
Synthesizing Tasks for Block-based Programming∗

Umair Z. Ahmed1 Maria Christakis2 Aleksandr Efremov2 Nigel Fernandez2

Ahana Ghosh2 Abhik Roychoudhury1 Adish Singla2

1National University of Singapore, {umair, abhik}@comp.nus.edu.sg,
2MPI-SWS, {maria, aefremov, nfernand, gahana, adishs}@mpi-sws.org

Abstract

Block-based visual programming environments play a critical role in introducing
computing concepts to K-12 students. One of the key pedagogical challenges in
these environments is in designing new practice tasks for a student that match
a desired level of difficulty and exercise specific programming concepts. In this
paper, we formalize the problem of synthesizing visual programming tasks. In
particular, given a reference visual task Tin and its solution code Cin, we propose a
novel methodology to automatically generate a set {(Tout, Cout)} of new tasks along
with solution codes such that tasks Tin and Tout are conceptually similar but visually
dissimilar. Our methodology is based on the realization that the mapping from the
space of visual tasks to their solution codes is highly discontinuous; hence, directly
mutating reference task Tin to generate new tasks is futile. Our task synthesis
algorithm operates by first mutating code Cin to obtain a set of codes {Cout}. Then,
the algorithm performs symbolic execution over a code Cout to obtain a visual task
Tout; this step uses the Monte Carlo Tree Search (MCTS) procedure to guide the
search in the symbolic tree. We demonstrate the effectiveness of our algorithm
through an extensive empirical evaluation and user study on reference tasks taken
from the Hour of Code: Classic Maze challenge by Code.org and the Intro to
Programming with Karel course by CodeHS.com.

1 Introduction
Block-based visual programming environments are increasingly used nowadays to introduce com-
puting concepts to novice programmers including children and K-12 students. Led by the success of
environments like Scratch [29], initiatives like Hour of Code by Code.org [24] (HOC) and online plat-
forms like CodeHS.com [21], block-based programming has become an integral part of introductory
computer science education. Considering HOC alone, over one billion hours of block-based program-
ming activity has been performed so far by over 50 million unique students worldwide [24, 35].

The societal need for enhancing K-12 computing education has led to a surge of interest in developing
AI-driven systems for pedagogy of block-based programming [33, 26, 27, 34, 16]. Existing works
have studied various aspects of intelligent support, including providing real-time next-step hints when
a student is stuck solving a task [20, 36, 18, 17, 9], giving data-driven feedback about a student’s
misconceptions [31, 19, 28, 30, 35], and demonstrating a worked-out solution for a task when a
student lacks the required programming concepts [37]. An underlying assumption when providing
such intelligent support is that afterwards the student can practice new similar tasks to finally learn the
missing concepts. However, this assumption is far from reality in existing systems—the programming
tasks are typically hand-curated by experts/tutors, and the available set of tasks is limited. Consider
HOC’s Classic Maze challenge [23], which provides a progression of 20 tasks: Millions of students
have attempted these tasks, yet when students fail to solve a task and receive assistance, they cannot
practice similar tasks, hindering their ability to master the desired concepts. We seek to tackle this
pedagogical challenge by developing techniques for synthesizing new programming tasks.

∗Authors listed alphabetically; Correspondence to: Ahana Ghosh <gahana@mpi-sws.org>.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

mailto:gahana@mpi-sws.org

(a) Visual puzzle for Tin

def Run(){
RepeatUntil(goal){
move
If(pathLeft){
turnLeft

}
}

}

(b) Solution code Cin (c) Visual puzzle for Tout

def Run(){
move
turnLeft
RepeatUntil(goal){
move
If(pathRight){
turnRight

}
}

}

(d) Solution code Cout

Figure 1: Illustration of our methodology for task Maze 16 from the Hour of Code: Classic Maze
challenge by Code.org [23]; the complete list of tasks with their specifications is in Fig. 6.

(a) Visual puzzle for Tin

def Run(){
putMarker
While(pathAhead){
move
turnLeft
move
turnRight
putMarker

}
}

(b) Solution code Cin (c) Visual puzzle for Tout

def Run(){
putMarker
While(pathAhead){
move
move
turnRight
move
turnLeft
putMarker

}
}

(d) Solution code Cout

Figure 2: Illustration of our methodology for task Diagonal from the Intro to Programming with
Karel course by CodeHS.com [22]; the complete list of tasks with their specifications is in Fig. 6.

We formalize the problem of synthesizing visual programming tasks of the kind found in popular
learning platforms like Code.org (see Fig. 1) and CodeHS.com (see Fig. 2). As input, we are given a
reference task Tin, specified as a visual puzzle, and its solution code Cin. Our goal is to synthesize
a set {(Tout, Cout)} of new tasks along with their solution codes that are conceptually similar but
visually dissimilar to the input. This is motivated by the need for practice tasks that on one hand
exercise the same concepts, while looking fresh in order to maintain student engagement.

When tackling the problem of synthesizing new tasks with the above desirable properties, three key
challenges emerge. First, we are generating problems in a conceptual domain with no well-defined
procedure that students follow to solve a task—consequently, existing work on educational problem
generation in procedural domains does not apply in our setting [3, 11]. Second, the mapping from
the space of visual tasks to their solution codes is highly discontinuous; hence, template-based
problem generation techniques [32, 25] that rely on directly mutating the input to generate new
tasks is ineffective (see Section 5 where we use this approach as a baseline). Furthermore, such a
direct task-mutation approach would require access to an automated solution synthesizer; however,
state-of-the-art program synthesis techniques are not yet on par with experts and their minimal
solutions [5, 8, 6]. Third, the space of possible tasks and their solutions is potentially unbounded, and
thus, any problem generation technique that relies on exhaustive enumeration is intractable [32, 1, 2].

