
A Proofs for the Main Result

We first give a sketch of the proof. Note that if TSR always correctly simulates a trajectory of πk on
the underlying MDP, then by the correctness of A , the output policy of A in the end is near-optimal
with high probability. If in TSR, fk,J[H+1] decodes states correctly (up to a fixed permutation, with high

probability) for every observation generated by playing πk ◦ fk,J[H+1], then the obtained trajectory
(on S) is as if obtained with πk ◦ f[H+1] which is essentially equal to playing πk on the underlying
MDP. Let us now consider πk ◦ fk,i[H+1] for some intermediate iteration i ∈ [J]. If there are many
observations from a previously unseen state, s, then ULO guarantees that all the decoding functions
in future iterations will be correct with high probability of identifying observations of s. Since
there are at most |S| states to reach for each level following πk, after (H + 1)|S| iterations, TSR is
guaranteed to output a set of decoding functions that are with high probability correct under policy
πk. With this set of decoding functions, we can simulate a trajectory for A as if we know the true
latent states.

For episode k, we denote the training dataset D generated by running Unif(Π) as {Dk,i,h}H+1
h=1

(Line 5) and the testing dataset D′′ generated by πk ◦ fk,i−1[H+1] as {D′′k,i,h}
H+1
h=1 (Line 6). The subscript

h represents the level of the observations. Furthermore, we denote by µk,i,h(·) the distribution over
hidden states at level h induced by πk ◦ fk,i−1[H+1]. To formally prove the correctness of our framework,
we first present the following lemma, showing that whenever some policy π with some decoding
functions visits a state s with relatively high probability, all the decoding functions of later iterations
will correctly decode the observations from s with high probability.

Lemma 1. Suppose for some s∗ ∈ Sh, (k, i) is the earliest pair such that
∣∣{x ∈ D′′k,i,h : fk,ih (x) =

αh(s∗)}| ≥ 3ε · B log(δ−11) and {x ∈ D′′k,i,h : fk,ih (x) = αh(s∗)} is added into Zh as Dh,αh(s∗)

at line 11 Algorithm 2, where αh is a good permutation between fk,ih and fh. Then for each
(k′, i′) > (k, i) (in lexical order), with probability at least 1−O(δ1),

Pr
x∼q(·|s∗)

[
fk
′,i′

h (x) 6= α∗h(s∗)
]
≤ ε

provided 0 < ε log(δ−11) ≤ 0.1 and B ≥ B0. Here B0 is some constant to be determined later and
α∗h is some fixed permutation on Sh.

Proof of Lemma 1. For iterations (k′, i′) ≥ (k, i), the function f̃k
′,i′

h is obtained by applying ULO
on the dataset generated by

µ′ := Unif({µk′′,i′′,h}(k′′,i′′)<(k′,i′))

and the dataset has size
(
(k′ − 1) · J + i′

)
·B = Θ(k′JB). Thus, with probability at least 1− δ1,

for some permutation α′h,

Pr
s∼µ′,x∼q(·|s)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]
≤ g
(
Θ(k′JB), δ1

)
. (1)

By taking

B0 : = Θ
(g−1(ε2/(K · J), δ1)

K · J

)
, (2)

we have when B ≥ B0, g
(
Θ(k′JB), δ1) ≤ ε2/(K · J) for all k′ ∈ [K]. Later, in Proposition 1,

we will show that B0 = poly(|S|, |A|, H, 1/ε). Now we consider fk,ih . Since the FixLabel routine
(Algorithm 3) does not change the accuracy ratio, from Equation (1), it holds with probability at least
1− δ1 that

Pr
s∼µk,i,h,x∼q(·|s)

[fk,ih (x) 6= αh ◦ fh(x)] ≤ k · J · g
(
Θ(kJB), δ1

)
≤ ε.

Therefore, by Chernoff bound, with probability at least 1−O(δ1),∣∣{x ∈ D′′k,i,h : fh(x) 6= s and fk,ih (x) = αh(s)}
∣∣ < ε ·B log(δ−11).

