Supplemental Material for
An Analysis of SVD for Deep Rotation Estimation

Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa, Afshin Rostamizadeh, and
Ameesh Makadia

A Complete proof of Proposition 1

In the main paper, we gave the derivative of the orthogonalization operators SVDO(M) and GS(M)
and the resulting error under Gaussian noise, near the identity matrix M = I. We now give
the complete proof and discussion of Proposition 1 and the additional facts about smoothness
of SVDO(M), SVDO™(M).

Note that since SVDO(RM) = R - SVDO(M) and GS(RM) = R - GS(M) for any orthogonal matrix
R, and likewise for SVDO™, GS™ if R is special orthogonal. Therefore the error analyses are the same
for all matrices M:

|GS(R+oN) — R||% = ||[R(GS(I + cR™'N) — I)||2 = ||GS(I + oN) — I||% (A.1)
since orthogonal matrices preserve Frobenius norm and R~ N has the same distribution as N since
N was assumed isotropic. (The same applies for the other three functions.)

Proof of Proposition 1. (1) Let M have SVD M = UX V" for some orthogonal matrices U, V and
diagonal matrix ¥ > 0. To first order in o, we can expand each of U, 3, VT as

U =Us(I +oUy), (A2)
=%+ 0¥y, (A.3)
V = V(I +oWi), (A4)

with Uy, Vj orthogonal, Uy, V; antisymmetric and ¢, 3; > 0 diagonal. This is using the fact that the
antisymmetric matrices give the tangent space to the orthogonal matrices. Similarly, the tangent space
to the diagonal matrices is given again by the diagonal matrices. This gives an overall expression for
M as

M=1+0N=Uy(I+cU)(Z0+0Z1)I +oV1) V. (A.5)

Setting 0 = 0 we see [= UOEOVOT7 which implies ¥y = I and Uy = V4. Next, collecting the
first-order o terms gives

N =Uy(Uy + %1 + VUL (A.6)

If a matrix X is (anti-)symmetric and () is orthogonal, then QX Q7 is again (anti-)symmetric. So,
the symmetric and antisymmetric parts of the equation are

S =Ux UF, A=Uy(Uy + VUL, (A7)

Note that the first equation is an SVD of the symmetric part of N, while the second equation shows
that U; and V; satisfy U; + Vi’ = U AUj. Finally, dropping the ¥y + 03 factor from Eq. (A25)
and expanding out shows that SVDO(I + oN) = I +cA + O(c?).

(2) Let M = QR, where @ is orthogonal and R is upper-triangular with positive diagonal. As above,
by expanding to first order in o we have

I+0N=Qo(I+ Q1)+ ocR1)Ry, (A.8)

with Qg orthogonal, @)1 antisymmetric, and R, Ry upper triangular. Setting o = 0, we see I = Qo Ry
and so Qo = Ry = I. For the o terms, we split IV into its upper, lower and diagonal parts to get

U+D+L=Q+hR, (A.9)

which by comparing parts gives Q1 = L—LT and Ry = U+ D+LT. ThenGS(M) = [+o(L—L7)
by simple algebra.

We now prove Corollary 1.

Corollary 1 (restated). If N is 3x3 with i.i.d. Gaussian entries n;; ~ N(0,1), then with error of
order O(c?),

E[||svpo(M) — I||3] = 30, E[|¢S(M) —1||}] = 602 (A.10)
E[||Svpo(M) — M||3] = 60*, E[||6S(M) — M|3] = 95° (A.11)
Proof. Simplifying the error expressions using the first-order calculations in the Proposition gives
Isvoo(M) — 1|z = |loAll%, (A.12)
les(M) = 1% = llo(L - L")II%, (A.13)
Isvoo(M) — M7 = [-oS|F, (A.14)
les(M) — M5 = |-o(U+ D+ L"), (A.15)

with notation for S, A, U, D, L as in the proposition. Thus each expression is o2 times the Frobenius
norm of the corresponding matrix. Each entry of A, L— L™, S and U+ D+ L" is a linear combination
of the entries of IV, hence is Gaussian since N has i.i.d. Gaussian entries n;; ~ N'(0,1). The
expectations are the sums of the entrywise expectations of these matrices. For example, A =
#(N—NT) has six nonzero entries of the form % (n;; —n;;), each having variance 1, so E[[| A||%] = 3.
For I — LT, the above diagonal entries are —n;; and the below-diagonal entries are n;;, and the
diagonal is 0, so the total variance is 6. The other two calculations are similar (the entries do not all
have the same variances).

