RI1×···×Id>0 ,
its m-projection onto the rank-1 space is given as
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�

Since them-projection minimizes the KL divergence, it is guaranteed thatP obtained by Equation (15)
minimizes the KL divergence from P within the set of rank-1 tensors. If a given tensor is not
normalized, we need to divide the right-hand side of Equation (15) by the d− 1-th power sum of all
entries of the tensor in order to match the scales of the input and the output tensors. To summarize,
the output of LTR P is the best rank-1 approximation that always minimizes KL divergence,

P = argmin
P̂,rank(P̂)=1

DKL(P; P̂),

where the generalized KL divergence is defined as

DKL(P;P) =

I1∑
i1=1

. . .

Id∑
id=1

{
Pi1...id log

Pi1,...,id
Pi1,...,id

− Pi1,...,id + Pi1,...,id
}
.

The generalized KL divergence for positive tensors is an extension of generalized KL divergence for
non-negative matrices in [5], which enables us to treat non-normalized tensors.

A.5 Proof of Proposition 5

The following discussion is related to the third paragraph in Section 3.4.

In the typical Boltzmann machine, which is defined as p(x) = exp(
∑
i bixi +

∑
ij wijxixj) for a

bias parameter b = (b)i ∈ Rn, an interaction parameter W = (wij) ∈ Rn×n, and a binary random
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variable vector x ∈ { 0, 1 }n, mean-field approximation is a projection onto the special manifold
where bi = log ηi

1−ηi holds for ηi = Ep [xi].

In the rank-1 space, we show that θ-parameters can be easily computed from η-parameters, as
discussed in the Boltzmann machines in the following proposition; this supports our claim that rank-1
approximation can be regarded as mean-field approximation.

Proposition 5. For any positive dth-order rank-1 tensor P ∈ RI1×···×Id>0 , its one-body η-parameters
and one-body θ-parameters satisfy the following equations

θ
(k)

j = log

(
η

(k)
j − η

(k)
j+1

η
(k)
j−1 − η

(k)
j

)
, η

(k)
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ik=j exp
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i′k=2 θ

(k)
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1 +
∑Ik
ik=2 exp

(∑ik
i′k=2 θ

(k)

i′k

) ,
where we assume η(k)

0 = η
(k)
Ik+1 = 0.

Proof. As shown in Theorem 2 in Sugiyama et al. [9], the relation between θ and η is obtained by
the differentiation of Helmholtz’s free energy ψ(θ), which is defined as the sign inverse normalization
factor. For the rank-1 tensor P , Helmholtz’s free energy ψ(θ) is given as

ψ(θ) = log

d∏
k=1

1 +

Ik∑
ik=2

exp

 ik∑
i′k=2

θ
(k)

i′k

 .

We obtain the expectation parameters η by the differentiation of Helmholtz’s free energy ψ(θ) by θ,
given as

η
(k)
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∂
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(k)

j
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ik=j exp
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(k)
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i′k=2 θ

(k)
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) .
By solving the above equation inverse, we obtain

θ
(k)

j = log

(
η

(k)
j − η

(k)
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η
(k)
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(k)
j

)
.

�

A.6 Proof of Proposition 6

The following proposition is related to the third paragraph in Section 3.5.

Proposition 6. Let θ denote canonical parameters of given tensor P ∈ RI1×···×Id and θ denote
canonical parameters of P which is the best rank-1 approximation that minimizes KL divergence
from P . If some one-body canonical parameter θ(j)

ij
= 0 for some ij ∈ [Ij ], its values after the best

rank-1 approximation θ
(j)

ij remain 0.

Proof. When θ(j)
ij

= 0, it holds that

P1,...,1,ij ,1,...,1

P1,...,1,ij−1,1,...,1
= exp

(
θ

(j)
ij

)
= 1.

By using the closed formula of the best rank-1 approximation (15), we obtain
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d∏
k=1

 I1∑
i′1=1

· · ·
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i′k−1=1
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· · ·
Id∑
i′d=1

Pi′1,...,i′k−1,1,i
′
k+1,...,ij ,...,i

′
d


=

d∏
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· · ·
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′
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It follows that

P1,...,1,ij ,1,...,1

P1,...,1,ij−1,1,...,1

= exp
(
θ

(j)

ij

)
= 1.

Finally, we obtain θ
(j)

ij = 0. �

A.7 Proof of Theorem 1

Theorem 1 (LTR). For a positive tensor P ∈ RI1×···×Id>0 , the m-projection destination onto the
bingo space B = B(1) ∩ · · · ∩ B(d) is given as iterative application of m-projection d times, starting
from P onto subspace B(1), and then from there onto subspace B(2), . . . , and finally onto subspace
B(d).
Proof. Let η denote η-parameters of P . Let ΩB(k) be the set of bingo indices for B(k):

B(k) = { P | θi1,...,id = 0 for (i1, . . . , id) ∈ ΩB(k) } .

