
Fast Training of Neural Lumigraph Representations
using Meta-learning

–Supplementary Document–

Alexander W. Bergman
Stanford University
awb@stanford.edu

Petr Kellnhofer
Stanford University

pkellnho@stanford.edu

Gordon Wetzstein
Stanford University

gordon.wetzstein@stanford.edu

Contents

1 Additional Implementation Details 2

1.1 DTU dataset . 2

1.2 NLR dataset . 3

1.3 ShapeNet dataset . 4

1.4 Timing . 5

1.5 Sphere tracing . 5

1.6 Result details . 5

2 Baseline Implementation Details 6

3 Additional Results 7

3.1 DTU dataset . 7

3.2 NLR dataset . 9

3.3 ShapeNet dataset . 9

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

1 Additional Implementation Details

As described in the main text, we plan to release all code used to obtain the results for our method. All
data used has been made publicly available by their authors. We use PyTorch for all implementation,
and evaluate all of our methods using our internal server consisting of four Nvidia Quadro RTX8000
GPUs and six Nvidia Quadro RTX6000 GPUs, which we used a subset of. Due to our limited
resources and requirement of training our method and many baselines to convergence, we opt
to report error bars with respect to multiple different testing scenes instead of different random
seeds. Each of these evaluations is run with a randomly generated seed. Implementation details on
network architectures and hyperparameters for the DTU [1, 2] and NLR [3] datasets are included in
Sections 1.1 and 1.2 respectively.

1.1 DTU dataset

Data. For each DTU scene, we use 7 of the ground truth 49 images for training. The view IDs
of each of these images selected from the DTU dataset are: [1, 9, 17, 25, 33, 41, 47]. These views
roughly image all parts of the object, but are not dense. The views held out for testing are views
[12, 32, 40]. The images and ground truth masks are downsampled to resolution 800× 600 as in [4],
and all training and evaluation is performed on this resolution.

Network architectures. To represent our neural shape Φθ, we use a 5-layer MLP with 128 hid-
den units per layer. Multiple architecture widths and depths were considered before finding this
architecture which maximized the trade-off between evaluation speed and reconstruction quality for
the DTU objects. The source image encoder Eξ is implemented as a ResNet [5], using the same
architecture in SVS [4]. This network consists of a ResNet18 network with 4 residual blocks, each
consisting of Conv2d-BatchNorm2d-ReLU-Conv2d-BatchNorm2d network layers, where the first
Conv2d downsamples (or upsamples) the image resolution by half in each dimension. Each of the skip
connection layers in the network consist of a single Conv2d-ReLU network layer pairing. The output
number of features is set to d = 16. The target image decoder Dψ is implemented as a UNet [6], with
3 down/up-sampling layers. Each downsampling block consists of Conv2d-ReLU-Conv2d-ReLU-
AvgPool2d network layers. The intermediate number of channels after each block is: [64, 128, 256].
The learned aggregation function is implemented as a 5-layer MLP with 32 hidden units per layer,
which maps each feature in R16 and its target viewing direction in R3 to the aggregation weight in R.

Pre-training. The encoder and decoder networks are pre-trained using the FlyingChairs2 [7, 8]
dataset. This dataset consists of pairs of images and ground-truth optical flow. To pre-train these
networks, we apply two losses using image pairs and optical flow. The first loss feeds the image
through the encoder, and the output features through the decoder, and ensures that the encoder and
decoder are approximate inverses of each other. The second loss takes in the input image, warps
the features, and then decodes the warped features into an image which is supervised by the warped
image. This loss ensures that the encoder/decoder pair actually learn features representative of the
image, and not to find some way to simply pass the input image through the feature bottleneck. This
pre-training on the encoder and decoder especially helps NLR++ and SVS*, but MetaNLR++ is able
to learn a prior over features using only meta learning on the DTU scenes. The shape network is
pre-trained using a procedural sphere of radius 1.