Remark. The tangent space to the identity matrix along the orthogonal matrices is the space of
antisymmetric matrices. Both of the calculations above can be thought of as giving orthogonal
approximations of the form

I+oN~I+cA, (A.16)
where A’ is a choice of antisymmetric matrix that depends on the approximation method. The fact that
SVDO(M) produces the approximation A’ = A = 1(N — NT') means it corresponds to the natural
projection of IV onto the orthogonal tangent space. By contrast, GS(M) produces A’ = L — LT,
essentially a "greedy" choice with respect to the starting matrix (minimizing the change to the leftmost
columns). For certain matrices GS can have smaller error: for example if NV happens to be upper-
triangular, GS(M) = I and the error is zero. For isotropic noise, however, the SVD approximation is
the most efficient in expectation.

Finally, we discuss why the error analysis is identical for SVDO™, GS*.
Proposition 2 The statements in Proposition 1 and Corollary 1 apply also for SVDO", GS™.

Proof. In Proposition 1, the matrix N is fixed, so for sufficiently small o, det(M) > 0 and so
SVDO(M) = SVDO™ (M) and GST (M) = GS(M).

For Corollary 1, N is not fixed, so there is in fact a finite (positive) probability that det(M) < 0,
dependent on 0. However, the difference decays rapidly enough as o — 0 that the error analysis is
unaffected. For any function f (M), we may write E[f(M)] = (A) + (B), where

(A) = Prob(det(M) > 0) - E[f(M) | det(M) > 0]

(B) = Prob(det(M) < 0) - E[f(M) | det(M) < 0].
If f(M) is the difference in error analyses between SVDO and SVDO,

f(M) = ||svDO™ (M) — I|[7 — [|SVDO(M) — 1|7,
then the term (A) vanishes and the term (B) is bounded by a constant times Prob(det(M) < 0) since
SO(n) is compact. The same applies for each other comparison. Thus it suffices to show that this

probability decays sufficiently rapidly. In fact, by the standard statement below, it decays faster than
any polynomial, since M is a Gaussian random matrix with mean [and det(]) =1 > 0.

Proposition 3 Let x € R™ be a Gaussian random vector, x ~ N (u, 0 - X). Let U be any open set
containing p. Then as o — 0,

Prob(z ¢ U) = O(exp(—2%))

o2

for some constant C > 0. In particular the decay is faster than any polynomial.

Proof. The statement is invariant under affine change of coordinates, so we may assume p = 0 and X
is the identity matrix. Replacing U by a sufficiently small unit cube around 0, the calculation factors
as a product of one-dimensional Gaussians, reducing to the case n = 1. Rescaling by a constant C, we
are left with calculating Prob(|z| > 1) where z ~ N(0, o). By standard concentration inequalities,
this quantity is O(exp(—2)).

A.1 Accuracy of error estimates as o increases

From Corollary 1 (Sec 3.3) we see special-orthogonalization with Gram-Schmidt (GST) produces
twice the error in expectation as SVD (SVDO™) for SO(3) reconstruction when inputs are perturbed
by Gaussian noise. We compare these derived errors with numerical simulations. See Figure[AT]

— 2
150 3q

--- 60 ’
125 —— E[||SVD* (M) —R||2]

— E[lIGS* (M) = RI||Z]

Figure A1l: Simulations. We plot our derived approximations against numerical simulations of the expected
error in reconstruction under additive noise. For each ¢ we compute the numerical expectation with 100K trials.
These plots can provide a sanity check of our derivations.

B Proof of smoothness and discussion

Proposition 4 The symmetric orthogonalization SVDO(M) is a smooth function of M if det(M) # 0.

Proof. We use the Implicit Function Theorem and the least-squares characterization of SVDO(M) as

SVDO(M) = arg min||M — Q||%. (B.1)
€0(n)
We calculate the derivative with respect to @ € O(n): for A an antisymmetric matrix,
lim LM~ QI+ eA)|[3 — M — Q|I3) = ~2Te(MTQ4). B.2)

If this vanishes for every A, then M7TQ is symmetric, that is, (M, Q) is a root of the function
g(M,Q) = MTQ — QT M. Let My be a fixed matrix. As discussed above, the optimal solution
to this equation is given by an SVD, My = UySoV,!, yielding Qo = UV . To show that @Q is a
smooth function of M, it suffices by the Implicit Function Theorem to show that the Jacobian matrix
ngg is full-rank at (Mo, Qo). To see this, we differentiate it again:

0 et
%(A) = lim E(Q(Mm Qo(I + €A)) — g(Mo, Qo)) = Mg QoA — ATQg Mo, (B.3)
where A is antisymmetric. Some algebra shows that this is, equivalently,
0
56 A = Vo(SoW AVh + VT AVoS) Wy (B.4)

To see that this is an invertible transformation of A, note that conjugating by V} is invertible since 1
is orthogonal. So it is equivalent to show that the function

A SgA+ ASy (B.5)

is invertible. This function just rescales the entry a;; to (s; + s;)a;;. Since the singular values are
positive this is invertible as desired.

Proposition 5 The special symmetric orthogonalization is a smooth function of M if either of the
following is true:

e det(M) >0,

o det(M) < 0 and the smallest singular value of M has multiplicity one.

Proof sketch. The analysis is identical to the main proof, except that if det(M) < 0, Sy is effectively
altered so that the last entry is changed from s, to —s,. Thus the function A — SyA + ASy
now sends the entry a;; to (£s; £ s;)a;;, with negative signs at ¢ = n and/or j = n. If s,
occurred with multiplicity one, the result is still invertible since s; — s, # 0 for i # n and for
i = j = n the coefficient is —2s,,. Otherwise, however, s,,_; = s, and the operation sends
Gp—1,n tO (Sp—1 — sn)an_lm = 0; likewise for a,, ,—1. In this case there are many optimal special
orthogonalizations of M, and the operation is not even continuous in a neighborhood of M.

C Gradients

Here we provide the details for the derivation sketched out in Sec[3.2] which analyzes the behaviour of
the gradients of a network with an SVDO™ layer. Specifically, we consider 6L for some loss function
L(M, R) = ||svD0* (M) — R|%.

We will first analyze % for SVDO(M). With o denoting the Hadamard product, from [18] 48] we
have

oL) r Il oL” T
s = UE o (U5 — 52 UNE+S(FT o (V22 — =0 V)IVT, (@€
21 2 lf
F;, = 5% . Z#], Si = Y. (C.2)
' 0, ifi=j
LetX — yTIL 3—LTU and Y = VT 2L — 9LTYy gince |SVDO(M) — R||% = 2Tr(L,) —

(UVTRT) then gL = 2RV, and aL = —2RTU. This leads directly to X = Y7 = Y
(X Y are antisymmetric). We can 51mphfy Eq [C.I]as

L
oL _ U(FT o X)2 —2(FT o X))VT. (C.3)
oM
Inspecting the individual elements of (F7 o X)Y and $(F7 o X)) we have
X5 X5
T ©]°) T _ 1j 21
(FTox)%),, = T (BFT 0 X)), = 52 2 (C.4)

J

Letting Z = (F7 0 X)X — £(FT 0 X), we can simplify 2= = UZVT where the elements of Z are

X e .
ij f
Zij — { sits;’ e 7& J (CS)

0, ifi = j.

For SVDO(M) Eq tells us d A ~ is undefined whenever two singular values are both zero and large
when their sum is Very near zero.

For SVDO™ (M), if det(M) > 0 then the analysis is the same as above. If det(M) < 0, the extra
factor D = diag(1,1,...,—1) effectively changes the smallest singular value s,, to —s,,. The
derivation is otherwise unchanged. In particular the denominator in equation (C.3) is now s; — sy, or
Sp — s; if either ¢ or j is n.

C.1 Gradients observed during training

In Figure [A2] (left) we see the gradient norms observed while training for point cloud alignment
(Section4.1)). SVD-Train has the same profile as for 6D (GS™). SVD-Train converges quickly (relative
to all other methods) in all of our experiments, indicating no instabilities due to large gradients.

On the right of Figure [A2] we profile the gradients for the scenario where we begin training with
the SVD-Inference loss and switch to SVD-Train after 100K steps (after roughly 4% of training
iterations). SVD-Inf trains the network to produce outputs that are close to SO(3), which eliminates
some conditions of instability in Eq.[C.5] This is confirmed by seeing much smaller gradient norms
after switching to SVD-Train at 100K steps. Note, this approach was never used (or needed) in our
experiments.

