Appendix

A Outline

This appendix is organized as follows: In Section [B|we provide preliminaries and notations used
in the proofs. In Section |C|we prove auxiliary lemmas that characterize the dynamics of w (¢) and
bound the norm of w (¢). In Section@] we prove the loss bound in Lemma In Section we prove
that Condition [5] holds for the linearized model. In the proofs we distinguish between the case D = 2
and D > 2 since the dynamics is different. In Section [f] we prove the results for D = 2 and in
Section [G| we prove the results for D > 2. Finally, in Section[H| we provide additional simulation
results and implementation details.

B Preliminaries and Notations for Proofs

To simplify notation in the proofs, without loss of generality we assume that Vn : y, = 1, as
equivalently we can re-define y,,x,, as x,,.

Path parametrization: In the proofs we parameterize the optimization path in terms of 7. Recall
that ¥ = —log e and 7(¢) is monotonically increasing along the gradient flow path starting from
4(0) = —loge(0) = 0. Accordingly, the stopping criteria is (o) = ¥(T,) = — log e(a). We also
overload notation and denote w(5') = w(ts/) and (") = y(t5/) where t5 is the unique ¢ such that
A(t) = 4. Moreover, in this appendix we restate the conditions and theorems in terms of 4 rather
than e.

Notation: We use the following notations:

o X =[x1,...,xy] € RN denotes the data matrix.
nd ~ ~ . ~ X
o X =[xy,...,%y] € R2¥*¥ denotes the augmented data matrix where %,, = [ _; } €
n
R24,

° T, = EnN:]_ |,,,;| Where x,, ; is the coordinate i of x,,. Also Z = max; (Z;).

® Tiax = MaXy, [|Xpll,-

e For some vector z we denote by diag(z) the diagonal matrix with diagonal z, and [z]; is the
1 coordinate.

min,, (x;w(t))
lw(®ll,

e 0° denotes the local sub-differential (Clarle’s sub-differential) operator defined as

0°h (z) =conv{v: 3z stz —z and Vh(zg) = v}.

e The /5 margin at time ¢ is vy, (t) = . Recall that v, = max |y, —1 min, X,, w.

Specifically, for h (z) = ||z||;:
Ozl ={veR":Vi=1,...d: —1<v; <1 and z # 0= v; =sign(z)} .
e Wedenoter (t) = - exp (=X "w (t)). Note that ||r (¢)||; = L (t) = exp (=7 (¢)).
e We denote A (t) = diag (4 w2 (t) + 4a41). This matrix is used in the proofs for D = 2.
e For D > 2 let:
hp(2)=(1—2)7 P2 —(14+2) 72 | ze(-1,1). (7)

Note that hp (z) is monotonically increasing, where hp (z "5 oo and hp (2) 2 0,

and thus the inverse h " is well defined, h;' : (—00,00) — (—1,1). In addition, it is easy
to verify that for z € (—1,1)

/ . dhp (2 2D
hp (2) = dz( E D—2 ®
and hp (2) oD
. hp(2)
I s ©



e We denote Ap (t) = diag (azD*zD (D —2)hp (hBl (%))) This matrix is used in
the proofs for D > 2.

Useful inequalities: From the definitions of £(¢) and 4(t) we have that

1 N
L) = =3 exp (-xiw(®) —exp(—5 (1)
and thus
1 - 1
TP (1)) < % Z exp (=x, w (1)) < N exp (= (1))
= S exp (= (1) < exp (~ (1) < exp (~ (1)
=7 (t) <7 (t) <7 (t)+log(N) . (10)

From eq. (I0) we have that lim;_, o, ) _ 1 and thus

v(t)
lim V(Ta)
a=o0 y(Ta)

—1. (11)
In addition, using X, W (£) < Zmax ||W ()||, we derive a lower bound on || w(t)||2 as following:

L(t)= % > exp (—x, w (1))

and thus

(12)

Conditions: We restate Condition [5]in terms of 7, i.e., we substitute € = exp(—7). We consider
two cases:

Condition 8. Forall k € [N] such that x;, W > 1, and large enough c, there exists 7* (o) = o (a?)

and py > 1 such that V5 € [¥* (o) ,7 ()] : xi%;/(;y) > po.

Condition 9. For all k € [N] such that x[ W > 1, and large enough o, there exists 7* (o) =

0 (a2 log %) and py > 1 such that Vy € [¥* (a) , 7 ()] : xa‘g(;) > po.

We prove the intermediate regime for D > 2 and the rich regime for D > 2 under Condition[§] To
prove the rich regime for D = 2 the weaker Condition[9 will suffice.

C Auxiliary lemmas

C.1 Thecase D =2

Lemma 10. For D = 2 and all t,

¢
w (t) = 2% sinh <4X/ r(s)ds) (13)
0
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and

dw(t 4

% = N\/WZ (t) + 4ol o X exp (—XTW (t)) = A(t)Xr(t) (14)
where A (t) = diag (4 w2 (t) + 4a41).
Proof. The gradient flow dynamics in the parameters space is given by

() = —VaL (u(t)) = %u(t) o Xexp (~XTu? (1) . (15)

It is easy to verify that the solution to eq. (I3) can be written as

u(t)=u(0) o exp <;X/Ot exp (J{Tlﬁ (s)) ds> — aexp (JQVX/; exp (42%2 (5)) ds> .

