
Supplementary Material:

Scalable Inference in SDEs by Direct Matching of the

Fokker–Planck–Kolmogorov Equation

This supplementary document is organized as follows. App. A provides further details and derivations
to facilitate understanding of the methodology. App. B includes full details on the experiments,
baseline methods, data sets, and additional results.

A Methodological Details

We provide details in terms of the concept of ‘solution’ to an SDE, how we use a finite-differences
approach for solving the FPK as baseline, and comments on the existence properties of the GP-SDE
model formulation.

A.1 On the Concept of a Solution of an SDEs

As illustrated in Fig. 1 in the main paper, the concept of a ‘solution’ to an SDE is broader than that of
an ODE. We restrict our interest to Itô type SDEs, and consider two types of solution concepts here:
(i) Strong (path-wise) solutions, and (ii) weak (in-distribution) solutions.

A strong solution trajectory ẑ(t) to an SDE resembles an ‘actual’ (ideal, often intractable in practice)
solution trajectory. For simulation methods, their order of strong convergence γ (see, e.g., p. 132
in [40]) can be characterized by looking at the expected error after M = 1/∆t steps of length ∆t,
E[|z(tM )− ẑ(tM )|] ≤ K∆tγ for some constant K. However, it is generally non-trivial to construct
high strong order solution methods to SDEs due to the requirement of solving intractable iterated
Itô integrals in the Itô–Taylor series expansion. The required step size ∆t thus remains very small;
for example, the Euler–Maruyama method converges with a strong order of γ = 1/2, which makes it
tricky to choose a small-enough step size to ensure the trajectories to resemble an actual solution
trajectory. In machine learning, we might be interested in path-wise solutions in the case of drawing
an example solution trajectory from the method that follows the evolution of a particular realization
of the random forces affecting the output.

However, during training and testing time, we are typically more interested in aggregating properties
over multiple solution trajectories to either capture the typical behaviour of the model or quantify
uncertainties induced by the random forces in the model. As the model is stochastic, the full solution
entails a probability distribution, p(z, t), depending on time t and covering the space z.

The typical approach for characterizing p(z, t) in machine learning applications has been through
simulation (sampling), where the Euler–Maruyama scheme, the Milstein scheme, or some more
general stochastic Runge–Kutta scheme is often used. For simulation methods, the weak order of
convergence (see, e.g., p. 137 in [40]) can be used for characterizing the method, where it is defined
to be the largest exponent α such that |E[g(z(tM ))]− E[g(ẑ(tM ))]| ≤ K∆tα for any polynomial
function g(·). This is a much weaker criterion as it only considers the error in the expectation, and for
example, the Euler–Maruyama method converges with weak order convergence α = 1. In practice,
this means that the moment properties can be captured with a more moderate step-size than the
path-wise resemblance of the solutions.

However, if one is only interested in the first moments and/or if the dimensionality of z is high, it
makes sense to consider an even weaker solution concept, where one is only concerned with the first
two moments of p(z, t) ≈ N(m(t),P(t)). This is what is done in this paper.

In short, capturing the true pathwise behaviour of an SDE is challenging (NB: simulation schemes do
not generally capture this well) and sampling schemes instead generally capture the distribution by a
finite set of samples. If you are interested in the first moments only, it can be generally safer to model
those directly.



A.2 Approximating the FPK Solution Through Finite-differences

As a baseline in Fig. 4 we seek to seek direct ways of assessing the behaviour of the solution to the
Fokker–Planck–Kolmogorov PDE or its transition density. For this we could use any tools from the
vast literature of partial differential equation approximations. The approach presented here essentially
uses finite differences in the input domain of z and then solves the resulting homogeneous ODE
system directly.

The Fokker–Planck–Kolmorogov equation has the form

∂p(z, t)

∂t
= A∗p(z, t), (18)

where A∗ is the operator defined in Eq. (7) in the main paper. We can approximate this equation as a
finite-dimensional system, which is a homogeneous linear system. We discretize the state space to a

finite grid {(z(i)1 , z
(j)
2 ) : i, j = 1, 2, . . . , N} and then approximate the derivatives as finite differences.