40

I

[—SVD-Train w/SVD-Inf Init|

—SVD-Train
--6D

oL
aM
0
(¢

— = = = -

100k 200k 300k 400k 500k 600k 700k
Iteration

100k 200k 300k 400k 500k 600k 700k
Iteration

Figure A2: Gradients. Left are the gradient norms ||- 2% |2 for the point cloud alignment experiment. SVD-
Train and 6D have similar profiles. On the right the network is trained with SVD-Inf for the first 100K steps, then
SVD-Train. During the first 100K steps the network learns to output matrices close to SO(3) and this eliminates
sources of high gradient norms in Eq.[C.3]

D Experiments

D.1 Additional baseline details

o Spherical Regression (52-Reg) regresses to n-spheres. Following [25]], we use regression

to S! for Pascal3D+ and S® regression (quaternions) for their ModelNet experiments
(section 4.2). The method combines abs. value regression with sign classification. Our
implementation of the final regression layers follows the provided code. We select the
hyperparameter that balances the classification and regression losses by a simple line search
in the neighborhood of the default provided in [25]].

S2-Reg uses both classification and regression losses, not surprisingly we were unable to
train successfully on any of the unsupervised rotation experiments. The closest we came
was on unsupervised point cloud alignment (Sec 4.4). With careful hyperparameter tuning
the model completed training with mean test errors near 90°.

e 3D-RCNN [23] combines likelihood estimation and regression (via expectation) for predict-

ing Euler angles. This representation also requires both classification and regression losses
for training, and we were unable to make the model train successfully on the unsupervised
rotation experiments.

e Geodesic-Bin-and-Delta (M [28]) combines classification over quantized pose space

(axis-angle representation) with regression of offsets. For our experiments with where
observed rotations are uniformly distributed over SO(3) (Sec. , K-means clustering
is ineffective. Instead we quantize SO(3) by uniformly sampling a large number (1000) of
rotations (larger values did not improve results). We found this version of Geodesic-Bin-
and-Delta outperformed the One-delta-network-per-pose-bin variation in these experiments.
For Pascal3D+ we follow the reference and use K-means with K = 200. This method also
requires both classification and regression losses and we were unable to train successfully in
the unsupervised setting.

e Quaternion, Euler angles (XYZ), and axis-angle are the classic parameterizations. In each

case they are converted to matrix form before the loss is applied. In our experiments we did
not filter any outputs from the network representing angles (e.g. clipping values or applying
activations such as tanh). We found this gave the best results overall.

D.2 Learning rate decay

An observation from the point cloud registration results is that the curves for mean test errors as
training progresses do not decay smoothly as one might expect for any method (Table 1, middle, in
the main paper). This is in part due to the training code from [57] does not utilize a learning rate
decay for this experiment. It is reasonable to observe the variance in evaluation when a decay is
introduced as would be common in practice. Table [AT] (left) shows the curves when the learning
rate is exponentially decayed (decay rate of 0.95, decay steps of 35K). The evaluation over time is
smoother but the results are consistent with those presented in the main paper. Table [AT] (right) shows
SVD-Train performance with three different initial learning rates with decay. The higher learning
rate of le—4 improves performance (Mean/Med errors of 1.32°/0.60°), indicating the benchmark
performance could be improved with hyperparmeter tuning (likely for all methods).

Table A1: Left: Point cloud alignment with learning rate decay. Evaluation is smoother over time but the
comparative analysis does not change. Right: Different learning rates for SVD-Train.

30 30-RONN 20
- M,

-- Mg
— Euler

Mean error (°)

o N » o ®

. . . .
500 500 k 1000 k 1500 k 2000 k 2500 k
lteration Iteration

D.3 Geodesic loss

In [57] it was shown that geodesic loss for training did not significantly alter the results, and we
confirm this observation in Table [A2] (left).

D.4 2D Pose

In Table [AZ] (right), we replicate the point cloud alignment experiment while restricting the rotations
to a 2D subspace of SO(3) that can be identified with the 2-sphere.

Table A2: Left: Training with geodesic loss for point cloud alignment. Relative performances are consistent
with squared Frobenius loss (Table [I|in main paper). Right: point cloud alignment when training and test
rotations are restricted to a 2D subspace of SO(3).

Geodesic loss

° 2D Pose
Mean (°) Med Std Mean () Med S
5D 3.88 2.08 9.19
6D 0.89 0.44 4.60
6D 229 1.30 7.52 SVD-Trai 064 031 488
SVD-Train 2.05 1.28 7.15 -1lrain . . .

D.5 Pascal3D+ full results.

Here in Table [A3] we show the results for all 12 categories in the Pascal3D+.