14

Since
∣∣{x ∈ D′′k,i,h : fk,ih (x) = αh(s∗)}| ≥ 3ε ·B log(δ−11), we have that∣∣{x ∈ D′′k,i,h : fh(x) = s∗ and fk,ih (x) = αh(s∗)}| > 2

3
·
∣∣{x ∈ D′′k,i,h : fk,ih (x) = αh(s∗)}

∣∣(3)

≥ 2ε ·B log(δ−11).

Thus, by Chernoff bound, with probability at least 1−O(δ1), µk,i,h(s∗) ≥ ε · log(δ−11). Also note
that fk,ih is the first function that has confirmed on s∗ (i.e., no Dh,αh(s∗) exists in Zh of line 8 at
iteration (k, i)). By Line 10 and Line 11, for later iterations, in Zh, Dh,αh(s∗) = {x ∈ D′′k,i,h :

fk,ih (x) = αh(s∗)}.

Next, for another (k′, i′) > (k, i), we let the corresponding permutation be α′h for f̃k
′,i′

h . Since
µ′(s′) ≥ µk,i,h(s′)/(k′ · J), with probability at least 1− δ1,

Pr
s∼µk,i,h,x∼q(·|s)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]
≤ k′ · J · g(Θ(k′JB), δ1).

Notice that

Pr
s∼µk,i,h,x∼q(·|s)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]

=
∑
s′∈Sh

µk,i,h(s′) Pr
x∼q(·|s′)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]

≥ µk,i,h(s∗) Pr
x∼q(·|s∗)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]

≥ ε · log(δ−1) Pr
x∼q(·|s∗)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]
.

Thus, with probability at least 1− δ1,

Pr
x∼q(·|s∗)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]
≤ k′ · J · g(Θ(k′JB), δ1)

ε · log(δ−11)
≤ ε

with B ≥ B0 and B0 as defined in Equation (2). Let s′ := α′h(s∗). Conditioning on ULO being
correct on f̃k

′,i′

[H+1] and fk,i[H+1], by Chernoff bound and Equation (3), with probability at least 1−O(δ1),
we have∣∣{x ∈ Dh,αh(s∗) : f̃k

′,i′

h (x) = s′}
∣∣ ≥ ∣∣{x ∈ Dh,αh(s∗) : fh(x) = s∗, f̃k

′,i′

h (x) = s′}
∣∣

≥ (1− ε · log(δ−11)) · 2

3
·
∣∣Dh,αh(s∗)

∣∣ > 3

5

∣∣Dh,αh(s∗)

∣∣,
where the fraction 2

3 follows from Equation (3) and we use the fact that D′′k,i,h are independent from

the training dataset. By our label fixing procedure, we find a permutation that swaps s′ with s for f̃k
′,i′

h

to obtain fk
′,i′

h . By the above analysis, with probability at least 1−O(δ1), Prx∼q(·|s∗)
[
fk
′,i′

h (x) 6=
αh(s∗)

]
≤ ε as desired. Consequently, we let α∗h(s∗) = αh(s∗), which satisfies the requirement of

the lemma.

Next, by the definition of our procedure of updating the label standard dataset (Line 11, Algorithm 2),
we have the following corollary.
Corollary 1. Consider Algorithm 2. Let Zk,i,h be the label standard dataset at episode k before
iteration i for Sh. Then, with probability at least 1−O(H|S|δ1),

for all k, i and Dh,s ∈ Zk,i,h, |{x ∈ Dh,s : α∗h ◦ fh(x) = s, s ∈ Sh}| > 2/3|Dh,s|.

At episode k and iteration i of the algorithm TSR, let Ek,i be the event that for all h ∈ [H+ 1],Dh,s ∈
Zk,i,h, Prx∼q(·|s)

[
fk,ih (x) 6= α∗h ◦ fh(x)

]
≤ ε. We have the following corollary as a consequence of

Lemma 1 by taking the union bound over all states.
Corollary 2. ∀k, i : Pr

[
Ek,i
]
≥ 1−O(H|S|δ1).

The next lemma shows that after (H + 1)|S| + 1 iterations of the TSR subroutine, the algorithm
outputs a trajectory for the algorithm A as if it knows the true mapping f[H+1].