(16)
From (16) and w = ui —u? we geteq. . Taking the derivative of eq. we have
t
w(t) = %oﬁ cosh <4X/ r(s)ds) oXexp(—X'w(t). (17)
0
By combining egs. (I3) and (T7) we get
. 8 : w (t) T
w(t) = NQQ cosh <arcsmh < 502 >) oXexp(—X'w(t)).
Since cosh (arcsinh (z)) = Va2 + 1 we get eq. . O
Lemma 11. For D = 2 and all t,
. T
w0l < 20%siuh (530
Proof. Note that
ac (t dw (¢
LY (e ™ e )T A xr )
dy(t) 1 dC(t)  (Xr() A®)Xr(t)
dt L(t) dt Il ()1l
From A4, ; (t) > 8a2 we have
~ 2 2
dt Il ()1l
From Lemma 2 of [21] we have that
1 Xr (@)l =2 @), - (19)
Combining eqgs. (I8) and (T9) we get
dAy (t -
TO > 80223 e (1), = a3 exp (5 (1)) 20)

We employ the dynamics equation W (t) = % /W2 (t) + 4a*1 0 X exp (—X "w (t)) and change
variables ¢ — 7 (t). Using eq. we get that

dwl- (’3/) dwl (t) dt 2/~ T ~ 1
= —| < , 4ot ) || X -X . .
&7 ‘ | < Vi@ +ied X ew (XL o)
Using exp (—x,, w (7)) < N exp (—%) which follows from eq. (T0) we get
dw; () T 2 (%
2 4o
G| =2V () e

and by the Gronwall’s inequality we get the desired bound

- 2 . Ti . 2 . A
|w; (7)] < 2a® sinh (2722(127) < 2¢° sinh (2730427> .
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C.2 Thecase D > 2

Lemma 12. For D > 2 and all t,

w(t) = aPhp (aD2D (D — 2)X/Otr(s) ds)
and dw (1)
dt

where Ap (t) = diag (azD*zD (D —2)h}p (hl_)l (%)))

= Ap (t) Xr (1)

Proof. The gradient flow dynamics in the parameters space is given by

u(t) = —Vaol (u(t) = %uD* () 0 X exp <f)~(TuD (t)) . 21)
It is easy to verify that the solution to eq. (ZT) is
_9) . [t . -5
u(t) = <u2_D (0) — MX/ exp <—XTuD (s)) ds)
N 0
. D(D-2). [t _ o
— 2 D]_ _ X _XT D
(a —~N N exp( u (s)) ds)
OzD_QD(D—2>~ t T p -p2
=« (1 - #X/O exp (—X u (s)) ds) . (22)
From eq. and w = u? — u? we get
t ~523
w (1) :aD[<1 —aD_ZD(D—2)X/ r(s)ds)
0
t -5
— (1 +aP2D (D -2) X/ r(s) ds) 1 ) (23)
0

As u; (t) > 0 for all ¢ (because u; (0) = a > 0; the gradient flow dynamics are continuous; and
u; (t) =0 = 4, (t) = 0) we get from eq. that

D—2 _ ¢ 5
-1< %(DQ)X/ exp <7XTuD (s)) ds <1. (24)
0

Therefore we can write eq. (23) as

w(t) = aPhp <aD_2D (D-2) X/Otr(s) ds) (25)

:>aD2D(D—2)X/Otr(s)ds:h51 (Z?) :

Taking the derivative of eq. (23] we get

w(t) = aPh, <aD2D (D-2)X /Ot r(s) ds) o (@P72D (D —2) Xr (1))

=a?P2D (D - 2) b (h,—; (Z?)) o(Xr (1) . (26)

Lemma 13. For D > 2 and all t,
(D-2)7 .
w0l < 0o (G5-253 )
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Proof. Note that

= = (VwL(t)" == = = (Xr (1) Ap (1) Xr (1)
di(t) _ 1 dL() _ (Xr(t)" Ap () Xr(t) o
dt L(t) dt HOIE ‘

From eq (8) we get a lower bound on the entries of Ap (t), Ap (t) > 2D?a*P~2. Combining with

eq. (27) we get
d3 (1) _ 2D%a?P 2 | Xr ()5
dt — Il (@)1

(28)

From eqgs. (28), (T9) we get

lei )5 20202022 e (1), = 20%0%P 23 exp (5 (1)) @9)

We employ the dynamics equation eq. and change variables ¢t — 7 (t). Using eq. we get
that

dwi (3)| _ |dwi(t) dt| _ op_, c (o (wi )Y | [Xexp (=XTw(9))]]
’ 75 H i dv‘ ) D(D_Q)hD@Dl(aD ))2ND2a2D2 Zoxp ()

Using exp (—x,, w (7)) < N exp (—%) which follows from eq. (T0) we get

0] 0o, (i ()

and by the Gronwall’s inequality we get the desired bound

s )] < 0o (G52254) < 0% (S55057) -

2Dv3a 2D~2aP 7
O
D Proof of Lemma[3
We prove the loss bound for D > 2, any fixed «, and Vt:
L)< L
T 1+ 2D2a2P243¢t"
Proof. We employ the Gronwall’s inequality. For D = 2 from eq. (20) we get
3 (t) > log (1 + 8a”~5t) (30)
and thus
1
LO)S 57 €1y
1+ 8a2~3t
For D > 2 from eq. (29) we get
3 (t) > log (1 +2D%a*P~2431) (32)
and thus
1
t) < . 33
L) = 1+ 2D2a2D—242¢ (33)
Note that by substituting D = 2 in eq. (33) we get eq. (31), so (33) is correct for D > 2. O
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E Condition [ holds for the linearized model

We show that Condition[§] which is equivalent to Condition 5] holds for the linearized model. The
linearized model is

fax) = f((0),x)+ Vyf(a),x)(@-u(0).