3D-RCNN
Mg

Euler
Axis-Angle
Quaternion
S2-Reg

5D

6D

QCQP
SVD-Inf
SVD-Train

3D-RCNN
Mg

Euler
Axis-Angle
Quaternion
S?-Reg

5D

6D

QCQP
SVD-Inf
SVD-Train

3D-RCNN
Ma

Euler
Axis-Angle
Quaternion
S%-Reg

5D

6D

QCQP
SVD-Inf
SVD-Train

Table A3:

Pascal 3D+. Results for all 12 categories.

aeroplane bottle chair sofa
Accuracy @ Med® Accuracy @ Med® Accuracy @ Med® Accuracy @ Med®
10° 15° 20° Err 10° 15° 20° Err 10° 15 20° Err 10° 15° 20° Err
328 525 779 135 613 742 903 72 297 451 698 172 37.1 543 800 142
22.1 451 824 16.0 484 629 87.1 11.0 231 456 758 159 314 514 743 14.4
152 353 70.1 19.8 581 694 919 9.0 93 286 588 253 229 457 771 16.3
167 348 745 200 500 677 919 104 115 275 698 21.7 114 400 800 163
289 466 775 16.0 532 710 919 8.3 198 374 731 18.6 343 629 77.1 11.7
46.6 676 873 106 565 694 919 88 374 615 846 127 371 657 857 112
216 387 755 173 548 66.1 935 9.2 17.6 346 720 19.1 17.1 543 77.1 14.2
240 426 755 173 548 71.0 952 93 209 396 786 172 343 543 886 133
172 3777 745 19.1 56.5 710 952 8.7 16.5 39.6 73.6 186 429 543 829 13.7
260 574 863 133 565 758 952 8.9 203 434 715 16.8 457 60.0 88.6 11.0
221 436 770 174 532 758 935 7.7 242 390 714 176 400 57.1 857 127
bicycle bus diningtable train
Accuracy @ Med® Accuracy @ Med® Accuracy @ Med® Accuracy @ Med®
10° 15° 20° Err 10° 15° 20° Err 10° 15° 20° Err 10° 15° 20° Err
178 386 723 169 8.7 915 937 44 467 600 667 122 657 747 828 64
119 317 663 209 76.1 88.0 95.1 7.6 26.7 533 60.0 12.8 485 66.7 828 10.1
99 208 683 234 472 669 873 105 267 400 733 166 424 636 808 111
139 317 703 213 387 69.7 937 120 267 533 80.0 144 404 o646 828 11.6
158 307 673 224 69.7 838 923 74 333 467 733 173 566 687 818 87
218 455 752 161 937 986 993 3.8 333 467 667 153 667 768 848 62
109 267 683 21.1 521 725 930 9.6 333 60.0 66.7 114 354 495 788 15.5
149 277 713 220 669 838 944 79 133 467 733 153 636 737 808 7.7
50 188 663 21.8 648 880 958 8.1 26.7 60.0 80.0 143 576 737 818 8.9
109 337 842 190 803 923 958 6.1 533 600 733 100 586 737 828 85
99 267 802 209 676 852 965 79 333 533 733 13.0 636 727 818 8.4
boat car motorbike tvmonitor
Accuracy @ Med® Accuracy @ Med® Accuracy @ Med® Accuracy @ Med®
10° 15° 20° Err 10° 15° 20° Err 10° 15 20° Err 10° 15 20° Err
126 232 526 270 655 768 863 6.7 246 465 816 156 355 539 829 132
168 274 568 252 512 702 869 9.8 158 404 798 17.1 23.0 461 770 159
1.1 53 284 464 250 506 798 145 132 307 675 213 230 467 796 157
4.2 13.7 421 350 214 536 821 14.0 15.8 325 737 19.6 257 428 81.6 16.6
95 232 547 271 452 649 869 105 184 325 789 189 257 513 816 143
189 421 663 16.7 702 857 982 7.7 289 56.1 86.8 13.6 388 56.6 789 13.3
42 105 484 321 232 464 845 161 9.6 307 798 203 224 368 69.1 188
126 189 526 290 440 673 893 114 114 368 88.6 172 309 50.7 855 14.7
95 242 568 266 381 625 875 117 184 377 81.6 177 289 520 842 142
179 31,6 568 233 565 762 9l1.1 89 219 474 868 156 303 52.6 862 143
13.7 253 526 254 423 63.1 857 11.4 184 404 81.6 183 329 50.0 86.2 14.6