Training parameters. When optimizing a single MetaNLR++ or NLR++ model to represent a
DTU scene, a learning rate of η1 = 1×10−4 was used to train Φθ, and a learning rate of η2 = 5×10−5

was used for Eξ, Dψ,Γζ . The increased learning rate for the encoding, aggregation, and decoding
functions encourages the network to learn to model appearance with deep features rather than with
geometry, which encourages faster convergence. Learning rate η1 is decreased by half at iteration
numbers: [500, 1000, 3000, 7000, 15000, 31000]. Learning rate η2 is decreased by half every 2000
iterations, consistently.

Other training parameters relate to the loss function applied and determining if features are occluded.
We use a LM weight of λ1 = 1× 102/α, where α is the mask softness parameter. The value of α
is set at 50, and is doubled at iteration numbers [2000, 4000, 6000]. This enforces the mask to be
more and more binary as training goes on. We use a LE weight of λ2 = 3.0 for all DTU experiments,
which does not decay. This is applied on randomly sampled points in the unit cube which our scene

2

representation Φ lies. To determine whether sphere-traced features are occluded, we check whether
or not sphere-traced surface points from the target and source views have an L2-distance smaller
than threshold τ . We start with τ = 1× 10−3, which changes to τ = 1× 10−4 at 5000 iterations,
and τ = 1× 10−5 at 10000 iterations. This encourages the occlusions to be more strict as the shape
quality improves.

Additionally, as described in the main text, one key component which makes our method converge
quickly is the ability to balance shape and feature network optimization. One way this is done is
by not computing shape gradients on each iteration, and using previously cached surface points
from each view to determine feature occlusions. For the first t1 = 50 and every t2 = 7 iterations
thereafter, both shape and feature encoder/decoders are optimized as described in the image formation
model. On these iterations, sphere-traced surface point locations are cached for each view. On
iterations where the shape is not trained, these sphere-traced surface point locations are used to
determine occlusions, and create a target image which can be used to update Eξ, Dψ,Γζ . All views
are sphere-traced at initialization, in order to serve as the initial cached surface values. Although
these points may not be completely accurate, there is benefit in optimizing the feature processing
networks more often as the shape evolves, as they can better learn to blend features for this specific
scene. When optimizing both shape Φθ and feature processing networks Eξ, Dψ,Γζ , we use a batch
size of all 7 input images. However, gradients for the shape are only computed for 4 of these images –
the remaining 3 images use cached surface point locations, as previously described.

Other relevant implementation details are: occluded features are set to value zero, and thus contribute
nothing to the weighted sum feature aggregation. The batch gradients, as previously described, are
computed by summing loss terms for each of the 4 rendered target images. Finally, all optimization
uses the Adam [9], and we have found that using other optimizers significantly decreases the
performance. We expect that this is because we have not spent a significant amount of time tuning
every hyperparameter (due to the large number of parameters), and the Adam optimizer is robust to
some of these choices. We expect that with further hyperparameter tuning, our method could likely
receive better results.

Meta learning. We train the meta-initialization using 15 training DTU scenes, distinct from the
scenes which we evaluate using. The initialization is learned using the Reptile algorithm [10], which
simply updates the initialization in the direction of the optimized weights for m = 64 steps of fitting
one of the training objects. This inner loop optimization is also done using the Adam optimizer, with
the same training parameters as the previous section for the first 64 steps. However, t1 is set to 64,
which allows for shape optimization on every step of the meta-learning. The meta-learning rate is set
to β = 1× 10−1.

Ablations. For the ablation study on the meta learning, we use the same parameters as normal
training for each method, including for training the meta-learned initializations. When training
the meta-learned initialization for only the shape, we use the same method as meta-learning all
parameters, but only update the shape network weights.

For the ablation study on number of input views, we also use the same parameters as normal
training for each method. For 3 views, we use views [1, 25, 47]. For 24 views, we use views
[1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 43, 47]. For 49 views, we use all views 1− 49 but still withhold
views [12, 32, 40] (leading to only 46 training views). The PSNR is computed on withheld views
[12, 32, 40].

1.2 NLR dataset

Data. For the NLR scenes, we use the last 6 ground truth images to train our representation. The
view IDs of each of these images is: [16, 17, 18, 19, 20, 21]. This is done because these images are
taken from the same camera, and using images from different cameras with a encoder and decoder
which learn image priors may result in undesirable artifacts. These images all consist of human faces,
an important application area for 3D representation learning. As in NLR, we do not withhold any
specific views for testing, and instead qualitatively evaluate the interpolated view results. The images
and ground truth masks are downsampled to resolution 800× 600 as for the DTU dataset, and all
training and evaluation is performed on this resolution.