To overcome these challenges, we propose a novel methodology that operates by first mutating the
solution code Cin to obtain a set of codes {Cout}, and then performing symbolic execution over a code
Cout to obtain a visual puzzle Tout. Mutation is efficient by creating an abstract representation of Cin

along with appropriate constraints and querying an SMT solver [4]; any solution to this query is a
mutated code Cout. During symbolic execution, we use Monte Carlo Tree Search (MCTS) to guide
the search over the (unbounded) symbolic execution tree. We demonstrate the effectiveness of our
methodology by performing an extensive empirical evaluation and user study on a set of reference
tasks from the Hour of code challenge by Code.org and the Intro to Programming with Karel course
by CodeHS.com. In summary, our main contributions are:

• We formalize the problem of synthesizing block-based visual programming tasks (Section 2).
• We present a novel approach for generating new visual tasks along with solution codes such that

they are conceptually similar but visually dissimilar to a given reference task (Section 3).
• We demonstrate the effectiveness of our approach through an extensive empirical evaluation and

user study on reference tasks from real-world programming platforms (Section 4 and Section 5).

2 Problem Formulation
The space of tasks. We define a task as a tuple T := (Tvis, Tstore, Tsize), where Tvis denotes the visual
puzzle, Tstore the available block types, and Tsize the maximum number of blocks allowed in the

2

solution code. For instance, considering the task T := Tin in Fig. 1a, Tvis is illustrated in Fig. 1a,
Tstore = {move, turnL, turnR, RepeatUntil, If}, and Tsize = 4.

The space of codes. The programming environment has a domain-specific language (DSL), which
defines the set of valid codes C and is shown in Fig. 4a. A code C ∈ C is characterized by several
properties, such as the set Cblocks of block types in C, the number of blocks Csize, the depth Cdepth
of the corresponding Abstract Syntax Tree (AST), and the nesting structure Cstruct representing pro-
gramming concepts exercised by C. For instance, considering the code C := Cin in Fig. 1b, Cblocks =
{move, turnL, RepeatUntil, If}, Csize = 4, Cdepth = 3, and Cstruct = {Run{RepeatUntil{If}}}.
Below, we introduce two useful definitions relating the task and code space.
Definition 1 (Solution code). C is a solution code for T if the following holds: C successfully solves
the visual puzzle Tvis, Cblocks ⊆ Tstore, and Csize ≤ Tsize. CT denotes the set of all solution codes for T.
Definition 2 (Minimality of a task). Given a solvable task T with |CT| ≥ 1 and a threshold δ ∈ N,
the task is minimal if @C ∈ CT such that Csize < Tsize − δ.

Next, we introduce two definitions formalizing the notion of conceptual similarity. Definition 3 for-
malizes conceptual similarity of a task T along with one solution code C. Since a task can have multiple
solution codes, Definition 4 provides a stricter notion of conceptual similarity of a task T for all its solu-
tion codes. These definitions are used in our objective of task synthesis in conditions (I) and (V) below.
Definition 3 (Conceptual similarity of (T, C)). Given a reference (Tin, Cin) and a threshold δ ∈ N,
a task T along with a solution code C is conceptually similar to (Tin, Cin) if the following holds:
Tstore = Tin

store, |Tsize − Tin
size| ≤ δ, and Cstruct = Cin

struct.
Definition 4 (Conceptual similarity of (T, ·)). Given a reference (Tin, Cin) and a threshold δ ∈ N, a
task T is conceptually similar to (Tin, Cin) if the following holds: Tstore = Tin

store, |Tsize − Tin
size| ≤ δ,

and ∀C ∈ CT, Cstruct = Cin
struct.

Environment domain knowledge. We now formalize our domain knowledge about the block-based
environment to measure visual dissimilarity of two tasks, and capture some notion of interestingness
and quality of a task. Given tasks T and T′, we measure their visual dissimilarity by an environment-
specific function Fdiss(Tvis, T′vis) ∈ [0, 1]. Moreover, we measure generic quality of a task with
function Fqual(Tvis, C) ∈ [0, 1]. We provide specific instantiations of Fdiss and Fqual in our evaluation.

Objective of task synthesis. Given a reference task Tin and a solution code Cin ∈ CTin as input, we
seek to generate a set {(Tout, Cout)} of new tasks along with solution codes that are conceptually
similar but visually dissimilar to the input. Formally, given parameters (δsize, δdiss, δqual), our objective
is to synthesize new tasks meeting the following conditions:

(I) (Tout, Cout) is conceptually similar to (Tin, Cin) with threshold δsize in Definition 3.
(II) Tout is visually dissimilar to Tin with margin δdiss, i.e., Fdiss(Tin

vis, T
out
vis) ≥ δdiss.

(III) Tout has a quality score above threshold δqual, i.e., Fqual(Tout
vis , C

out) ≥ δqual.

In addition, depending on the use case, it is desirable that the new tasks satisfy the following criteria:
(IV) Cout is different from the input solution code, i.e., Cout 6= Cin.
(V) Tout is conceptually similar to (Tin, Cin) with threshold δsize in Definition 4.

(VI) Tout is minimal as per Definition 2 for a desired value of δmini (e.g., δmini = 0 or δmini = 1).

3 Our Task Synthesis Algorithm

task Tin code Cin sketch,
constraints task Toutcode Cout

(a) (b) (c)

Figure 3: Stages in our task synthesis algorithm.

We now present the pipeline of our algorithm
(see Fig. 3), which takes as input a reference task
Tin and its solution code Cin, and generates a set
{(Tout, Cout)} of new tasks with their solution
codes. The goal is for this set to be conceptually
similar to (Tin, Cin), but for new tasks {Tout} to
be visually dissimilar to Tin. This is achieved by two main stages: (1) mutation of Cin to obtain a
set {Cout}, and (2) symbolic execution of each Cout to create a task Tout. The first stage, presented in
Section 3.1, converts Cin into an abstract representation restricted by a set of constraints (Fig. 3(a)),
which must be satisfied by any generated Cout (Fig. 3(b)). The second stage, described in Section 3.2,
applies symbolic execution on each code Cout to create a corresponding visual task Tout (Fig. 3(c))
while using Monte Carlo Tree Search (MCTS) to guide the search in the symbolic execution tree.