For the diagonal linear network f (u,x) = x| (u?_ —u? ) where u = { ] € R??. Let

a= [ g* } € R24. We consider the initialization u (0) = @ (0) = a1, thus

F(0),%) =0
Vs ((0)x) = Da? | % |

Vaf (@(0),x)u(0) =0

and we get
f(a,x)=DaPx" (a, —a_).
Let w = DaP~'(ay —u_). Then f(W,x) = w'x. We consider gradient flow 2% —
—VL (i (t)) where
o 1 Y _
L (u (t)) = N Z eXp (_f (U. (t) >Xn)) .
n=1
Thus N
dag (t) 1. py D-1,T (= _ =
T NDa T; exp (—Da” " 'x, (ay —u-)) x,
du_ (t) 1 poav D-1,T (= _ =
0 —NDoz nz::lexp (—=Da”~'x,) (g —u_)) x,
and
dw (1) p-1 (dug () du_(t)
= D j—
dt “ dt dt
9 N
— ND2a2D_2 Z exp (—XZW (t)) X, . (34)
n=1
It follows that
dC(t) LT dw (1)
da (VL) dt
.
= _1 i exp (—xTv_v (t)) X 3D2042D_2 i exp (—XTW (t)) X
N — n n N — n n
1 ’
= _2D2052D72 N Z eXp (—X;LFVV (t)) Xn
n=1 2
Let 7 (t) = log ﬁ Then
d5 (t) 1 dL(t) 1 N 2
2 2 2D-2 T
=——= = =—=2D —
i Lo a Lo 2 exp (=% (1) xn o

From Lemma 2 of [21]] we know that

| X N 2 )
H N nz::l exp (—x, W (1)) x,, 2 > 5 (N 7; exp (—x, W (t))) =~2L%(t) (36)




Combining egs. (33) and (36) we get
4y ()

o >2D20?P 72421 (t) = 2D%a?P 242 exp (=7 (1)) .

In addition,

Combining eqs. (35) and (38) we get

dv (t) _
7 S 2D2a2D 2x12nax

X
N Z exp (—sz’v (1)) Xn
n=1

L(t) =2D%a?P 222 exp(—7 (1))

max
and by the Gronwall’s inequality we get

3 (t) <log (1+2D*a*P~222 1)

exp () —1
=t 2D2n2D—242 '
max

N
1 _ _
<5 Y e (=xa W (1)) [%ally < Tl (1) -
2 n=1

(37

(38)

(39)

The ¢ max-margin solution is wy, = Zn €S, VnXn where S5 denotes the set of support vectors of
wy,. Let W be a vector that satisfies exp (—x,) W) = 1, for n € S3. Such W exists for almost all

n

datasets, where the support vectors of wy, are associated with positive dual variables v,, [28]. Let

2
k(t) =w(t) —log (NDQQQD_27§) W, — W.

Then

and thus

N
@%Dzaw 2 Z exp (—x, W () x,, K (t) lwezm (t)
n=1
_ ND2 2D—2 Z exp (=%, W (1)) x, K (t) — W/ K (t)]
neSs

For n € Sy we have that x,) wy, = 1, thus

exp (—x, W (t)) = exp (—xl <log (;DQath) W, + WA K (t)))

1 .
= Tprarn O (=%, W) exp (=%, (1))

1 T
= Up €xXp (—X, k (T
%D2a2D—2t p ( ( ))

19
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and the first bracketed term in eq. (&) can be written as

2 1 1
—D2a?P2 ———————VUp €X —x'k())x K (t) - - anT/i t
= 3 e P (R O) XK 0~ § 3 vk (0

neSs
1
=2 > [ (exp (= (1) = 1) s ()]
neSs
<0 (42)
since (7% — 1) z < 0 for all z.
Let 0 = min,¢g, (X, we,) > 1and ¢; = max,¢g, exp (—x, w). For n ¢ Sy we have that
2
exp (—xzv_v (t)) = exp (—X;Lr (log (NDZQQD_2t> We, + W+ K (t)))
1 Ta T
e — —_ —_ t
< (%DQQQD*%)Q exp ( X, w) exp ( X,k ( ))
C1 T
<——————exp (—x, k(1))
(%DzazD*%)
and thus the second bracketed term in eq. @I)) can be bounded as following
2
NDQQQD*Q Z exp (—x, W (1)) x,, £ (¢)
’I’L¢32
2 12 ,2D—2
=D« c1
_W Z exp (_XI“ (t)) XI“ (t)
(D?a2P=2)" 155,
2D202P—2,
T (2 p2,2D-2 1 0 “3)

since %z < 1 for all 2. Substituting eqs. (#2)) and @3) in eq. we get

2,2D—2
ld < (D2 < 2D« 1 .
- 2 0
2dt (2 D2a2D-2¢)
Using (39) we get
2,2D—2 2,,2D-2
%:lit H’f(t)H; < 2D“« c1 2D« c1