3

Network architectures. We find that the default network architectures proposed for DTU lead to
representations which build too much of the image appearance into the feature processing networks,
and too little into the shape. This results in artifacts around the nose of subjects, where parts of the
face should be occluded (see Figure 3). Thus, we propose to encourage the network to represent
more of the high-frequency details using the geometry built into Φ instead of the feature processing
E,D,Γ.

To represent our neural shape Φθ, we use a 5-layer MLP with 256 hidden units per layer. The
source image encoder Eξ uses the same architecture as the DTU case. The target image decoder Dψ

also uses a UNet to decode the features, but this UNet consists of 2 down/up-sampling layers with
intermediate channel sizes after each block as [32, 64]. This smaller size prevents giving the decoder
too much capacity to inpaint missing details, and overfit to the training images without refining the
shape model. The learned aggregation function uses the same architecture as the DTU case.

Pre-training. Unlike in the DTU case, we do not pre-train the encoder and decoder networks using
the FlyingChairs2 dataset. However, the shape network is still pre-trained using a procedural sphere
of radius 1.

Training parameters. Most training parameters from the DTU case are re-used for the NLR case.
One change regarding the batch size: since there are only 6 images in the dataset, the total image
batch size is 6. However, the batch size of 4 for shape gradient computation remains the same. The
other change is regarding the shape training versus iterations trade-off. Since these shapes require
more fine detail to result in high-quality novel view synthesis, we opt to optimize the shape more
often. Thus, the parameters t1, t2 are adjusted to t1 = 100, t2 = 3. This, along with the neural shape
network size, affects the fastest possible speed with which we can represent these objects.

Meta learning. The meta-initialization is trained using 5 NLR scenes, distinct from the scene
which we evaluate using. The initialization is learned using the Reptile algorithm with the exact same
parameters as the DTU case.

1.3 ShapeNet dataset

Data. Each ShapeNet scene consists of 24 views at resolution 64× 64. We withhold three views
with IDs [7, 16, 23] for testing, and use the remaining views for training. We randomly select 624
chair objects from the official ShapeNet training split to serve as meta-training data for the chairs
split, and select 604 car objects from the official ShapeNet training split to serve as meta-training
data for the cars split. We select 3 random objects from the official ShapeNet test set for the chairs
and cars split respectively to serve as meta-testing samples.

Network architectures. To represent our neural shape Φθ, we use a 5-layer MLP with 128 hidden
units per layer. This was selected to remain consistent with the experiments on the DTU dataset.
Following this, the same architecture is used for the source image encoder Eξ and target image
decoder Dψ and learned aggregation function as in the DTU experiments.

Pre-training. The ShapeNet experiments use the same pre-trained models as the DTU experiments
- i.e. the encoder and decoder networks are pre-trained using the FlyingChairs2 dataset, and the shape
network is pre-trained using a procedural sphere of radius 1.

Training parameters. Most training parameters from the DTU case are re-used for ShapeNet.
Since the images are small and GPU memory is not a limitation, the batch size is increased to use
all training 21 images when reconstructing each target image. At each iteration, the batch size is
set to 10 for shape gradient computation (10 of the 21 images are treated as target images during
each iteration). The parameters t1, t2 are adjusted to t1 = 2, 000, t2 = 5. The large value of t1 is
acceptable due to the low resolution of the images, and thus the shape optimization through sphere
tracing does not slow down each iteration of optimization by much.

Meta learning. The initialization is trained using the Reptile algorithm with the same parameters
as the DTU case besides learning rate, which is decreased to β = 2× 10−2. The meta-training and
meta-testing splits are described in the section on data.