The approximations can, for example, be given by

∂p(z, t)

∂z1
≈p(z1+∆z1, z2, t)−p(z1−∆z1, z2, t)

2∆z1
,

∂2p(z, t)

∂z21
≈p(z1+∆z1, z2, t)−2p(z, t)+p(z1−∆z1, z2, t)

∆z21
,

(19)

and analogously in the other dimension. We can now interpret Eq. (7) through these finite difference
approximations and form a (very) sparse matrix corresponding to the adjoint operator A∗, where also
the drift and diffusion terms are evaluated at the discrete values. Thus the FPK can be rewritten as a
linear ODE system

dp

dt
= Ap, (20)

where A is the finite-difference approximation matrix for the operator A∗. The initial conditions
p(z, t0) can also be collected into a vector p(t0). Because our GP-SDE model is time-invariant, the
solution to the homogeneous ODE initial value problem is directly given (in closed-form) as

p(t) = exp((t− t0)A)p(t0). (21)

To better explain how this works in practice we have added a Jupyter notebook to this supplement
which reproduces this approach.

A.3 On the GP-SDE Model Construction

The model which we call a ‘GP-SDE’ model in the main paper has appeared in various forms in
literature before. It directly resembles a ‘random’ ODE model, where the random field vθ(·) has
previously typically either been characterized by a Gaussian random field or Gaussian process model
(see, e.g., [38, 13]) or some parametric model (e.g., [26]). Yet, the existence of the corresponding
SDE model as in Eqs. (4) and (5) is non-trivial.

The GP-SDE model is presented informally in the main paper, and we do not guarantee the existence
of strong unique solutions to the corresponding SDE model. However, under GP increments, the
weak solution of this model exists—which can also be directly empirically shown, e.g., by sampling
the GP in an Euler fashion vs. running Euler–Maruyama on the corresponding SDE. This highlights
the practical aspects of this model, which is probably also why it has been appearing in various
previous forms in machine learning literature.

B Experiment Details

We provide additional details and results for the experiments presented in the paper, and further
evaluate the computational costs of linearized approximation. Fig. 10 follows the same structure as
Fig. 6 in the main paper, just providing further examples from the test set.



B.1 Empirical Wall-Clock Timing Experiments

For the timing experiments in Sec. 3, we constructed a setup that allowed us to control the approx-
imation error. We used the Beneš SDEs model (see details on this, e.g., in [40]) that has the form

dz(t) = tanh(z(t)) dt+ dβ(t), (22)

where β(t) is standard Brownian motion and the initial state z0 is known. This model is non-linear in
the drift and the solution is not directly apparent. Conveniently, this model has a closed-form solution
that we can leverage as a control. The transition density or solution to the FPK equation is given as:

p(z, t) =
1√
2πt

cosh(z)

cosh(z0)
exp

(

− 1

2
t

)

exp

(

− 1

2t
(z − z0)

2

)

. (23)

This solution is bi-modal and thus the moment matching approach will be an approximation to the
true solution distribution. Also the first two moments are available in closed-form and given by:

m(t) = z0 + tanh(z0) t,

P (t) = z20 + 2z0 tanh(z0) t+ t+ t2 − [m(t)]2.
(24)

This model is one-dimensional in z, but we expand it to z ∈ R
d by considering d independent

Beneš SDE models over z with different z
(d)
0 . The initial points of the trajectories were chosen with

linear spacing in [0, 1], with a step size of 1/d. This test setup should be favourable to a stochastic
Runge–Kutta approach, where the samples now do not need to account for correlation in the latent
space, thus pushing down the required number of sample trajectories, which we expect to be linear
in d (the assumption of a diagonal diffusion was encoded in the experiment setup a priori, and the
independence of the dimensions in the diffusion function was not). We thus claim that this experiment
rather highlights the worst case benefits of our method, rather than the best case.

The number of trajectories used in the stochastic Euler–Mauryama was chosen to match the KL
divergence of the moment matching approximation. That is, we initially completed the moment
matching approximation for a given dimensionality d, obtaining the moments mmm(t), Pmm(t),
which were compared to the closed-form moments in Eq. (24) by the Kullback–Leibler distance. We
evaluated the KL divergence at one hundred values of t (with a spacing of 0.1), and calculated the
total divergence as a sum of the divergence at individual points.