T2D 2,2
2D o mx]]ax

: 7 : 7
(J%D2a2D—2’3"I)('Y(t))_1> (Jb%)

We change variables ¢ — 7 and get

57 I = 53 I G O T

LG %
2dt 2 dy
@ 2D%?P—2¢; 1
< < 1 exp(&)1>a 2D202P—2~2 exp (—9)
N a2,




where C is a constant. Integrating we have that for all 5 > 0,5 > 7

Texp (< (0~ D)) -

_ = 0

5 (1 —exp(—=71))

“exp(-(0-1D) -

/Co - ()
1

(6 —1) (exp (70) — 1

5 ()3 — I Go)ll; < C

<C

=C

)971

and thus
&), < (44)

where C is a constant. Finally, for k¥ ¢ S5 we have that kawz2 > 6 > 1 and thus

x; W (3) @ xi (log (%D%ﬂf’*ft) we, + W+ k(7))

gl

2 S

2 n2 2p-2__ exp(¥)-1 T T 1+ «Tp (3
@ IOg <ND @ 2D2a2(D*)29:2, ) X Wi, + X W + X H(W)

0
=@ log (exf\eggl:l> 0 —logci — TmaxC’
Z =
Y
o [ 2®(G)=1
B 0og < Nz2 p log ¢t + TmaxC’
5 7 |

lo (%’;\ff{) —! >
Note that % is monotonically increasing and

Therefore there exists 4* (independent of a!) such that for ¥ > ¥

exp(7)—1
log <§M>
Ve ) 3041

H =40

and
log ¢1 + TpaxC’ < 0—1

It follows that for 5 > 5

*=o0 (aD ) since 4* is independent of .

2]

for v >
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F Proofs for D =2

F.1 Kernel Regime Proof
Theorem 14 (Theoremfor D =2). For D =2, if y(a) = o(a?) then

W = argmin ||w|[, s.t.Vn:x w>1.
w

min,, (x;w(Ta))

lw(Ta)ll,
when o — co. Note that by definition v, (T5,) < 72. Next we show that v2 (T,) > v2 when o — 0.
From eq. (T0) we have that

Proof. We show convergence of the ¢5 margin v2 (T,,) = to the max-margin

min,, (x,) w (t)) o A (t) — log(NV)
w®lly = lw(®lly
In order to lower bound v, (t) we derive a lower bound on # (¢) and an upper bound on ||w (t)||,.

72 () = (45)

Lower bound on 7 (t): Combining (18) and (%) we get

dv (t
T+ a2y |xx (1)),

t
=5 (t) > 804272/0 | Xx (1), dr. (46)
Upper bound on ||w ()||,: We decompose W (t) to two terms:
w (t) =4/ w2 (t) + 4a*l o Xr (¢)
=4 (x/w2 (t) + 401 — 2a21) o Xt (t) +8a*Xr (t)
= |lw (1)l < 4 H (VW2 (6 + 40" - 20%1) 0 Xr (t)H2 + 80 | Xr (1),

= w @), §4/0t"(\/m—2a21) er(T)HQdT+8a2 /Ot X (7|, dr. (47)
Let v (t) = H (VW7 (0 + 40" - 20%1) o Xr (t)HQ. Then
v () < VWP 10T - 20°1)| w9,
= |[VW? @ 10T - 2021 _amacexp (-5 (1)) -

Using Lemmal[TT|we get

v (t) < <2a2 \/ sinh? (2027%7 (t)) +1- 2a2> Tmax exXp (—7 (1))

= 20? {cosh (2;237%'7 (t)) - 1} Tmax €Xp (=7 (1)) .
We are interested in bounding fot v (1) dT. We change variables t — ¥ (t) and proceed using ,
/t ( (t) ) z 1
v(T)dr S/ 2 {cosh ('?) — 1} Tmax €Xp (—7) ———+——d¥
0 ) 0 20273 =7 8a?y3 exp (—7)
T o F(t) T
- b2 5)—1|d5
dy3 /0 [COS <2027§ W) } !
Tmax 2&2’73 z
= inh Y(@) | =~ ()] . 48
s |22 s (350 (0) -~ 30 @)
Plugging eqs. @8) in 7) we get

Tmax 20427% . T
w (t < sinh [ ——=~5(¢) | —
[[w ( )Hz > 73 { T S 20[2737( )

(49)

N
=
S—
| I
+
(02]
Q
o
c\ﬁ
<
=
=
=
=
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Putting things together: From eqs. (@3] and (12)) we have
v (t) — log(N y(t lo Nmmax
s A0 TR 50 los(V)
W @)l l[w (£)ll, (1)

Next we set ¢ = T}, and take the limit o« — co. Note that 7(T,,) “=° oo since ¢(T}) =~ 0, and
thus the right term in eq. (30) is vanishing. Using eq. (@9) we get

L I Tl
a—0 Yo (Ty) ~ o= 7 (Ty)
Tmax | 20273 ( z ) } 8a? /T“
< lim — sinh Y(Ty) ) = 1| + ——= Xr (1), dr| .
RS [ 2 [y o (g @) 3@ Jy TN
We use 'Y(T ) 42200, lim, o % = 1 and eq. to get
. 1 1
im —
a=oo ¥y (To) ~ 72
It follows that lim, 00 Y2 (To) = 2. O

(50)

F.2 Intermediate Regime Proof

Theorem 15 (Theorem|§|f0r D = 2). Under Conditionﬁ for D =2if lim 2% = i > 0, then
o—r 00

W = argmin Qi (w) s.t. Vn: x)w>1
w
where Q7 (w) = Zj 1G2 ( ) and q3 (8) — V4 + s>+ s-arcsinh (£).