4

1.4 Timing

The timing for all methods was computed using an Nvidia RTX6000 GPU. For our method, we
compute the timing by adding the time the forward pass takes, the time the loss computation takes, the
time the backward pass takes, and the time that the optimization update takes. We compute distinct
timing for iterations with and without shape optimization. For each of these types of iterations, we
sampled 100 iteration times and averaged them to come to an iteration time. These values were then
extrapolated to compute all timing results. The timing results for each of the methods at training time
is:

NeRF [11]: 0.40 sec/iteration.
IBRNet [12]: 0.33 sec/iteration.
NLR [3]: 2.21 sec/iteration.
SVS* [4, 13, 14]: 1.38 sec/iteration after 96 second mesh computation time.
IDR [1]: 0.2 sec/iteration.
NLR++/MetaNLR++: 2.19 sec/iteration with no shape optimization, 7.69 sec/iteration with
shape optimization.

Note that while MetaNLR++/NLR++ iterations appear to take significantly longer than those of
other methods, these methods require significantly less iterations to converge. This is because, when
compared to NLR or IDR, MetaNLR++ optimizes the representation for multiple entire images
instead of randomly selected rays. The ray-batch size is significantly larger, resulting in longer
iteration times.

The timing results for each of the methods at rendering time is computed assuming that the mesh and
encoders can be pre-computed. Thus, this only requires learned aggregation and decoder evaluation,
for our method and SVS*. For NeRF and IBRNet, the full forward pass must be ran on a full-
resolution image. For IDR and NLR, this time is based on obtaining the pre-computed lumigraph, as
described in NLR.

NeRF: 32 sec/frame.
IBRNet: 33.3 sec/frame.
NLR: 0.025 sec/frame.
SVS*: 0.031 sec/frame.
IDR: 0.025 sec/frame.
NLR++/MetaNLR++: 0.031 sec/frame.

1.5 Sphere tracing

We use the sphere tracing implementation published in [1]. This implementation uses bidirectional
sphere tracing to find the intersection of the surface defined by Φθ and a ray. We limit the sphere
tracer to only 8 steps, and mark rays with SDF value within 5× 10−5 of 0 as converged. To find the
minimum value along each ray necessary for LM , we densely sample 40 evenly spaced SDF values
along a ray.

1.6 Result details

Here we describe additional noteworthy details of how the results in the main paper were computed.

Figure 2. The PSNR and LPIPS scores are computed on saved models throughout the training
process after the convergence. These values smoothed values v̂i were obtained using exponential
moving average smoothing on the original measured values vi, defined by:

v̂i =

{
vi i = 1

αvi + (1− α)v̂i−i i > 1,
(1)

where we use smoothing parameter α = 0.8 for all methods besides IDR, which uses α = 0.3 due to
the much higher variance between plot points. Our definition of the smoothing parameter α implies
that smaller α results in more smoothing, and larger α results in less dependence on previous values
and thus less smoothing.

5

We train all methods until convergence. In the figure, IDR converges prior to the 10, 000 total seconds.
Thus, we extrapolate these times using the average of the last 7 iteration results. This results in the
straight line plot shown for the IDR bar in this figure.

Table 1. To find the time to reach specified dB PSNR for each model, we evaluate the PSNR for all
saved models. We then use the lowest model iteration which reaches a specific metric, and compute
the convergence time as a function of iterations. While it is computationally infeasible to evaluate
all metrics for each model iteration, we save models as often as possible for each method. Here, we
describe the model saving schedule, where notation [n,m] means we have a model every n iterations
until total iteration m is reached.

NeRF: [1, 10], [10, 100], [100, 1000], [1000, 10000], [10000, end]

IBRNet: [1, 10], [10, 100], [100, 1000], [1000, 10000], [10000, end]

NLR: [5, 100], [50, 1000], [200, end]

SVS*: [5, 50], [25, 250], [250, end]

IDR: [100, end]

NLR++/MetaNLR++: [5, 50], [25, 250], [250, end]

PSNR/LPIPS Computations. All PSNR computations are computed using the ground truth image
masks and the method used in the code of SVS [4]. This method computes PSNR by element-wise
multiplying (defined as ◦) ground truth and target image by the binary mask, and then computing
PSNR on these images:

PSNR(Ît, It,Mt) = 20 log10(1.0)− 10 log10((Mt ◦ (Ît − It))2). (2)

While this method biases the PSNR higher by using the masked values for error computation, it is
consistently used for all baseline methods and thus comparisons are standardized. LPIPS metrics
are also computed on the masked images which have also been multiplied by the ground truth mask,
Ît ◦Mt.