In the first m-projection onto B(1) from input P , given us P(1) whose parameters satisfy

θ̃i1,...,id = 0 if (i1, . . . , id) ∈ ΩB(1) ,
η̃i1,...,id = ηi1,...,id otherwise.

The θ-condition comes from the definition of the bingo space B(1) and the η-condition comes from
the conservation low of η-parameters in Equation (6). The second m-projection onto B(2) from P(1),
we get P(1,2) whose parameters satisfy

θ̃i1,...,id = 0 if (i1, . . . , id) ∈ ΩB(1) ∪ ΩB(2) ,
η̃i1,...,id = ηi1,...,id otherwise.

Proposition 6 ensures the above θ condition. The conservation low of η-parameters ensures the above
η condition. Similarly, in the finalm-projection onto B(d) from input P(1,...,d−1), we get P(1,...,d−1,d)

whose parameters satisfy

θ̃i1,...,id = 0 if (i1, . . . , id) ∈ ΩB(1) ∪ ΩB(2) ∪ · · · ∪ ΩB(d) ,
η̃i1,...,id = ηi1,...,id otherwise.

The distribution satisfying these two conditions is the m-projection from P to B. �

B Theoretical Remarks

Invariance of the summation in each axial direction The definition of η in Equation (4) suggests
that one-body η-parameters are related to the summation of elements of a tensor in each axial direction.
The ik-th summation in the k-th axis is given by

I1∑
i1=1

· · ·
Ik−1∑
ik−1=1

Ik+1∑
ik+1=1

· · ·
Id∑
id=1

Pi1,...,id = η
(k)
ik
− η(k)

ik+1
.

Since the one-body η-parameters do not change by the m-projection, it can be immediately proved
that the best rank-1 approximation of a positive tensor in the sense of the KL divergence does not
change the sum in each axial direction of the input tensor. Our information geometric insight leads to
the fact that the conservation law of sums essentially comes from constant one-body η-parameters
during m-projection. This property is a natural extension of the property, such that row sums and
column sums are preserved in NMF, which minimizes the KL divergence [1] to tensors. Since the
rank-1 reduction preserves the sum in each axial direction of the input tensor, LTR for general Tucker
rank reduction also preserves it.

C Experiment Setup

All evaluation code are attached in the supplementary material.
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Implementation Details All methods were implemented in Julia 1.6 with TensorToolbox1

library [7], hence runtime comparison is fair. We implemented lraSNTD referring to the original
papers [10]. We used the TensorLy implementation [4] for NTDs. Experiments were conducted on
CentOS 6.10 with a single core of 2.2 GHz Intel Xeon CPU E7-8880 v4 and 3TB of memory. We use
default values of hyper parameters of tensorly [4] for NTD. We used default values of the hyper
parameters of sklearn [6] for the NMF module in lraSNTD.

Dataset Details We describe the details of each dataset in the following. 4DLFD is a
(9, 9, 512, 512, 3) tensor, which is produced by 4D Light Field Dataset described in [2]. Its li-
cense is Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 International License. We
used dino images and their depth and disparity map in training scenes and concatenated them to
produce a tensor. AttFace is a (92, 112, 400) tensor that is produced by the entire data in The Database
of Faces (AT&T) [8], which includes 400 grey-scale face photos. The size of each image is (92, 112).
AttFace is public on Kaggle but the license is not specified.

D Tensor Operations

D.1 mode-k expansion

The mode-k expansion of a tensor P ∈ RI1×···×Id is an operation that focuses on the kth axis of
the tensor P and converts P ∈ RI1×···×Id into a matrix P(k) ∈ RIk×

∏d
m=1(m6=k) Im . The relation

between tensor P and its mode-k expansion P(k) is given as,(
P(k)

)
ik,j

= Pi1,...,id ,

j = 1 +

d∑
l=1,(l 6=k)

(il − 1) Jl,

Jl =

l−1∏
m=1,(m 6=k)

Im.

D.2 Kronecker product for vectors

Given d vectors a(1) ∈ RI1 , a(2) ∈ RI2 , . . . , a(d) ∈ RId , the Kronecker product P of these d
vectors, written as

P = a(1) ⊗ a(2) ⊗ · · · ⊗ a(d),

is a tensor in RI1×···×Id , where each element of P is given as

Pi1,...,id = a
(1)
i1
a

(2)
i2
. . . a

(d)
id
,

where a(k)
i is an ith element of a vector a(k).

E Experimental results with KL divergence

The cost function of LTR is the KL divergence from the input tensor to the low-rank tensor. Our ex-
perimental results in Figure 4 show that LTR also has better or competitive accuracy of approximation
in terms of the KL divergence.

1MIT Expat License
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Figure 4: Experimental results for synthetic (a, b) and real-world (c, d) datasets. The left-hand panels
are KL reconstruction error and the right-hand panels are LS reconstruction error. (a) The horizontal
axis is r for target tensor rank (r, r, r, r, r). (b) The horizontal axis is n3 for input (n, n, n) tensor.
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