15

Lemma 2. Suppose in an episode k, we are running algorithm TSR. Then after J = (H + 1)|S|+ 1
iterations, we have, for every j ≥ J , with probability at least 1−O(H|S|δ1),

for all h ∈ [H + 1], Pr
s∼µk,j+1,h,x∼q(·|s)

[
fk,jh (x) 6= α∗h ◦ fh(x)

]
≤ ε′

for some small enough ε and 50H · ε · |S| · log(δ−11) < ε′ < 1/2, provided B ≥ B0 as defined in
Lemma 1.

Proof of Lemma 2. For i < J , there are two cases:

1. there exists an h ∈ [H + 1] such that Prs∼µk,i+1,h,x∼q(·|s)
[
fk,ih (x) 6= αh ◦ fh(x)

]
>

ε′/(2H);

2. for all h ∈ [H + 1], Prs∼µk,i+1,h,x∼q(·|s)
[
fk,ih (x) 6= αh ◦ fh(x)

]
≤ ε′/(2H),

where αh is some good permutations between fk,ih and fh. If case 1 happens, then there exists a state
s∗ ∈ Sh such that

Pr
x∼q(·|s∗)

[
fk,ih (x) 6= αh ◦ fh(x)

]
· µk,i+1,h(s∗) >

ε′

2H|S|
. (4)

If Dh,αh(s∗) ∈ Zk,i,h, where Zk,i,h is defined as in Corollary 1, by Lemma 1, with probability at
least 1−O(δ1),

Pr
x∼q(·|s∗)

[fk,ih (x) 6= α∗h ◦ fh(x)] ≤ ε

and α∗h(s∗) = αh(s∗). Thus, µk,i+1,h(s∗) > ε′

2H|S|/ε > 1, a contradiction with µk,i+1,h(s∗) ≤ 1.

Therefore, there is no Dh,αh(s∗) in Zk,i,h. Then, due to Prx∼q(·|s∗)
[
fk,ih (x) 6= αh ◦ fh(x)

]
≤ 1, by

Equation (4), we have

µk,i+1,h(s∗) >
ε′

2H|S|
. (5)

Since fk,i+1
h is trained on Unif({µk′,i′,h}(k′,i′)<(k,i+1)), by Definition of ULO, with probability at

least 1− δ1,

Pr
s∼µk,i+1,h,x∼q(·|s)

[
fk,i+1
h (x) 6= α′h(s)

]
≤ k · J · g(Θ(kJB), δ1) ≤ ε2,

with B ≥ B0 (B0 is defined in Equation (2)) and α′h is some good permutation between fk,i+1
h and

fh. Thus, by Equation (5) and the choice of ε and ε′, we have

Pr
x∼q(·|s∗)

[
fk,i+1
h (x) 6= α′h(s∗)

]
< ε/25.

Thus,

µk,i+1,h(s∗) · Pr
x∼q(·|s∗)

[
fk,i+1
h (x) = α′h(s∗)

]
>

ε′

2H|S|
· (1− ε/25) > 24ε · log(δ−11),

where the last inequality is due to ε < ε′ < 1. By Chernoff bound, with probability at least 1−O(δ1),

|{x ∈ D′′k,i+1,h : fk,i+1
h (x) = α′h(s∗)}| ≥ 3ε ·B log(δ−11).

Therefore, if case 1 happens, one state s will be confirmed in iteration i+ 1 and α∗h(s∗) = α′h(s∗) is
defined.

To analyze case 2, we first define sets {Gk,i+1,h}H+1
h=1 with Gk,i+1,h := {s ∈ Sh | Dh,s ∈ Zk,i+1,h},

i.e., Gk,i+1,h contains all confirmed states of level h before iteration i + 1 at episode k. If case 2
happens, we further divide the situation into two subcases:

a) for all h ∈ [H + 1], for all s ∈ Gck,i+1,h, µk,i+1,h(s) ≤ ε′/(8H|S|);

16

b) there exists an h ∈ [H + 1] and a state s∗ ∈ Gck,i+1,h such that µk,i+1,h(s∗) ≥ ε′/(8H|S|),

First notice that for every h ∈ [H+1] and j > i, since fk,jh is trained on Unif({µk′,i′,h}(k′,i′)≤(k,j)),
by Definition of ULO and our choice of B in Equation (2), with probability at least 1− δ1, we have

Pr
s∼µk,i+1,h,x∼q(·|s)

[fk,jh 6= α′h(s)] ≤ ε2, (6)

⇒
∑

s∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α′h(s)] +
∑

s/∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α′h(s)] ≤ ε2,

where α′h is some good permutation between fk,jh and fh.