2 Baseline Implementation Details

NeRF. We use the NeRF implementation provided by the authors [11]. The training and evaluation
were done with the same set of views and in the same 800× 600 pixel resolution as for the scene
fitting in our own method. Inspired by the provided config_fern.txt configuration, we evaluate 64
samples along each ray in the coarse phase and 128 samples in the fine phase and we process 2,048
rays in each batch. The training to convergence for each test scene was stopped after 200,000 solver
steps as recommended by the authors.

IBRNet. We use the IBRNet implementation provided by the authors [12]. We use parameters
from the provided pretrain.txt configuration to learn the generalized model for 250,000 solver steps
on the same set of 15 training DTU scenes as for our own method. We then fine-tune the pre-trained
model on the seven training views of a specific test scene for another 60,000 steps as defined in the
finetune_llff.txt configuration. The training and evaluation is performed in the same 800× 600 pixel
resolution as for our own method.

IDR. We use the IDR implementation provided by the authors [1]. The training and evaluation is
performed with the same training and test views and the same 800× 600 pixel resolution as for our
own method. We use the configuration for the DTU dataset provided by the authors which trains each
scene for 2000 epoch where each epoch samples one batch of rays once for each of the seven training
input views. This yields 14,000 solver steps for our input scenario.

NLR. We received access to the NLR implementation from the authors [3], and have used this for
training comparison models. The training and evaluation is performed with the same training and test
views and the same 800× 600 pixel resolution as for our own method. The converged models were
sampled after 100,000 solver steps, at which point loss curves stopped decreasing.

6

SVS*. We use our own mesh-based method implementation inspired by SVS [4], as described in
the text. We use COLMAP 3.6 [13, 14] to reconstruct surface mesh from the subset of 7 training
views with known intrinsic parameters for each of our test DTU scenes [2]. The input images are
resampled to the same 800× 600 pixel resolution as for training of our own method. We follow the
settings described in previous work [1–3]. We remove background points from the fused point-cloud
using the object masks and we performed Poisson reconstruction of the surface with trim parameter
set to 7. For training the encoder, decoder, and aggregation function Eξ, Dψ,Γζ , we use the same
parameters and architecture as NLR++. However, since no shape optimization is done, every iteration
optimizes the feature processing networks.

MetaNLR. We received access to the NLR implementation from the authors [3], and have wrapped
this implementation with an outer loop which learns the initialization of the shape and color networks
using Reptile [10]. The meta-training and testing are performed with the same meta-training and
meta-test scenes, and the specialization to the test scenes is done using the same training and testing
views (at 800 × 600 resolution) as in our method. We independently tune the hyperparameter for
meta-learning rate, which we set as 5 × 10−2, and use the same amount of inner loop steps per
meta-iteration as our method.

3 Additional Results

In this section we provide additional results of our method, and other baseline methods for various
scenes.

3.1 DTU dataset

Additional image renderings & SVS* results. In our attached video and Figure 1, we show
additional results comparing novel view synthesis results from various methods. In the video, we
see that after a short amount of time, our method produces the highest quality novel view synthesis
results. Note that as mentioned in the main text, the SVS* method’s ability to synthesize novel views
is limited by the inaccurate rendering masks in the COLMAP-produced geometry. This results in
large holes in the rendered images. This phenomenon is less observed when quantitatively comparing
rendered images using the ground-truth masks, as in the main text, but when rendering views without
ground truth object masks, either the full image or rendered mask must be used to display images.

Note that the results in the video for SVS* also exhibit flickering artifacts between views, which are not
apparent in the results produced by the original SVS implementation [4]. However, in the experiments
presented, the number of training views is limited to only 7, and thus the feature processing networks
(Eξ, Dψ,Γζ) are more prone to overfitting to the training views. This overfitting results in less smooth
blending between the training views. Additionally, the original SVS implementation uses a graph
attention network instead of a MLP for on-surface feature aggregation, which may provide smoother
feature interpolation.