In order to determine the number of trajectories generating moments of a comparable quality to the
moment matching approach, we computed the first two moments over a varying number of trajectories.
The moments were compared to the true Beneš SDE moments with the same KL divergence metric as
the moment approximation. For each d, we matched the number of trajectories n by controlling that

DKL

[

N(m
(n)
EM (t),P

(n)
EM (t)) ‖N(m(t),P(t))

]

≤ DKL [N(mmm(t),Pmm(t)) ‖N(m(t),P(t))] ,

(25)

where (m(t),P(t)) are the exact moments, (m
(n)
EM (t),P

(n)
EM (t)) the moments from the Euler–

Maryuama solution with n trajectories, and (mmm(t),Pmm(t)) the moments from our moment
matching approach. As sampling methods are stochastic, we generated n trajectories 10 times, to
account for the uncertainty. For low values of d, the standard deviation of the KL divergence was
in the range of 10–20% of the mean value, whereas for higher values of d, such as 200 or 500, the
uncertainty of the metric was reduced to at most a percentage of the mean.

For this experiment, where the dimensions are uncorrelated, we found that the required number of
trajectories to obtain the KL divergence of moment matching approximations was, depending on
the dimensionality, between 1d and 2d (for dimensions [10, 50, 200, 300, 400, 500], the number of
trajectories in the same order was [25, 65, 225, 325, 440, 550]). While the linearized approximation
generally was less accurate than moment matching, it was equivalent to a nearly as high number
of trajectories as moment matching (for example, when d = 200, linearized approximation was
comparable to 210 trajectories, and moment matching to 225 trajectories).

We implement the models in PyTorch [33] and report means of 10 repetitions (std over runs negligible
and omitted for clarity of presentation). The GPU/CPU wall-clock times that are reported in the
main paper were run on a cluster with separate GPU and CPU partitions (GPU: NVIDIA Tesla V100
32 GB with Intel Xeon Gold 6134 3.2 GHz; CPU: Xeon Gold 6248 2.50 GHz).
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Figure 7: Empirical timing experiments of Jacobian evaluations over a single point. The variation
between repetitions was negligible, and is omitted for clarity.

B.2 Additional Jacobian Computation Timing Experiment

As we note in Sec. 2.6, a single step of linearized approximation requires only O(1) drift, diffusion
and Jacobian evaluations. When the drift function is defined by a neural network, the scaling of the
computational costs from evaluating the Jacobian is not inherently clear, as the network size is grown.
In order to better assess the empirical computational costs of linearized approximation in dimension
d, we evaluate the Jacobian of a neural network with two hidden layers, each with 3d nodes. The
experiment results presented in Fig. 7 demonstrate that when GPU resources are available, the cost
of evaluating the Jacobian in linearized approximation is not a bottleneck for growing the network
size or approximating SDEs in high-dimensional spaces. The experiment set-up in terms of hardware
used is as in App. B.1, and the Jacobian was evaluated 10 times, the first of which was discarded due
to initialization overhead.

B.3 GP-SDE Model Specification

This example was included to highlight the idea behind the GP-SDE model in a simple task, where
encoding prior knowledge plays a major role in the outcome. We considered a GP-SDE model with
just 8 observations of the dynamics, where the lack of data can be compensated for by encoding
prior knowledge into the model. We use the model formulation given in Sec. 2.1, and study the
effect of GP priors, the first of which is an independent squared exponential (RBF) prior for each
dimension which encodes continuity and smoothness in the velocity field. The second GP prior is the
multi-dimensional curl-free kernel [47]:

κcf(z, z
′) =

σ2

ℓ2
e−

‖z−z
′‖2

2ℓ2

[

I−
(

z− z′

ℓ

)(

z− z′

ℓ

)⊤
]

, (26)

which encodes the assumption of a curl-free random vector field. This property can be interpreted as
‘loop aversion’ in the GP-SDE context. The third prior, is a multi-dimensional divergence-free kernel
[47]:

κdf(z, z
′) =

σ2

ℓ2
e−

‖z−z
′‖2

2ℓ2

[

(

z− z′

ℓ

)(

z− z′

ℓ

)⊤

+

(

(d− 1)− ‖z− z′‖2
ℓ2

)

I

]

, (27)

which encodes the assumption of no divergence in the random vector field. This property can be
interpreted as ‘energy preservation’ or source-freeness. These properties are visible in Fig. 3, where
the hyperparameters are fixed to same values for all models (even if the interpretation differs).