3

code C := def Run () do y
rule y := s | g | s; g
rule s := a | s; s | If (b) do s | If (b) do s Else s

| While (b) do s | Repeat (x) do s
rule g := RepeatUntil (goal) do s
action a := move | turnL | turnR | putM | pickM
bool b := pathA | noPathA | pathL | noPathL

| pathR | noPathR | marker | noMarker
iter x := 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

(a) Code DSL
sketch Q := def Run () do Y
rule Y := S | G | S; G
rule S := A | S; S | If (B) do S | If (B) do S Else S

| While (B) do S | Repeat (X) do S
rule G := RepeatUntil (goal) do S
Comments: A may be φ or take values of action a

A denotes a sequence A1, . . . , An

(b) Sketch DSL

Input: code C, sketch Q← Ω(C), map ω(·| C), δsize, δiter

(∆0) Size of generated code may be at most Csize + δsize

(∆1) Edit action sequences ACTIONEDITS({A ∈ Q}, ω(·| C))

(∆2) For each X ∈ Q : |X− ω(X| C)| ≤ δiter

(∆3) Constraints induced by structure {Abefore; Repeat {A}; Aafter}
i. A is not a suffix of Abefore

ii. A is not a prefix of Aafter

(∆4) For each B ∈ Q :

i. ω(B | C) ∈ {pathA, noPathA }
⇒ B ∈ {pathA, noPathA }

ii. ω(B | C) ∈ {pathL, noPathL pathR, noPathR }
⇒ B ∈ {pathL, noPathL, pathR, noPathR }

iii. ω(B | C) ∈ {marker, noMarker }
⇒ B ∈ { marker,noMarker }

(∆5) Constraints induced on A nested inside conditional B
(∆6) For each A ∈ Q, constraints ensuring minimality of A

(c) Types of Sketch Constraints

def Run(){
RepeatUntil(goal){
move
If(pathLeft){
turnLeft

}
}

}

(d) Code Cin

def Run(){
A1

1, A2
1 (A1)

RepeatUntil(goal){
A1

2, A2
2, A3

2, A4
2, A5

2 (A2)
If(B1){
A1

3, A2
3, A3

3, A4
3, A5

3 (A3)
}

}
}

(e) Sketch Qin

Input: Cin, Qin, ω(·| Cin), δsize = 2

(∆0) Up to 2 new actions may be added in total to A1, A2, A3

(∆1) Edit action sequences ACTIONEDITS({A1, A2, A3}, ω(·| Cin))

(∆4) B1 = pathL ∨ B1 = pathR
(∆5) ∃i ∈ [5] s.t.

(
Ai3 = turnL ∧ (∀j < i, Aj3 /∈ {move, turnR})

)
(∆5) ∃i ∈ [5] s.t.

(
Ai3 = turnR ∧ (∀j < i, Aj3 /∈ {move, turnL})

)
(∆6) A1, A2, A3 are minimal

(f) Qin-Constraints

Figure 4: Illustration of key steps in Code Mutation. Fig. 4d shows code Cin from Fig. 1b. The code
mutation stage, when applied to Cin, generates many output codes, including Cout in Fig. 1d.

3.1 Code Mutation

This stage in our pipeline mutates code Cin of task Tin such that its conceptual elements are preserved.
Our mutation procedure consists of three main steps. First, we generate an abstract representation of
Cin, called sketch. Second, we restrict the sketch with constraints that describe the space of its concrete
instantiations. Although this formulation is inspired from work on generating algebra problems [32],
we use it in the entirely different context of generating conceptually similar mutations of Cin. This is
achieved in the last step, where we use the sketch and its constraints to query an SMT solver [4]; the
query solutions are mutated codes {Cout} such that Cout

struct = Cin
struct (see Definition 3).

Step 1: Sketch. The sketch of code C, denoted by Q, is an abstraction of C capturing its skeleton and
generalizing C to the space of conceptually similar codes. Q, expressed in the language of Fig. 4b, is
generated from C with mapping Ω. In particular, the map exploits the AST structure of the code: the
AST is traversed in a depth-first manner, and all values are replaced with their corresponding sketch
variables, i.e., action a, bool b, and iter x are replaced with A, B, and X, respectively. In the following,
we also use mapping ω(·| C), which takes a sketch variable in Q and returns its value in C.

In addition to the above, we may extend a variable A to an action sequence A, since any A is allowed
to be empty (φ). We may also add an action sequence of length δsize at the beginning and end of
the obtained sketch. As an example, consider the code in Fig. 4d and the resulting sketch in Fig. 4e.
Notice that, while we add an action sequence at the beginning of the sketch (A1), no action sequence
is appended at the end because construct RepeatUntil renders any succeeding code unreachable.

Step 2: Sketch constraints. Sketch constraints restrict the possible concrete instantiations of a
sketch by encoding the required semantics of the mutated codes. All constraint types are in Fig. 4c.

In particular, ∆0 restricts the size of the mutated code within δsize. ∆1 specifies the allowed mutations
to an action sequence based on its value in the code, given by ω(A | C). For instance, this constraint
could result in converting all turnLeft actions of a sequence to turnRight. ∆2 restricts the
possible values of the Repeat counter within threshold δiter. ∆3 ensures that the Repeat counter is
optimal, i.e., action subsequences before and after this construct are not nested in it. ∆4 specifies
the possible values of the If condition based on its value in the code, given by ω(B | C). ∆5 refers
to constraints imposed on action sequences nested within conditionals. As an example, consider

4

(b) (c) (d) (e) (f) (g)(a)

Figure 5: Illustration of symbolic execution on Cout from Fig. 1d. (b) shows the initial configuration of
the agent’s location and orientation as well as the status of the grid cells (unknown, free, blocked, goal).
(c)–(e) show the symbolic execution steps where conditions goal and pathRight are False. (f)
shows the step where goal is True. (g) shows the post-processing step where a puzzle Tout

vis is obtained.