We also include IBRNet and MetaNLR in these comparisons. IBRNet method is able to blend input
images together and produce qualitatively good results, but cannot be rendered in near real-time.
MetaNLR improves upon the training speed of NLR, but is still not able to match the visual quality
of MetaNLR++ in the case of fast training, demonstrating that both our novel scene parameterization
and the application of meta learning are necessary for fast training of high quality view synthesis
methods.

Ablation results & shape quality evaluation. In Figure 2, we provide additional image results
from the meta learning ablation study. We show qualitative results from meta-learned initializations
specialized for 10 minutes of training. We show permutations of MetaNLR++ with RGB pixels
instead of an encoder and decoder, and with a learned and fixed aggregation function. We see that
the learned aggregation function introduces distortion in training when used with RGB pixel values
directly, but leads to improved results when used with deep feature blending. The methods which use
RGB pixel values directly are unable to inpaint and correct errors in the geometry, and thus lead to
missing colored areas around the object boundary and falsely blended or occluded features when the
shape is not correct.

7

5 min. Convergence

NLR++

SVS*

NeRF

IDR

MetaNLR++

GT

MetaNLR

IBRNet

Slow
rendering

Limited
by COLMAP

Slow
training

NLR

Figure 1: Additional qualitative results for all methods compared after 5 minutes of training and
convergence. Here we apply the ground-truth background masks to all methods. Additionally, in the
case of surface based methods, we also render test views using the masks extracted from the surface.
This shows that the COLMAP results are limited by holes, especially in the mouse scene (DTU 105).

8

RGB pixels
fixed aggregation

RGB pixels
learned aggregation

CNN E/D
fixed aggregation

CNN E/D
learned aggregation GT

32.41 29.61 32.81 32.61

28.85 26.56 30.00 30.40

Figure 2: Comparison of the various ablated methods. In this comparison, we apply meta learning
to all available networks, and show results after 10 minutes of training. The methods which use the
RGB pixels produce sharp results, as the encoder and decoder do not need to be fine-tuned, but are
not robust to errors in the geometry, as highlighted in the figure. These areas are inpainted in the
version with a decoder.

5 min. Chamfer 10 min. Chamfer Convergence Chamfer

NeRF 108.22* 61.92 1.54
IDR 3.10 1.78 1.42
NLR 7.46 6.27 1.68
COLMAP 5.61 5.61 5.61
NLR++ 3.86 3.39 2.70
MetaNLR++ 3.26 2.78 2.28

Table 1: Table comparing Chamfer distances of the shapes produced from different methods at
different times. These Chamfer results are averaged over the three DTU test scenes.
*For one of the DTU test scenes, a mesh was unable to be extracted, so this distance is the average of
the other two scenes.

In Table 1, we compute the Chamfer distance for the methods shown in the main text. IDR performs
well in reconstructing a high quality shape quickly, but as shown in the main text and Figure 1,
rendered novel view synthesis is low-quality. This detail in shape is likely a result of the low capacity
of the color representation, forcing the neural shape model to model differences in rendered views
with geometry. MetaNLR++ achieves the second fastest shape convergence, significantly faster than
volumetric methods such as NeRF, and faster than other neural surface based methods like NLR.

3.2 NLR dataset

For additional comparisons and convergence on the NLR dataset, please see our supplemental video.

Failure cases. As noted in the implementation details, when working with the NLR dataset, we
increase the capacity of the neural shape representation and decrease the capacity of the feature
decoder. Specifically, we increase the neural shape model Φθ hidden dimension from 128 to 256 and
decrease the number of UNet blocks in the decoder module Dψ from 3 to 2, with half the number of
channels in each block. Without these architecture changes, the representation is unable to represent
fine geometric details, and thus uses the decoder to decode the falsely blended features and inpaint
the falsely occluded features to produce the training images. This results in overfitting to the training
views. As shown in Figure 3, this is especially effective around the nose area of the face in the NLR
dataset. Features here are blended when they should be occluded by the nose, resulting in blurriness.
This blurriness is especially apparent in the interpolated views, which the decoder has not seen and
thus cannot memorize the ground truth image.