B.4 Synthetic Race Track

As an additional example, we run the proposed algorithm on two synthetic race-tracks: oval-shaped
and bean-shaped. For both the experiments, we have a true race track and a set of noisy observed
race tracks. The latent state, z ∈ R

2, governs the dynamics in the original space. Further, using the
noisy observed race tracks, we create a set of observation vectors on which the GP is conditioned.
For this, we use the Gaussian process regression model in the GPflow [28] framework with the



Figure 8: The output of oval shaped synthetic car race track. (a) True track and noisy observation
tracks. (b) Observation vectors and observation tracks. (c) Mean predicted vector field of the GP-SDE.
(d) Trajectories predicted using the Euler scheme for the ‘random ODE’ interpretation, with dynamics
drawn from GP samples. (e) Trajectories predicted by the Euler–Maruyama scheme for the GP-SDE
model. (f) Mean trajectory path predicted using Gauss–Hermite quadrature by assumed density.

squared-exponential (RBF) kernel. The hyperparameters of the model are optimized with the Adam
optimizer with a learning rate of 0.001, and the kernel hyperparameters are initialized with default
values, length-scale and variance 1.0.

Fig. 8 and Fig. 9 showcase the outputs on the two synthetic race tracks. The figures show the true
track and noisy observations of the dynamics along the trajectory. On top-right, the mean predicted
vector field of the GP-SDE for these observations. Then we visually compare trajectories predicted
using the Euler scheme for the ‘random ODE’ interpretation, where the dynamics are drawn from
GP samples (see Eq. (1) in the main paper), with trajectories predicted by the Euler–Maruyama
scheme for the GP-SDE model. Finally, we plot the mean trajectory path predicted using 4th order
Gauss–Hermite quadrature by an assumed density assumption.

B.5 Rotating MNIST

In the spirit of Fig. 2, we run the proposed methods on Rotating MNIST ([25], available under
CC BY-SA 3.0), similar to [49, 5]. The data set consists of various handwritten digit ‘3’s rotated
uniformly in 64 angles. The training data set is generated by randomly selecting 180 different versions
of digit ‘3’ resulting in the total size of the training data set to be 11,520 images. A separate set
of 20 digits are chosen to form a test set. We train a VAE [21] first by freezing the latent space
dynamics, and then freezing the VAE encoder/decoder and training a 16-dimensional GP-SDE model
in the latent space with independent squared exponential GP priors (see App. B.5). We implement
the VAE model in PyTorch [33] and use GPflow [28] for the latent GP model. The latent space is
chosen to be d = 16 dimensional and a sparse variational Gaussian process (SVGP) model [15]
with 1000 trainable inducing points is leveraged to scale the GP training. We use independent
squared-exponential prior covariance function for each latent dimension dynamics. The models are
trained with the Adam optimizer [20] (learning rate 0.001), and the VAE loss function is a weighted
sum of binary cross-entropy and KL-divergence, whereas the GP objective function is the ELBO.
The training of the two components is disjoint, and the GP is trained on a fixed latent space given by
a trained VAE.

An output of a test point is illustrated in Fig. 6, where we feed in one observation and let it follow
the learned dynamics of rotation. As the baseline, we use 1000 trajectories computed using Euler–
Maruyama with step length 0.1. Fig. 6a demonstrates the model’s capability to learn the latent
trajectory, and we show the trajectories for all the methods in three latent dimensions with the



Figure 9: The output of bean shaped synthetic car race track. (a) True track and noisy observation
tracks. (b) Observation vectors and observation tracks. (c) Mean predicted vector field of the GP-SDE.
(d) Trajectories predicted using the Euler scheme for the ‘random ODE’ interpretation, with dynamics
drawn from GP samples. (e) Trajectories predicted by the Euler–Maruyama scheme for the GP-SDE
model. (f) Mean trajectory path predicted using Gauss–Hermite quadrature by assumed density.

most variation. The trajectories for the three methods overlap exactly, which also shows in Fig. 6b
that shows the generated outputs in the observation space together with the associated marginal
uncertainties. We include further details in Fig. 10.