Proof. We show that the KKT conditions hold in the limit & — oco. The KKT conditions are that
there exists v € RY; such that

VQ: (w) = Xv (51)
Vn : XZW >1 (52)
Vn: v, (xg W —1) = 0. (53)

Primal feasibility (52): The condition follows by definition of W,

T ~ T
T, T,
Vn: xTw = lim Xo%Te) oo min (Caw (1)) _ (54)
a—oo (Ta) a—00 ol (Ta)
Stationarity condition (3I): To show the condition (31)) let
4 T
v =—lim sup/ r(s)ds € RY,. (55)
K a—oo Jo -

We need to show that . .
w
V@, (W) = — arcsinh () =Xv.
u (W) . %
Indeed from eqgs. (I3) and (TI) we have
2a2 sinh <4X fo ds)
w = lim
a—oo 0 (Ta)

g Ta 2 To
2 lim M) lim ——> lim sup sinh 4X/ r(s)ds
a=% 7y (To) e ¥ (Ta)  a—oo 0

4 To
= 2usinh | puX flimsup/ r(s)ds
M a—oo Jo
2usinh (uXv)

and thus 1 arcsmh ( 2&) = Xv, as desired.
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Complementary slackness (53): To show the condition let k € [N] such that
X W > 1. (56)
We need to show that v, = 0. We change variables t — ¥ (¢) and using eq. we get

Te T 1 3(Tw) . 5 o
/ exp (—xy W (s)) ds < o—— / exp (—x{ w (3) +7) d7 . (57)
0 8a*ys Jo

From Conditionwe know that there exists ¥* (a) = o (a2) and po > 1 such that for large enough
aand € 7 (@), 7 (@), %9 > py. Let

31 (@) = e (Y 54 0)) — o (o)

po—1

and p; = p”“ > 1. Then for large enough o and ¥ € [37 («) , 7 ()], using ¥ < v + log N we get

Next we decompose the RHS of eq. (57) as following

1

1 F(Ta) o 1 (@) o
m /0 exp (—xk w (%) + 'y) a5 :W /0 exp (—xk w (%) + 7) dy

1 A(To) ( T ( ) )

_|_7/ exp (—x, w (%) +7) dy
80273 J5t (o) *

— (1) + (1) (58)

From eq. (T0) we have that exp (—x,} w () + %) < N and thus

1 i (@) N’?* (04> a—00
nN< — Ndy = L2 92 59
Dz, V0= >

since ¥ («) = o(a?). For the second term in eq. we have for large enough a,

1 L o (1)
Il) = —— exp |— | xp —=—1)7|dy
U= 50593 iy * A

= " (o1~ 1)3)
< exp |— (p1 —1)7]dy
80293 Js (o)
< —1)7] dy
< 57 72/0 exp [= (pr — 1) 3] dy
1 a—r 00
- 220, (60)
80273 (p1 — 1)
By substituting eqs. (39) and (60) in eq. (58) we get that v, = 0. O
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F.3 Rich Regime Proof
Theorem 16 (Theoremfor D = 2). Under Condition@for D =2 ify(a) = w(a?) then

W = argmin [|wl|; s.t. Vn: XIW >1. (61)
w

Proof. We show that the KKT conditions for the ¢; max-margin problem (6I)) hold in the limit
a — 0o. The KKT conditions are that there exists v(‘2) € RY such that

X € o ||l (62)
Vo ox w > 1 (63)
Vn : fol) (XIVAV - 1) =0. (64)
To this end let
4 Ta
v = lim sup "7T/ r(s)ds € RY,. (65)
a—00 log % 0 B

The proof for the primal feasibility condition (63) appears in eq. (54).

Stationarity condition (62)):

202 sinh (4X fOT“ r(s) ds)
w = lim
a—oo v (Tw)

202 sinh <10g o) __4X Ty (s) ds>

a? e 1Ta) JO
@ lim _ g — 5
o ¥ (Ta)
5 —X [y r(s)ds
2 sinh (10g (%) log % 0
= Jm ey
2 sinh (10g (g (a))z(a))
= lim ’ .
oa—r 00 g (O()
where we defined .
T Ha
g(a) = 5 ER
4X Ta
ZQ):f r(s)dSE]Rd_
log iTa) [,

Note that from lim, oo ,ﬂa—;) = 0 we have lim, o g(a) = oo and from we get
limsup,,_, -, z () = Xv1). In addition, for some f > 0 and a € R:

2sinh (log f¢) " — flT B 1

a—1 __
f f =f fa+1 ’

Therefore in (66) we have,

AT z(a)—1 o 1
W= algr;o (g (o) g (a)z(a)+1> '