3.3 ShapeNet dataset

9

32.14 35.57 33.19

37.33 40.58 38.91

Figure 3: The first row shows the converged results on the NLR dataset with the architecture changes
to Φθ and Dψ . The second row is a failure case, where the novel view synthesis quality interpolates
poorly and is unable to fit the ground truth frames as well. This occurs because the shape model Φθ
does not have enough capacity to model the fine details of the face, and the Eξ, Dψ,Γζ have too
much capacity to overfit to training views.

1 min. Convergence

NLR++

MetaNLR++

GT

Figure 4: Qualitative examples from the cars and
chairs splits of the ShapeNet dataset. These are
shown after 1 minute of training and convergence
for MetaNLR++ and NLR++.

We ablate the meta learning contribution by com-
paring MetaNLR++ to NLR++ on the cars and
chairs splits of the ShapeNet dataset [15]. The
relative performances are demonstrated in Ta-
ble 2 by quantifying the time to reach a certain
PSNR, and qualitative results are shown in Fig-
ure 4 after varying amounts of training. The
testing and training views of the ShapeNet ob-
jects are distributed 360◦ around each object,
demonstrating that MetaNLR++ is able to func-
tion well in this scenario.

From quantitative and qualitative results, we see
that meta learning used in MetaNLR++ leads to
a significant improvement over simply using the
NLR++ scene parameterization. This continues
the trend as described on the NLR dataset in
the main paper, where a more comprehensive
meta-training object dataset covering the test-
ing object distribution leads to improved relative
benefit of meta-learning. In the case of the cars
split of the ShapeNet dataset, the lower variation
between car objects than, for example, DTU ob-
jects leads to a stronger meta-prior learned and
thus relatively faster training of MetaNLR++
compared to NLR++. This trend is observed to
a lesser extent for the chairs split, where the ob-
jects are not as uniform as cars. We hypothesize

that for future applications of MetaNLR++, larger meta-training datasets and specific applications
could lead to even faster training.

References
[1] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Ronen Basri, and Yaron Lipman.

Multiview neural surface reconstruction by disentangling geometry and appearance. In NeurIPS, 2020.

[2] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanæs. Large scale multi-view
stereopsis evaluation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages
406–413. IEEE, 2014.

[3] Petr Kellnhofer, Lars Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gordon Wetzstein. Neural
lumigraph rendering. In CVPR, 2021.

10

Cars Split 30dB PSNR 35dB PSNR Maximum PSNR

NLR++ 1.5 min. 36.0 min. 35.5dB
MetaNLR++ 12.0 sec. 3.7 min. 37.9dB

Chairs Split 30dB PSNR 35dB PSNR Maximum PSNR

NLR++ 3.6 min. 125.0 min. 37.0dB
MetaNLR++ 1.5 min. 50.0 min. 40.7dB

Table 2: Comparison of the time to reach a specified PSNR level on the ShapeNet dataset for
MetaNLR++ and NLR++.

[4] Gernot Riegler and Vladlen Koltun. Stable view synthesis. In CVPR, 2021.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, 2015.

[7] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt, D. Cremers, and
T. Brox. Flownet: Learning optical flow with convolutional networks. In IEEE International Conference on
Computer Vision (ICCV), 2015. URL http://lmb.informatik.uni-freiburg.de/Publications/
2015/DFIB15.

[8] E. Ilg, T. Saikia, M. Keuper, and T. Brox. Occlusions, motion and depth boundaries with a generic network
for disparity, optical flow or scene flow estimation. In European Conference on Computer Vision (ECCV),
2018. URL http://lmb.informatik.uni-freiburg.de/Publications/2018/ISKB18.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2014.

[10] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[11] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[12] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron,
Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view image-based
rendering. In CVPR, 2021.

[13] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view
selection for unstructured multi-view stereo. In ECCV, 2016.

[14] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In CVPR, 2016.

[15] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An
Information-Rich 3D Model Repository. arXiv preprint arXiv:1512.03012, 2015.

11

http://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15
http://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15
http://lmb.informatik.uni-freiburg.de/Publications/2018/ISKB18

	Additional Implementation Details
	DTU dataset
	NLR dataset
	ShapeNet dataset
	Timing
	Sphere tracing
	Result details

	Baseline Implementation Details
	Additional Results
	DTU dataset
	NLR dataset
	ShapeNet dataset