For quantitative comparison, we do a 10-fold cross-validation study on the rotating MNIST data.
The full dataset consists of 200 randomly chosen digits ‘3’ which are split into 10 folds, each fold
consisting of 180 training and 20 test digits. As discussed, each digit is uniformly rotated around 64
angles thus making the training dataset size equal to 11,520. Both the models, VAE and latent-GP,
are trained independently with the same initial hyperparameter values and an equal number of epochs
over different folds. On the test dataset, we perform inference via three schemes: Euler–Maruyama,
linearization, and moment matching. Euler–Maruyama acts as a baseline for which 1000 samples with
0.1 step-size are generated. For linearization and moment-matching we use the Euler scheme with
0.1 step-size for solving the resulting ODE. The MSE values are calculated for the mean. Alongside
mean we also characterize the uncertainty estimates by studying the negative log probability density
(NLPD) for all the three schemes in the latent space over time. The MSE and (final-step, t = 64)
NLPD results are in Table 1 in the main paper, where we see that the sampling scheme performs
slightly better, especially in terms of NLPD—even if the qualitative results did not show a clear
difference.

B.6 Motion Capture Experiment Details

For the motion capture experiments, we used the same pre-processed CMU Walking data set as
in Yıldız et al. [49]. The relevant hyperparameters and design choices were the weighting of KL-
divergence, learning rate of the optimizer, neural network designs, choice of SDE approximation,
choice of the ODE solver, and choice of the prior process for regularization.

For weighting the KL-divergence, we tested the values γ = {1.0, 0.1}, both with a linear schedule
until epoch 200 and fixed value. The listed MSE was achieved when using γ = 1 fixed and
with a learning rate of 0.01. The drift, diffusion, encoder and decoder networks were all trained
simultaneously in 1500 iterations using the Adam optimizer, see Fig. 11 for the detailed network
designs. With the exception that we model the change in the latent context, the neural networks are
similar to those presented in Li et al. [26].

For the prior process, we used a simple stochastic process with zero drift and 0.1I diffusion. In our
experiments, we found that using a prior process is fundamental for successful training over an SDE
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Figure 10: Further test set example results on the rotating MNIST data set. The left-hand side shows
the prediction trajectories for one test set image in the latent space. Evolution of the true trajectory is
shown in HSV colour code and the predicted trajectory by Euler–Maruyama, moment matching, and
linearization scheme is shown in green, blue, and orange, respectively (all overlapping one another).
The right-hand figures show the progression of the prediction (mean and marginal std images) of the
test set image input, when it traverses the learned dynamics in the latent space. Both the moment
matching and linearization schemes match the baseline (computed with 1000 Euler–Maruyama
trajectories).

approximation: optimizing solely for maximum likelihood resulted in unrealistic parameter values
and lead to numerical instability. As an alternative to zero drift prior processes, we tested a trainable
drift network, and inspired by Li et al. [26], a prior diffusion network that matches the posterior in
state dimensions. While the alternative prior processes produced a more informative latent space,
we chose the zero drift prior process both for its simplicity and performance: the lowest MSE was
achieved when using a zero drift prior. The selected ODE solver was a 5th order Runge–Kutta method.
When running the model implementation for a linearized approximation on TensorFlow and a Tesla
V100 GPU, training was completed in approximately 2 hours and 45 minutes.

We also include a separate timing comparison between the methods under this model, where we
control for equal step size and between methods and using the plan Euler/Euler–Maruyama scheme.
The results in Table 2 show timings for one pass with a PyTorch implementation and using the same
hardware as presented in App. B.1.
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Figure 11: Neural network designs (from left to right) for the drift, diffusion, encoder and decoder
networks. The diffusion network is duplicated 9 times, one for each latent state or context dimension.
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