∆5 in Fig. 4f, which states that if B1 = pathLeft, then the nested action sequence must have at
least one turnLeft action, and the first occurrence of this action must not be preceded by a move or
turnRight, thus preventing invalid actions within the conditional. ∆6 ensures minimality of an
action sequence, i.e., optimality of the constituent actions to obtain the desired output. This constraint
would, for instance, eliminate redundant sequences such as turnLeft, turnRight, which does not
affect the output, or turnLeft, turnLeft, turnLeft, whose output could be achieved by a single
turnRight. All employed elimination sequences can be found in the supplementary material. The
entire list of constraints applied on the solution code in Fig. 4d is shown in Fig. 4f.

Step 3: SMT query. For a sketch Q generated from code C and its constraints, we pose the
following query to an SMT solver: (sketch Q, Q-constraints). As a result, the solver generates a set of
instantiations, which are conceptually similar to C. In our implementation, we used the Z3 solver [7].
For the code in Fig. 4d, Z3 generated 66 mutated codes in 0.8s from an exhaustive space of 2, 997
possible codes with δsize = 2. One such mutation is shown in Fig. 1d.

While this approach generates codes that are devoid of most semantic irregularities, it has its
limitations. Certain irregularities continue to exist in some generated codes: An example of such
a code included the action sequence move, turnLeft, move, turnLeft, move, turnLeft, move,
turnLeft, which results in the agent circling back to its initial location in the task space. This kind
of undesirable behaviour is eliminated in the symbolic execution stage of our pipeline.

3.2 Symbolic Execution

Symbolic execution [13] is an automated test-generation technique that symbolically explores execu-
tion paths in a program. During exploration of a path, it gathers symbolic constraints over program
inputs from statements along the path. These constraints are then mutated (according to a search
strategy), and an SMT solver is queried to generate new inputs that explore another path.

Obtaining visual tasks with symbolic execution. This stage in our pipeline applies symbolic exe-
cution on each generated code Cout to obtain a suitable visual task Tout. The program inputs of Cout are
the agent’s initial location/orientation and the status of the grid cells (unknown, free, blocked, marker,
goal), which is initially unknown. Symbolic execution collects constraints over these from code
statements. As in Fig. 5 for one path, symbolic execution generates a visual task for each path in Cout.

However, not all of these tasks are suitable. For instance, if the goal is reached after the first move in
Fig. 1d, all other statements in Cout are not covered, rendering the task less suitable for this code.
Naïvely, symbolic execution could first enumerate all paths in Cout and their corresponding tasks, and
then rank them in terms of suitability. However, solution codes may have an unbounded number of
paths, which leads to path explosion, that is, the inability to cover all paths with tractable resources.

Guiding symbolic execution using Monte Carlo Tree Search (MCTS). To address this issue,
we use MCTS [14] as a search strategy in symbolic execution with the goal of generating more
suitable tasks with fewer resources—we define task suitability next. Symbolic execution has been
previously combined with MCTS in order to direct the exploration towards costly paths [15]. In the
supplementary material, we provide an example demonstrating how MCTS could guide the symbolic
execution in generating more suitable tasks.

As previously observed [12], a critical component of effectively applying MCTS is to define an
evaluation function that describes the desired properties of the output, i.e., the visual tasks. Tailoring
the evaluation function to our unique setting is exactly what differentiates our approach from existing
work. In particular, our evaluation function, Fscore, distinguishes suitable tasks by assigning a score
(∈ [0, 1]) to them, which guides the MCTS search. A higher Fscore indicates a more suitable task.

5

Task T Tstore Tsize (= Csize) Cdepth Type: Source

H1 move, turnL, turnR 5 1 HOC: Maze 4 [23]
H2 move, turnL, turnR, Repeat 3 2 HOC: Maze 7 [23]
H3 move, turnL, turnR, Repeat 5 2 HOC: Maze 8 [23]
H4 move, turnL, turnR, RepeatUntil 5 2 HOC: Maze 12 [23]
H5 move, turnL, turnR, RepeatUntil, If 4 3 HOC: Maze 16 [23]
H6 move, turnL, turnR, RepeatUntil, IfElse 4 3 HOC: Maze 18 [23]
K7 move, turnL, turnR, pickM, putM 5 1 Karel: Our first [22]
K8 move, turnL, turnR, pickM, putM, Repeat 4 2 Karel: Square [22]
K9 move, turnL, turnR, pickM, putM, Repeat, IfElse 5 3 Karel: One ball in each spot [22]
K10 move, turnL, turnR, pickM, putM, While 7 2 Karel: Diagonal [22]

Figure 6: Datasets for HOC and Karel tasks.

Its constituent components are: (i) Fcov(Tout
vis , C

out) ∈ {0, 1}, which evaluates to 1 in the event of
complete coverage of code Cout by task Tout

vis and 0 otherwise; (ii) Fdiss(Tout
vis , T

in
vis) ∈ [0, 1], which

evaluates the dissimilarity of Tout to Tin (see Section 2); (iii) Fqual(Tout
vis , C

out) ∈ [0, 1], which evaluates
the quality and validity of Tout; (iv) Fnocrash(Tout

vis , C
out) ∈ {0, 1}, which evaluates to 0 in case the

agent crashes into a wall and 1 otherwise; and (v) Fnocut(Tout
vis , C

out) ∈ {0, 1}, which evaluates to 0 if
there is a shortcut sequence of actions (a in Fig. 4a) smaller than Cout

size that solves Tout and 1 otherwise.
Fqual and Fnocut also resolve the limitations of our mutation stage by eliminating codes and tasks
that lead to undesirable agent behavior. We instantiate Fscore in the next section.

4 Experimental Evaluation
In this section, we evaluate our task synthesis algorithm on HOC and Karel tasks. Our implementation
is publicly available.2 While we give an overview of key results here, a detailed description of our
setup and additional experiments can be found in the supplementary material.