Next, it is easy to verify that foralli =1, ..., d:
w; > 0= limsup z (a) =1

a—00
w; < 0= limsup z; (o) = —1
a—0o0
w; =0= —1<limsupz (a) <1

a—r00

and so Xv(“) € 9° ||w]|,.
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Complementary slackness (64): We perform similar steps to the proof of the intermediate regime
in Appendix We change variables ¢ — 4 (¢) and use the weaker Condition@, where we replace
A* () with 47 () and po with p; (see the proof of the intermediate regime in Appendix . We get
that

oy e (el (o) Lo [ e (kw49
_— exp (—x, w(s))ds < - / exp (—x, W (¥) +7) dy
Nlog % 0 . 2Na2v2 log % 0 g
1

A1 ()
< - exp (—x, w () +7) d¥
2Na2v3 log —7(;"‘) /0 ( v )

1 '?(Toe) ( T ( ) )
+ - / exp (—xp W (y) +7) d¥
2N a22 log —V(ZQ‘*) 31 (a)

—(D) + (I1) (67)

Using 77 () = 0 <a2 log %) we bound the first term similarly to eq. (39):

7 (a) a—so0
(1) < Nl T 0. (68)

The second term is bounded similarly to eq. (60):

1 a—00
I1) < = — 0. (69)
) 2N o243 log 22 (py — 1)
By substituting eqgs. and 1@' in eq. l| we get that yliz ) — . O

G Proofsfor D > 2

G.1 Kernel Regime Proof
Theorem 17 (Theoremfor D > 2). For D > 2, ify(a) = o(aP) then

W = argmin ||w|[, s.t.Vn:x w>1.
w

The proof is similar in spirit to the proof for the case D = 2 (see Appendix [F.I).

min,, (xIW(TQ))

Wi, to the max-margin 5 as

Proof. We show convergence of the ¢o margin v2 (T,) =
o — 0o. We have that

min,, (x, w () _ 7 (t) — log(N)

PO won, 2wl 70
Lower bound on 7 (t): Combining egs. and we get
O 5 sp2arv=2y, |xe (1)),
t
=7 (t) > 202042’3*272/0 | Xt ()|, dr. (71)

Upper bound on ||w ()||,: We decompose W (¢) to two terms:

w(t) = a?P72D (D - 2) ), (th (“;E?)) o Xr(t)

— o2b—2p2 [DD_ 2h/D (th (W(;))> —2. 1] o Xr(t) +2D*a*P2Xr (1)
@
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[DD_Zhb (h51 (V;(Dt)» —2. 1] o Xr(t) 2+2D20¢2D—2 | X (8)]],

= |w ()], <a?P~2D? /Ot H [DIS%’D (th (‘”a(g)» —2. 1} o Xr (1)

t
+2D2a2’3*2/0 | Xt (7)]|, dT . (72)

= W (@), < a*P72D?

Leto (t) = H {DTh (h ! (W(t))) -2 1} oXr (t)H2 Then

v(t) < HDZSQh'D (hgl <W(Dt)>) 2.1wamax e ()l
= HD_Qh’D <h51 (2&?)) - 2-1Hooxmaxexp(—7y (1)) .

Using Lemma|[I3| we get

D72h, ((DZ)f

00 < [25200 (S5maa 1 (0) 2] e (-5 0)

We are interested in bounding fo 7) dr. We change variables ¢t — ¥ (¢) and proceed using eq. ,
! Wrp—2, ((D-2)z Tmax €xp (—7)
d < h ~ _ 2 max d~
/0 v(r)dr _/0 { D P <2D72204D 7) } 2020 =2 D242 exp (—7) g
Tmax Wrp—2, ((D-2)%
= — h v - 2 dN
2020-2D%3 /0 { D 7 <2D7220<D fy) } !

Tmax [%iaD I ((D —2)z, (t)) — 27 (t)} : (73)

202D—2 D242 2D~2aP

Plugging eq. (73) in eq. (72) we get

T 2alP —2)x K
Iw @l < 25 | 220 (52550) - 230 4202202 [ xe rlar.

2Dv5cx
(74)
Putting things together: From eqs. (70) and (I2)) we have
Y (t) — log(V Y(t log(N)Zmax
o () > LD Z18N) o () 108(NV)Tmax (75)

w®lly W@l (1)

Next we set t = T,, and take the limit o — co. Note that 5(T,,) “= oo since €(T,,) “=* 0, and
thus the right term in eq. is vanishing. Using eq. we get

1 T,
lim ——— < fim Tl
a—oo Yo (T, a—oo fy(Ta)

.| %max [ 293aP ((D2):7:~ > ] 2D2q2D-2 /Ta
< lim — hp 7 (T -2+ —— Xr (1), dr]| .
o0 [ 3 Lfv (Tw) 2Dv3aP () Sy Jo Ol
We use L ( ) Y20, eq. @)andeq toget

I 1 < 1
1im —_— .
a=oo v (To) = 72

It follows that lim, 00 V2 (To) = 7. O
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G.2 Intermediate Regime Proof

D

Theorem 18 (Theorem|§|f0r D > 2). Under Conditionﬁ for D> 2if lim 22 = ;1> 0, then

a—oo V()

W = argmin Qf (w) s.t.Vn: x w>1
D _ d w; — [(sp—l — - 523
where Q) (W) = >,_1ap m and qp (s) = fo hpy (2)dz for hp (z) = (1 —2) —
(1+2)7 77,
Proof. The proof is similar in spirit to the proof for the case D = 2 (see Appendix [F.2). We show

that the KKT conditions hold in the limit &« — oo. The KKT conditions are that there exists v € R,
such that -

vQy (w) = Xv (76)
Vo ox)w > 1 17
Vn vy (xg W —1) = 0. (78)

The proof of primal feasibility (77) for D = 2 applies also here.