If subcase a) happens, note that for s ∈ Gk,i+1,h, due to the FixLabel routine (Algorithm 3),
α′h(s) = α∗h(s), for fk,jh (j > i) we have∑
s∈Sh

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α∗h(s)]

=
∑

s∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α∗h(s)] +
∑

s/∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α∗h(s)]

=
∑

s∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α′h(s)] +
∑

s/∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α∗h(s)]

≤ ε2 + ε′/(8H) < ε′/(4H).

Taking a union bound over all fk,j[H+1], we have that for any h ∈ [H + 1], with probability at least
1−O(Hδ1),

Pr
s∼µk,j+1,h,x∼q(·|s)

[fk,jh (x) = α∗h(s)] ≥ Pr
s∼µk,j+1,h,x∼q(·|s)

[fk,jh (x) = α∗h(s) = fk,ih (x)]

≥ Pr
for all h′∈[h],sh′∼µk,j+1,h′ ,xh′∼q(·|sh′)

[for all h′ ∈ [h], fk,jh′ (xh′) = α∗h′(s) = fk,ih′ (xh′)]

= Pr
for all h′∈[h],sh′∼µk,i+1,h′ ,xh′∼q(·|sh′)

[for all h′ ∈ [h], fk,jh′ (xh′) = α∗h′(s) = fk,ih′ (xh′)]

≥ 1− (ε′/(2H) + ε′/(4H)) ·H ≥ 1− ε′.

Therefore, if case 2 and subcase a) happens, the desired result is obtained.

If subcase b) happens, we consider the function fk,i+1
h . By Equation (6),

µk,i+1,h(s∗) · Pr
x∼q(·|s∗)

[fk,i+1
h (x) 6= α′h(s∗)] ≤ ε2

⇒ Pr
x∼q(·|s∗)

[fk,i+1
h (x) 6= α′h(s∗)] ≤ ε2/(ε′/(8H|S|)) ≤ ε,

where α′h here is some good permutation between fk,i+1
h and fh. Thus,

µk,i+1,h(s∗) · Pr
x∼q(·|s∗)

[
fk,i+1
h (x) = α′h(s∗)

]
>

ε′

8H|S|
· (1− ε) > 6ε · log(δ−11).

By Chernoff bound, with probability at least 1−O(δ1), |{x ∈ D′′k,i+1,h : fk,i+1
h (x) = α′h(s∗)}| ≥

3ε ·B log(δ−11). Therefore, the state s∗ will be confirmed in iteration i+ 1 and α∗h(s∗) = α′h(s∗) is
defined.

In conclusion, for each iteration, there are two scenarios, either the desired result in Lemma 2 holds
already or a new state will be confirmed for the next iteration. Since there are in total

∑H+1
h=1 |Sh| ≤

(H + 1)|S| states, after J := (H + 1)|S| + 1 iterations, by Lemma 1, with probability at least

17

1−O(H|S|δ1), for every j ≥ J , for all h ∈ [H + 1] and all s ∈ Sh, we have Prx∼q(·|s)[f
k,j
h (x) 6=

α∗h(s)] ≤ ε. Therefore, it holds that for

Pr
s∼µk,j+1,h,x∼q(·|s)

(fk,jh (x) 6= α∗h(s)) ≤ ε < ε′.

Proposition 1. Suppose in Definition 1, g−1(ε, δ1) = poly(1/ε, log(δ−11)) for any ε, δ1 ∈ (0, 1) and
A is (ε, δ2)-correct with sample complexity poly

(
|S|, |A|, H, 1/ε, log

(
δ−12

))
for any ε, δ2 ∈ (0, 1).