4.1 Reference Tasks and Specifications

Reference tasks. We use a set of ten reference tasks from HOC and Karel, shown in Fig. 6. The
HOC tasks were selected from the Hour of Code: Classic Maze challenge by Code.org [23] and the
Karel tasks from the Intro to Programming with Karel course by CodeHS.com [22]. The DSL of
Fig. 4a is generic in that it includes both HOC and Karel codes, with the following differences: (i) con-
struct While, marker-related actions putM, pickM, and conditions noPathA, noPathL, noPathR,
marker, noMarker are specific to Karel only; (ii) construct RepeatUntil and goal are specific to
HOC only. Furthermore, the puzzles for HOC and Karel are of different styles (see Fig. 1 and Fig. 2).
For all tasks, the grid size of the puzzles is fixed to 10× 10 cells (grid-size parameter n = 10).

Specification of scoring functions. Fqual(Tout
vis , C

out) ∈ [0, 1] was approximated as the sum of the
normalized counts of ‘moves’, ‘turns’, ‘segments’, and ‘long-segments’ in the grid; segments and long-
segments are sequences of ≥ 3 and ≥ 5 move actions respectively. More precisely, for HOC tasks,
we used the following function where features are computed by executing Cout on Tout

vis :

FHOC
qual (Tout

vis , C
out) =

1

4

(#moves
2n

+
#turns
n

+
#segments

n/2
+

#long-segments
n/3

)
.

Furthermore, in our implementation, Fqual(·) value was set to 0 when Fnocrash(·) = 0. For Karel tasks,
Fqual additionally included the normalized counts of putM and pickM, and is provided in the supple-
mentary material. Fdiss(Tout

vis , T
in
vis) ∈ [0, 1] was computed based on the dissimilarity of the agent’s

initial location/orientation w.r.t. Tin
vis, and the grid-cell level dissimilarity based on the Hamming

distance between Tout
vis and Tin

vis. More precisely, we used the following function:

Fdiss(Tout
vis , T

in
vis) =

1

3

(
diss(loc | Tout

vis , T
in
vis) + diss(dir | Tout

vis , T
in
vis) + diss(grid-cells | Tout

vis , T
in
vis)
)

where diss(loc | Tout
vis , T

in
vis) ∈ {0, 1}, diss(dir | Tout

vis , T
in
vis) ∈ {0, 1}, and diss(grid-cells | Tout

vis , T
in
vis) ∈

[0, 1] (after the Hamming distance is normalized with a factor of 2
n2).

2https://github.com/adishs/neurips2020_synthesizing-tasks_code

6

https://github.com/adishs/neurips2020_synthesizing-tasks_code

Task Code Mutation Symbolic Execution Fraction of Tout with criteria
Tin 2:#Cout

∆=0 3:#Cout
∆=0,1 4:#Cout

∆=all 5:Time 6:#Cout 7:#Tout 8:Time 9:(V) 10:(VI)δmini=1 11:(VI)δmini=0

H1 3, 159 112 64 0.6s 28 272 68s 1.00 1.00 1.00
H2 8, 991 594 138 1.7s 48 428 61s 1.00 1.00 1.00
H3 798, 255 13, 122 720 13.3s 196 1, 126 60s 0.90 0.98 0.90
H4 5, 913 152 108 1.0s 44 404 167s 1.00 1.00 0.50
H5 2, 997 294 66 0.8s 46 444 348s 0.98 0.59 0.27
H6 1, 728 294 54 0.6s 48 480 347s 0.80 0.45 0.07
K7 96, 875 150 122 1.3s 122 1, 196 61s 1.00 1.00 1.00
K8 484, 875 4, 506 990 11.6s 469 4, 506 63s 1.00 1.00 1.00
K9 8.595× 106 60, 768 888 11.3s 432 4, 258 185s 0.92 0.92 0.88
K10 132.625× 106 19, 328 1, 404 17.1s 532 5, 032 158s 1.00 1.00 1.00

Figure 7: Results on HOC and Karel tasks; details are provided in Section 4.

Next, we define the evaluation function Fscore(Tout, Cout, Tin, Cin) ∈ [0, 1] used by MCTS:

Fscore(Tout, Cout, Tin, Cin) = 1
(
Fqual(Tout

vis , C
out) ≥ δqual,Fnocrash(Tout

vis , C
out) = 1,Fnocut(Tout

vis , C
out) = 1

)︸ ︷︷ ︸
(i)

·

[
α1Fcov(Tout

vis , C
out) + α2Fqual(Tout

vis , C
out) + α3Fdiss(Tout

vis , T
in
vis)
]︸ ︷︷ ︸

(ii)

where 1 is an indicator function and each constant α = 1/3. Component (ii) in the above function
supplies the gradients for guiding the search in MCTS; Component (i) is applied at the end of the
MCTS run to pick the output. More precisely, the best task (i.e, the one with the highest Fscore value)
is picked only from the pool of generated tasks which have Fscore(·) > 0 and satisfy Fcov(·) = 1.

Specification of task synthesis and MCTS. As per Section 2, we set the following thresholds for our
algorithm: (i) δsize = 2, (ii) δdiss = 0.33, and (iii) δqual = 0.2 for codes with While or RepeatUntil,
and 0.05 otherwise. We run MCTS 10 times per code, with each run generating one task. We set
the maximum iterations of a run to 2 million (M) and the exploration constant to 2 [14]. Even when
considering a tree depth of 2n (= 20), there are millions of leaves for difficult tasks H5 and H6,
reflecting the complexity of task generation. For each code Cout, we generated 10 different visual
tasks. To ensure sufficient diversity among the tasks generated for the same code, we introduced a
measure Fdiversity. This measure, not only ensures visual task dissimilarity, but also ensures sufficient
diversity in entire symbolic paths during generation (for details, see supplementary material).

4.2 Results

Performance of task synthesis algorithm. Fig. 7 shows the results of our algorithm. The second
column illustrates the enormity of the unconstrained space of mutated codes; we only impose size
constraint ∆0 from Fig. 4c. We then additionally impose constraint ∆1 resulting in a partially con-
strained space of mutated codes (column 3), and finally apply all constraints from Fig. 4c to obtain the
final set of generated codes (column 4). This reflects the systematic reduction in the space of mutated
codes by our constraints. Column 5 shows the total running time for generating the final codes, which
denotes the time taken by Z3 to compute solutions to our mutation query. As discussed in Section 3.1,
few codes with semantic irregularities still remain after the mutation stage. The symbolic execution
stage eliminates these to obtain the reduced set of valid codes (column 6). Column 7 shows the final
number of generated tasks and column 8 is the average time per output task (i.e., one MCTS run).