Stationarity condition (76): Let
D(D -2 To
v= (M) lim sup (ozDQ/ r(s) ds) e RY,. (79)
o >

a—r00

‘We need to show that
W

1
vQP (w)= =hi! () =Xv.
" ( ) I D m
Indeed using Lemma[T2]and eq. (TT)) we have
aPhp (aD_QD (D-2)X fOT“ r(s) ds)
W = lim
a—00 Yy (Ta)

g Ta D To
= lim 7 (Ta) lim Llimsup hp (aD_QD (D - 2)X/ r(s) ds)
0

a—o0 v (Ty) a0 7 (Ty) a—oo
— Ta
= php [uX D(D-2) lim sup (aDz/ r(s) ds>>1
1% a—00 0

and thus l%hz,l (%) = X, as desired.

Complementary slackness (78): Let k € [N] such that
xpw > 1. (80)
We have to show that v, = 0. We change variables ¢ — ¥ (¢) and using eq. we get

s Y(Ta)
_ 1 K NN e
0 a3 Jo

Next we decompose the RHS of eq. (81) and employ Condition [8] where similarly to the case D = 2
we replace 7*(a) with 7 («) and pg with p; (see the proof of the intermediate regime for D = 2 in
Appendix [F.2). We get that

1 F(Ta) — N 1 A1 (@) T
W/o exp (—x;, w (3) +7) d7 :W/o exp (—x, W (3) +7) dy
2 2
1 :Y(Toz) T ( )
+7/ exp (—x, w (¥) +7) d¥
202073 st () (= )
= (1) + (I1) (82)
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From eq. (T0) we have that exp (—x, w (7) +¥) < N and thus

1 File) N (@) assoo
<I>§W/O Nty = opaarg = 0 ®3)

since 77 (o) = o(a?). For the second term in eq. we get for large enough a,

L w(3)
11 :7/ eXp[—(xT ~ —1)&}0@
U0 = 3p2arg 5 (0) "3

1 F(Ta)
< —(p1 — 1)3] d5
< 3D%aD 2 /ma) exp [~ (p1 —1)7] d7
1 o o1 7x
= 2D2aDA2 /0 exp [— (p1 — 1) 7] d7
1 a—00
- . 4
DR (1) (39
By substituting eqs. (83 and (84) in eq. (82) and back in eq. (8T) we get that 14, = 0. O

G.3 Rich Regime Proof
Theorem 19 (Theorem [7|for D > 2). Under Condition|§| for D > 2 if 3(a) = w(aP) then
W = argmin |wl||, s.t.Vn:x,w>1. (85)

Proof. We show that the KKT conditions (62), (63), (64) for the £; max-margin problem (83) hold
in the limit o — oo. To this end let

Ta
v\ = D (D — 2)limsup (aD_Q/ r(s) ds) e RY,. (86)
o >

a— 00

Note that this definition is similar to eq. (79), and if v, = 0 for some & then also u,(fl) = 0. Therefore
it is left to show the stationarity condition Xv(“1) € 9° ||W||,. Indeed, from eq. we know that
—1 < [Xv(®], <1 foralli. In addition

aPhp (aD’QD (D-2)X fOT" r(s) ds)
w = lim
a—00 ¥ (Tw)

© im o> aP—? - Tars s
—(}W(a(:ra)hl?( D(D 2)X/0 ()d)).

D

Assume that w; > 0. As lim,_, ( a ) = 0 we must have that

¥(Ta)
Ta
oP~2D (D - 2)X/ r(s)ds| “=°1
0 i
and thus [Xv(D] “Z° 1. Similarly, if w; < 0 we get [Xv()] “= —1. It follows that

i i

Xv) € 9° ||wl|;. O

H Additional Simulation Results and Details

H.1 Optimization trajectories with 7 indicators
In Figure[6] we repeat the optimization trajectories from Figure [3| but we add indicators that indicate

the value of 4 along the path. Recall that 4(t) = — log €(t). For example, a number 10 near some
point on the path means that the loss at this point is exp(—10).
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In all three examples we observe that for & = 100, where the trajectory first visits the /5 predictor,
around the /5 predictor we have ¥ = 10* = a2, as suggested by our theoretical results. In the
top figure we also plot the path for « = 10000, and again around the ¢» predictor it holds that
7 =10% = o2

In addition we can see that in order to be rather close to ¢; with large initialization, we need very
large 7, corresponding to extremely small loss e. For example, consider the center plot. For o = 100
to be close to /1 direction we need 5 = 10%, or € = exp(—10%) ! However, with small initialization,
e.g., « = 0.001, 4 can be as small as 0.1, or ¢ = exp(—0.1) & 0.9, and we are close to ¢;.

H.2 Understanding the non-unique ¢; case

In Figure we showed an example of optimization trajectories for data with non-unique /4
predictor. We can observe that for different initializations, the selected ¢; direction, and thus the
implicit bias, is different.