Then for each iteration of the outer loop of Algorithm 1, the policy φn is an ε/3-optimal policy for
the BMDP with probability at least 0.99, using at most poly (|S|, |A|, H, 1/ε) trajectories.

Proof of Proposition 1. We first show that the trajectory obtained by running πk with the learned
decoding functions fk,J[H+1] matches, with high probability, that from running πk with α∗[H+1] ◦f[H+1].
Let K = C(ε/4, δ2) be the total number of episodes played by A to learn an ε/4-optimal policy
with probability at least 1 − δ2. For each episode k ∈ [K], let the trajectory of observations be
{xkh}

H+1
h=1 . We define event

Ek := {∀h ∈ [H + 1], fk,Jh (xkh) = α∗h(fh(xkh))},
where J = (H + 1)|S|+ 1. Note that on Ek, the trajectory of running πk ◦ α∗[H+1] ◦ f[H+1] equals

running πk ◦ fk,J[H+1]. We also let the event F be that ULO succeeds on every iteration (satisfies
Lemma 2). Thus,

Pr[F] ≥ 1−K · J · δ1 = 1− poly(|S|, |A|, H, 1/ε, log(δ−11)) · δ1.
Furthermore, each xk,h is obtained by the distribution

∑
s µk,J+1,h(s)q(·|s). On F , by Lemma 2,

we have
Pr[fk,Jh (xkh) = α∗h(fh(xkh))] ≤ ε′

by the choice of B. Therefore,
Pr[Ek|F] ≥ 1− (H + 1)ε′.

Overall, we have
Pr
[
Ek, ∀k ∈ [K]

∣∣∣F] ≥ 1−K(H + 1)ε′.

Thus, with probability at least 1 − δ2 − poly(|S|, |A|, H, 1/ε, log(δ−11)) · (ε′ + δ1), A outputs
a policy π, that is ε/4-optimal for the underlying MDP with state sets {Sh}H+1

h=1 permutated by
α∗[H+1], which we denote as event E ′. Conditioning on E ′, since on a high probability event E ′′ with

Pr[E ′′] ≥ 1 − (H + 1)ε′, π ◦ fK,J[H+1] and π ◦ α∗[H+1] ◦ f[H+1] have the same trajectory, the value

achieved by π ◦ fK,J[H+1] and π ◦ α∗[H+1] ◦ f[H+1] differ by at most (H + 1)2ε′. Thus, with probability

at least 1− δ2 − poly(|S|, |A|, H, 1/ε, log(δ−11)) · (ε′ + δ1), the output policy π ◦ fK,J[H+1] is at least
ε/4 +O(H2ε′) accurate, i.e.,

V ∗1 − V
π◦fK,J

[H+1]

1 ≤ V ∗1 − V
π◦α∗[H+1]◦f[H+1]

1 + O(H2ε′) ≤ ε/4 + O(H2ε′).

Setting ε′, δ1, and δ2 properly, V ∗1 − V
π◦fK,J

[H+1]

1 ≤ ε/3 with probability at least 0.99. Since 1/δ1 =
poly(|S|, |A|, H, 1/ε) and 1/ε = poly(|S|, |A|, H, 1/ε, log(δ−11)), B0 in Lemma 1 and Lemma 2 is
poly(|S|, |A|, H, 1/ε). The desired result is obtained.

Finally, based on Proposition 1, we establish Theorem 1.

Proof of Theorem 1. By Proposition 1 and taking N = dlog(2/δ)/2e, with probability at least
1− δ/2, there exists a policy in {φn}Nn=1 that is ε/3-optimal for the BMDP. For each policy φn, we
take L := d9H2/(2ε2) log(2N/δ)e episodes to evaluate its value. Then by Hoeffding’s inequality,
with probability at least 1− δ/(2N), |V̄ φ

n

1 − V φ
n

1 | ≤ ε/3. By taking the union bound and selecting
the policy φ ∈ argmaxφ∈φ[N] V̄

φ
1 , with probability at least 1 − δ, it is ε-optimal for the BMDP.

In total, the number of needed trajectories is N ·
∑K
k=1

∑J
i=1

(
(k − 1)J + i + 1

)
B + N · L =

O(N ·K2 · J2 ·B +N · L) = poly(|S|, |A|, H, 1/ε, log(δ−1)). We complete the proof.