Analyzing output tasks. We further analyze the generated tasks based on the objectives of Section 2.
All tasks satisfy properties (I)–(III) by design. Objective (IV) is easily achieved by excluding
generated tasks for which Cout = Cin. For a random sample of 100 of the generated tasks per reference
task, we performed manual validation to determine whether objectives (V) and (VI) are met. The
fraction of tasks that satisfy these objectives is listed in the last three columns of Fig. 7. We observe
that the vast majority of tasks meet the objectives, even if not by design. For H6, the fraction of tasks
satisfying (VI) is low because the corresponding codes are generic enough to solve several puzzles.

Deep dive into an MCTS run. To offer more insight into the task generation process, we take a
closer look at an MCTS run for task H5, shown in Fig. 8. Fig. 8a illustrates the improvement in
various components of Fscore as the number of MCTS iterations increases. Best tasks at different
iterations are shown in Fig. 8b, 8c, 8d. As expected, the more the iterations, the better the tasks are.

7

0,0

0,2

0,4

0,6

0,8

1,0

20
0 2K 5K 10
K

15
K

20
K

40
K

60
K

80
K

10
0K

12
0K

14
0K

16
0K

18
0K

20
0K

40
0K

60
0K

80
0K 1M

1.
2M

1.
4M

1.
6M

1.
8M 2M

N
or

m
al

ize
d

fe
at

ur
es

coverageno crash

long segments

segments

moves
turns

(a) Trends in Fscore features (b) Best at 200 (c) Best at 20K (d) Best at 2M

Figure 8: Illustration of a single MCTS run on Cout from Fig. 1d obtained from solution code of task
H5 by mutation. (a) shows the temporal trends of different feature values in Fscore averaged over a
time window of 100 steps. (b)–(d) show the best, i.e., highest scoring, tasks generated up to times
2× 102, 2× 104, and 2× 106 respectively. Tout

vis shown in Fig. 1c is the puzzle produced in (d).

Remarks. We also ran the mutation stage by enumerating the programs within size constraints and
then post-checking other constraints without Z3. This implementation leads to a run-time increase
by a factor of 10 to 100 for different tasks. So, Z3 seems to be very effective by jointly considering
all the constraints. As a search method, although MCTS seems computationally expensive, the actual
run-time and memory footprint of an MCTS run depend on the unique traces explored (i.e., unique
symbolic executions done)—this number is typically much lower than the number of iterations,
also see discussion in the supplementary material. Considering the MCTS output in Figs. 8c, 8d, to
obtain a comparable evaluation score through a random search, the corresponding number of unique
symbolic executions required is at least 10 times more than executed by MCTS. We note that while
we considered one I/O pair for Karel tasks, our methodology can be easily extended to multiple
I/O pairs by adapting techniques designed for generating diverse tasks.

5 User Study and Comparison with Alternate Methods
In this section, we evaluate our task synthesis algorithm with a user study focusing on tasks H2,
H4, H5, and H6. We developed an online app3, which uses the publicly available toolkit of Blockly
Games [10] and provides an interface for a participant to practice block-based programming tasks
for HOC. Each “practice session” of the study involves three steps: (i) a reference task Tin ∈
{H2,H4,H5,H6} is shown to the participant along with its solution code Cin, (ii) a new task Tout

is generated for which the participant has to provide a solution code, and (iii) a post-survey asks
the participant to assess the visual dissimilarity of the two tasks on a 4-point Likert scale as used
in [25]. Details on the app interface and questionnaire are provided in the supplementary material.
Participants for the study were recruited through Amazon Mechanical Turk. We only selected four
tasks due to the high cost involved in conducting the study (about 1.8 USD per participant). The
number of participants and their performance are documented in Fig. 9.

Baselines and methods evaluated. We evaluated four different methods, including three baselines
(SAME, TUTOR, MUTTASK) and our algorithm (SYNTASK). SAME generates tasks such that
Tin = Tout. TUTOR produces tasks that are similar to Tin and designed by an expert. We picked similar
problems from the set of 20 Classic Maze challenge [23] tasks exercising the same programming
concepts: Maze 6, 9 for H2, Maze 11, 13 for H4, Maze 15, 17 for H5, and Maze 19 for H6.

MUTTASK generated tasks by directly mutating the grid-world of the original task, i.e., by moving
the agent or goal by up to two cells and potentially changing the agent’s orientation. A total of 18, 20,
15, and 17 tasks were generated for H2, H4, H5, and H6, respectively. Fig. 10 shows two output tasks
for H4 and illustrates the challenge in directly mutating the input task, given the high discontinuity
in mapping from the space of tasks to their codes. For H4, a total of 14 out of 20 new tasks were
structurally very different from the input.

SYNTASK uses our algorithm to generate tasks. We picked the generated tasks from three groups
based on the size of the code mutations from which they were produced, differing from the reference
solution code by +δsize for δsize ∈ {0, 1, 2}. For H2 and H4, we randomly selected 5 tasks from each
group, for a total of 15 new tasks per reference task. For H5 and H6, we selected 10 tasks from the
first group (δsize = 0) only, due to their complexity stemming from nested constructs in their codes.
We observed that TUTOR tasks for H5, H6 were also of δsize = 0, i.e., Cout

size = Cin
size. All the generated

tasks picked for SYNTASK adhere to properties (I)–(VI) in Section 2.