It is interesting to understand what are the properties of different ¢ solutions. To this end, in Figure[7]
we plot the optimization trajectory in a different way. Instead of looking at the direction of the
predictor (as in Figure [3(c)), we consider the excess ¢; and ¢ norms along the path, defined as
[|lw(@)]|1/||we, ||z — 1 and ||w(t)||2/||We,||2 — 1 where w,, and wy, are the ¢; and ¢ max-margin
(minimum norm) solutions accordingly.

We can observe that for large initialization, where we follow the ), path, the selected ¢; predictor
has the smallest /5 norm. Moreover, for small initialization, the selected ¢; predictor has the largest
¢5 norm. Thus, in this case, we see an example where the asymptotic (at a long time/small loss)
implicit bias is affected by the initialization. This in contrast to previous results for exp-tailed losses
(e.g., (131116} 19} 120l 28]]), where the asymptotic bias was independent of the initialization.

H.3 Local minima in high dimension

In Figure [§] we consider optimization trajectories for data in dimension 10. In this case we cannot

show the direction of the predictor Hv‘:(tt)ﬂz on a sphere, as we did for data in dimension 3. Instead,

we take the approach similar to Figure [/, where we show the excess margins.

We consider two datasets in dimension 10. The first is a random, yet separable, data composed of 10
points where the coordinates are drawn from ~ U/(0, 1). The second dataset is a sparse dataset of 4
points, where the first coordinate is 1 and the other 9 coordinates are random noise ~ (0, 0.5). This
dataset allows a large separation between the /o max-margin and ¢; max-margin solutions.

We train depth-3 linear diagonal network and plot the optimization trajectories in £53-{2 plane. We
observe that for the random data (Figure[8(a)), there are many local minima of the max /5,3 margin,
and depending on initialization we are biased towards different local-minima points. However, with a
large initialization we converge to a local point, quite close to the ), path and ¢;.

For the sparse data (Figure[8(b)] and a zoom-in shown in Figure the local minima are quite far
away from the paths. Also, in this case, the /1 and /5 /3 max-margin solutions are the same, and with
a large initialization we converge to them, along the (), path. This seems to suggest that for certain
structure data, like sparse data, we tend to converge to the global max {5 /3-margin predictor.

H.4 Tangent kernel during training

In Figure[5(a) we showed how the excess ¢1-norm depends on « and depth D, and measured closeness
to the rich limit by excess ¢1-norm. An alternative and complementary approach is to look at the
tangent kernel K;(x,x’) = (Vyf(u(t),x), Vuf(u(t),x’)), which is directly related to closeness to
the kernel regime. As discussed in Section 2] the tangent kernel is almost fixed in the kernel regime,
yet can change significantly when we exit the kernel regime.

In Figure[9| we show the kernel distance during optimization for the same data and network (depth
2) as in Figure The kernel distance is defined as 1 — CosineSimilarity (K (¢), K (0)) where
K(0) € R¥*N s the tangent kernel at initialization, K (t) € RV*¥ is the tangent kernel at time ¢,
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and

| (K@.K(0)  _ Tr(KOK(0)
K@ A KOz (K@) K0)]2

Here we focus on exiting the kernel regime, rather than closeness to the rich regime. We observe

that increasing depth will help to exit the kernel regime (where distance ~ 0) earlier, at a larger loss
value e. Decreasing the initialization has a similar effect, and this is consistent with Figure [5(a)}

CosineSimilarity (K (t), K(0))

H.5 Addressing Numerical Issues

In our simulations we employ the normalized gradient descent update rule, given by
VL (u(t))

u(t+1)=u(t)—n Z(u()

where u € R2? is the vector of parameters and
1N
L) = ;exp (—x,u” (1)) .

This algorithm effectively enlarges the learning rate according to the current loss, and for single layer
linear models Nacson et al. [21]] showed that the loss decreases exponentially faster.

Let G (u(t)) = VLL(SES;) . During training the loss can become extremely small, e.g., well beyond

1071990 "and in this case also the gradient is very small. This can cause numerical issues in calculating
G. In order to have a numerically stable evaluation of G, and avoid cases like 0/0, we take an approach
similar to [19]. Specifically, let

In(t) =%pu” (1), y(t) =mingu(t)
Then we have that N
VL () = —gu” ()0 D exp (—Aa0) %
n=1

and

G(u(t))=—-DuP ! (t)o

SN exp (<7 (1) %y,
SN exp (<A (t))
N _ ~
_DuP1 (1) o L= P (= () =7()) %
SN exp (— (Fu(t) — (1))

3
We calculate G according to (87). Note that max,, exp (— (7, (t) — 7(t))) = 1 so the denominator is
at least 1 and the sum in the numerator will contain at least one Support Vector X,,.x, ()=~ (t)-

87)

It is important to note that we never represent the loss values, but only the parameters u. Thus, as long
as u can be represented by float64 precision, the simulation can continue, and we get extremely
large parameters corresponding to an extremely small loss.
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Figure 6: The same optimization trajectories from Figurewith 4 values indications.
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Figure 7: Optimization trajectories for data in Figure in excess £1-norm - excess £2-norm plane.
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Figure 8: Optimization trajectories for data in dimension 10.
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Figure 9: The Kernel distance is defined as 1 — CosineSimilarity (K (¢), K (0)) where K (0) is the tangent kernel
at initialization and K (t) is the tangent kernel at time ¢.
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