18

B Examples of Unsupervised Learning Oracle

In this section, we give some examples of ULO. First notice that the generation process of ULO
is termed as the mixture model in statistics (McLachlan and Basford, 1988; McLachlan and Peel,
2004), which has a wide range of applications (see e.g., Bouguila and Fan (2020)). We list examples
of mixture models and some algorithms as candidates of ULO.

Gaussian Mixture Models (GMM) In GMM, q(·|s) = N (s, σ2
s), i.e., observations are hidden

states plus Gaussian noise.4 When the noises are (truncated) Gaussian, under certain conditions,
e.g. states are well-separated, we are able to identify the latent states with high accuracy. A series
of works (Arora and Kannan, 2001; Vempala and Wang, 2004; Achlioptas and McSherry, 2005;
Dasgupta and Schulman, 2000; Regev and Vijayaraghavan, 2017) proposed algorithms that can be
served as ULO.

Bernoulli Mixture Models (BMM) BMM is considered in binary image processing (Juan and
Vidal, 2004) and texts classification (Juan and Vidal, 2002). In BMM, every observation is a point in
{0, 1}d. A true state determines a frequency vector. In Najafi et al. (2020), the authors proposed a
reliable clustering algorithm for BMM data with polynomial sample complexity guarantee.

Subspace Clustering In some applications, each state is a set of vectors and observations lie in the
spanned subspace. Suppose for different states, the basis vectors differ under certain metric, then
recovering the latent state is equivalent to subspace clustering. Subspace clustering has a variety of
applications include face clustering, community clustering, and DNA sequence analysis (Wallace
et al., 2015; Vidal, 2011; Elhamifar and Vidal, 2013). Proper algorithms for ULO can be found in
e.g., (Wang et al., 2013; Soltanolkotabi et al., 2014).

In addition to the aforementioned models, other reasonable settings are Categorical Mixture Models
(Bontemps and Toussile, 2013), Poisson Mixture Models (Li and Zha, 2006), Dirichlet Mixture
Models (Dahl, 2006) and so on.

C More about Experiments

Parameter Tuning In the experiments, for OracleQ, we tune the learning rate and a confidence
parameter; for QLearning, we tune the learning rate and the exploration parameter ε; for PCID, we
follow the code provided in Du et al. (2019a), tune the number of clusters for k-means and the number
of trajectories n to collect in each outer iteration, and finally select the better result between linear
function and neural network implementation.

Unsupervised Learning Algorithms In our method, we use OracleQ as the tabular RL algorithm
to operate on the decoded state space and try three unsupervised learning approaches: 1. first conduct
principle component analysis (PCA) on the observations and then use k-means (KMeans) to cluster;
2. first apply PCA, then use Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
for clustering, and finally use support vector machine to fit a classifier; 3. employ Gaussian Mixture
Model (GMM) to fit the observation data then generate a label predictor. We call the python library
sklearn for all these methods. During unsupervised learning, we do not separate observations by
levels but add level information in decoded states. Besides the hyperparameters for OracleQ and
the unsupervised learning oracle, we also tune the batch size B adaptively in Algorithm 2. In our
tests, instead of resampling over all previous policies as Line 5 Algorithm 2, we use previous data.
Specifically, we maintain a training dataset D in memory and for iteration i, generate B training
trajectories following π ◦ f i−1[H+1] and merge them into D to train ULO. Also, we stop training
decoding functions once they become stable, which takes 100 training trajectories when H = 5,
500 ∼ 1000 trajectories when H = 10, and 1000 ∼ 2500 trajectories when H = 20. Since this
process stops very quickly, we also skip the label matching steps (Line 8 to Line 12 Algorithm 2) and
the final decoding function leads to a near-optimal performance as shown in the results.

4To make the model satisfy the disjoint block assumption in the definition of BMDP, we need some truncation
of the Gaussian noise so that each observation only corresponds to a unique hidden state.

19

	Proofs for the Main Result
	Examples of Unsupervised Learning Oracle
	More about Experiments