3https://www.teaching-blocks.cc/

8

https://www.teaching-blocks.cc/

Method Total participants Fraction of tasks solved Time spent in secs Visual dissimilarity
H- H2 H4 H5 H6 H- H2 H4 H5 H6 H- H2 H4 H5 H6 H- H2 H4 H5 H6

SAME 96 24 24 24 24 .94 .92 1.00 .96 .88 89 60 59 93 145 1.07 1.12 1.04 1.00 1.12
TUTOR 170 48 48 49 25 .90 .90 .92 .88 .92 121 107 113 118 169 2.90 2.81 2.79 2.96 3.16

MUTTASK 278 72 79 60 67 .68 .76 .71 .65 .60 219 135 299 219 215 2.17 2.36 2.33 1.95 1.99
SYNTASK 197 59 57 40 41 .89 .92 .89 .92 .83 144 85 183 130 189 2.63 2.41 2.42 2.68 3.20

Figure 9: User study results for HOC tasks (H-represents all tasks in the study); see Section 5.

(a) Tin
vis for H4 (b) 1st Tout

vis (c) 2nd Tout
vis

def Run(){
RepeatUntil(goal){
move
turnLeft
move
turnRight

}
}

(d) Cin for H4

def Run(){
move
move
RepeatUntil(goal){
turnLeft
move
turnRight
move

}
}

(e) 1st Cout

def Run(){
move
move
turnLeft
move
turnRight
move
turnLeft
15 more actions

}

(f) 2nd Cout

Figure 10: MUTTASK applied to H4. Tin
vis and Cin are shown in (a) and (d). (b)–(c) illustrate two tasks

Tout
vis obtained via small mutations of Tin

vis. (e) is the smallest solution code for (b) and is structurally
similar to Cin. (f) is the smallest solution code for (c) and is drastically different from Cin.

Results on task solving. In terms of successfully solving the generated tasks, SAME performed
best (mean success = 0.94) in comparison to TUTOR (mean = 0.90), SYNTASK (mean = 0.89), and
MUTTASK (mean = 0.68)—this is expected given the tasks generated by SAME. In comparison to
TUTOR, the performance of SYNTASK was not significantly different (χ2 = 0.04, p = 0.83); in
comparison to MUTTASK, SYNTASK performed significantly better (χ2 = 28.74, p < e−8). The
complexity of the generated tasks is also reflected in the average time that participants spent on
solving them. As shown in Fig. 9, they spent more time solving the tasks generated by MUTTASK.

Results on visual task dissimilarity. Visual dissimilarity was measured on a Likert scale ranging
from 1–4, 1 being highly similar and 4 highly dissimilar. Comparing the dissimilarity of the generated
tasks w.r.t. the reference task, we found that the performance of SAME was worst (mean dissimi-
larity = 1.07), while that of TUTOR was best (mean = 2.90). SYNTASK (mean = 2.63) performed
significantly better than MUTTASK (mean = 2.17), yet slightly worse than TUTOR. This is because
TUTOR generates tasks with additional distracting paths and noise, which can also be done by our al-
gorithm (although not done for this study). Moreover, for H2, which had no conditionals, the resulting
codes were somewhat similar, and so were the generated puzzles. When excluding H2 from the anal-
ysis, the difference between SYNTASK (mean = 2.72) and TUTOR (mean =2.93) was not statistically
significant. A detailed distribution of the responses can be found in the supplementary material.

Remarks. SAME’s performance in terms of tasks solved is below 1.00, possibly because participants
overlooked the solution of Step 1, unaware they will be receiving the same task in Step 2, and the app
did not allow them to go back to Step 1. This user study provides a proof-of-concept; more elaborate
studies are needed to fully reach the motivational goal of teaching K-12 students, and evaluate the
long term impact on students’ concept learning. As additional studies, it would be important to
understand the sensitivity of user study results w.r.t. the Likert scale definition; another possibility
is to use pairwise comparisons in eliciting user evaluations.

6 Conclusions and Outlook
We developed techniques for a critical aspect of pedagogy in block-based programming: Automat-
ically generating new tasks that exercise specific programming concepts, while looking visually
dissimilar to input. We demonstrated the effectiveness of our methodology through an extensive
empirical evaluation and user study on reference tasks from popular programming platforms.
We believe our techniques have the potential to drastically improve the success of pedagogy in
block-based visual programming environments by providing tutors and students with a substantial
pool of new tasks. Beyond the application domain of programming education, our methodology
can be used for generating large-scale datasets consisting of tasks and solution codes with desirable
characteristics—this can be potentially useful for training neural program synthesis methods.

There are several promising directions for future work, including but not limited to: Learning a
policy to guide the MCTS procedure (instead of running vanilla MCTS); automatically learning
the constraints and cost function from a human-generated pool of problems; and applying our
methodology to other programming environments (e.g., Python problems).

9

Broader Impact

This paper develops new techniques for improving pedagogy in block-based visual programming
environments. Such programming environments are increasingly used nowadays to introduce com-
puting concepts to novice programmers, and our work is motivated by the clear societal need of
enhancing K-12 computing education. In existing systems, the programming tasks are hand-curated
by tutors, and the available set of tasks is typically very limited. This severely limits the utility of
existing systems for long-term learning as students do not have access to practice tasks for mastering
the programming concepts.

We take a step towards tackling this challenge by developing a methodology to generate new practice
tasks for a student that match a desired level of difficulty and exercise specific programming concepts.
Our task synthesis algorithm is able to generate 1000’s of new similar tasks for reference tasks
taken from the Hour of Code: Classic Maze challenge by Code.org and the Intro to Programming
with Karel course by CodeHS.com. Our extensive experiments and user study further validate the
quality of the generated tasks. Our task synthesis algorithm could be useful in many different ways
in practical systems. For instance, tutors can assign new practice tasks as homework or quizzes
to students to check their knowledge, students can automatically obtain new similar tasks after
they failed to solve a given task and received assistance, and intelligent tutoring systems could
automatically generate a personalized curriculum of problems for a student for long-term learning.

Acknowledgments and Disclosure of Funding

We would like to thank the anonymous reviewers for their helpful comments. Ahana Ghosh was
supported by Microsoft Research through its PhD Scholarship Programme. Umair Z. Ahmed and
Abhik Roychoudhury were supported by the National Research Foundation, Singapore and National
University of Singapore through its National Satellite of Excellence in Trustworthy Software Systems
(NSOE-TSS) project under the National Cybersecurity R&D (NCR) Grant award no. NRF2018NCR-
NSOE003-0001.

References
[1] Umair Z. Ahmed, Sumit Gulwani, and Amey Karkare. Automatically generating problems and

solutions for natural deduction. In IJCAI, pages 1968–1975, 2013.

[2] Chris Alvin, Sumit Gulwani, Rupak Majumdar, and Supratik Mukhopadhyay. Synthesis of
geometry proof problems. In AAAI, pages 245–252, 2014.

[3] Erik Andersen, Sumit Gulwani, and Zoran Popovic. A trace-based framework for analyzing
and synthesizing educational progressions. In CHI, pages 773–782, 2013.

[4] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model
Checking, pages 305–343. Springer, 2018.

[5] Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli.
Leveraging grammar and reinforcement learning for neural program synthesis. In ICLR, 2018.

[6] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In
ICLR, 2018.

[7] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

[8] Jacob Devlin, Rudy Bunel, Rishabh Singh, Matthew J. Hausknecht, and Pushmeet Kohli.
Neural program meta-induction. In Advances in Neural Information Processing Systems, pages
2080–2088, 2017.

[9] Aleksandr Efremov, Ahana Ghosh, and Adish Singla. Zero-shot learning of hint policy via
reinforcement learning and program synthesis. In EDM, 2020.

[10] Blockly Games. Games for tomorrow’s programmers. https://blockly.games/.

10

https://blockly.games/

[11] Sumit Gulwani. Example-based learning in computer-aided STEM education. Communications
of the ACM, 57(8):70–80, 2014.

[12] Bilal Kartal, Nick Sohre, and Stephen J. Guy. Data driven Sokoban puzzle generation with
Monte Carlo tree search. In AIIDE, 2016.

[13] James C. King. Symbolic execution and program testing. Communications of the ACM,
19:385–394, 1976.

[14] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In ECML, pages
282–293, 2006.

[15] Kasper Luckow, Corina S Păsăreanu, and Willem Visser. Monte Carlo tree search for finding
costly paths in programs. In SEFM, pages 123–138, 2018.

[16] John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Program-
ming by choice: Urban youth learning programming with Scratch. In SIGCSE, pages 367–371,
2008.

[17] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas W. Price. The impact of
adding textual explanations to next-step hints in a novice programming environment. In ITiCSE,
pages 520–526, 2019.

[18] Benjamin Paaßen, Barbara Hammer, Thomas W. Price, Tiffany Barnes, Sebastian Gross, and
Niels Pinkwart. The continuous hint factory – Providing hints in vast and sparsely populated
edit distance spaces. Journal of Educational Data Mining, 2018.

[19] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, and
Leonidas J. Guibas. Learning program embeddings to propagate feedback on student code. In
ICML, pages 1093–1102, 2015.

[20] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas J. Guibas. Autonomously generat-
ing hints by inferring problem solving policies. In L@S, pages 195–204, 2015.

[21] CodeHS platform. CodeHS.com: Teaching Coding and Computer Science. https://
codehs.com/.

[22] CodeHS platform. Intro to Programming with Karel the Dog. https://codehs.com/
info/curriculum/introkarel.

[23] Code.org platform. Hour of Code: Classic Maze Challenge. https://studio.code.
org/s/hourofcode.

[24] Code.org platform. Hour of Code Initiative. https://hourofcode.com/.

[25] Oleksandr Polozov, Eleanor O’Rourke, Adam M. Smith, Luke Zettlemoyer, Sumit Gulwani,
and Zoran Popovic. Personalized mathematical word problem generation. In IJCAI, 2015.

[26] Thomas W. Price and Tiffany Barnes. Position paper: Block-based programming should offer
intelligent support for learners. In B&B, pages 65–68, 2017.

[27] Thomas W. Price, Yihuan Dong, and Dragan Lipovac. iSnap: Towards intelligent tutoring in
novice programming environments. In SIGCSE, pages 483–488, 2017.

[28] Thomas W. Price, Rui Zhi, and Tiffany Barnes. Evaluation of a data-driven feedback algorithm
for open-ended programming. EDM, 2017.

[29] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, et al. Scratch:
Programming for all. Communications of the ACM, 52(11):60–67, 2009.

[30] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit
Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic program transformations from
examples. In ICSE, pages 404–415, 2017.

11

https://codehs.com/
https://codehs.com/
https://codehs.com/info/curriculum/introkarel
https://codehs.com/info/curriculum/introkarel
https://studio.code.org/s/hourofcode
https://studio.code.org/s/hourofcode
https://hourofcode.com/

[31] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation
for introductory programming assignments. In PLDI, pages 15–26, 2013.

[32] Rohit Singh, Sumit Gulwani, and Sriram K. Rajamani. Automatically generating algebra
problems. In AAAI, 2012.

[33] Lisa Wang, Angela Sy, Larry Liu, and Chris Piech. Learning to represent student knowledge on
programming exercises using deep learning. EDM, 2017.

[34] David Weintrop and Uri Wilensky. Comparing block-based and text-based programming in
high school computer science classrooms. TOCE, 18(1):1–25, 2017.

[35] Mike Wu, Milan Mosse, Noah Goodman, and Chris Piech. Zero shot learning for code education:
Rubric sampling with deep learning inference. In AAAI, 2019.

[36] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roychoudhury. A
feasibility study of using automated program repair for introductory programming assignments.
In ESEC/FSE, 2017.

[37] Rui Zhi, Thomas W. Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes, and Min Chi.
Exploring the impact of worked examples in a novice programming environment. In SIGCSE,
pages 98–104, 2019.

12

	Introduction
	Problem Formulation
	Our Task Synthesis Algorithm
	Code Mutation
	Symbolic Execution

	Experimental Evaluation
	Reference Tasks and Specifications
	Results

	User Study and Comparison with Alternate Methods
	Conclusions and Outlook

